COMP2300-COMP6300-ENGN2219
Computer Architecture

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Australian
== National
s University

General Idea of
Pipelining

Speed of a Circuit

= A digital circuit processes a group of inputs (task) and produces

a group of outputs

tog
e PC

1™ Digital —|
inputs Cireuit outputs

= Latency: Time required to produce one group of outputs

= Throughput: Number of input groups processed per unit of time

= Parallelism is a key technique for increasing throughput and processing
several inputs at the same time

Spatial Parallelism

= Spatial Parallelism: Use multiple copies of hardware
(circuit) to get multiple tasks done at the same time

Arbitrary Arbitrary Arbitrary Arbitrary
Circuit Circuit Circuit Circuit

= Suppose a task has a latency of L second
= No spatial parallelism: Throughput is 1/L (one task per L second)
= N copies of hardware: Throughput is N/L (N tasks per L second)
= Gain in throughput (speedup) =N

Spatial Parallelism does not reduce the
latency of the circuit. We can finish more
tasks per unit of time. But each task still
takes L seconds

Pipelining
= Temporal Parallelism (pipelining):
= Break down a circuit into stages

= Each task passes through all stages
= Multiple tasks are spread through stages

= |f a task of latency L is broken into M stages, and all stages are of equal length,
then the throughput is M/L

Arbitrary Atbitrary
Circuit Circuit
—F <

= The challenge of pipelining is to find stages of equal length

Cookie Parallelism

= Step 1: Roll cookies (5 minutes)

= Step 2: Bake in the oven (15 minutes)

= Once cookies are baked, start another tray

= Latency (hours/tray):

* Throughput (trays/hour):

Cookie Parallelism: Scenarios

" Ben and Jon are making cookies. Let’s study the latency and
throughput of rolling and baking many cookie trays with

= No parallelism
= Spatial parallelism
= Pipelining

= Spatial parallelism + pipelining

No Parallelism (Ben Only)

10 15 20 25 30 35 40 45 50 55 60
I I I I I I I I I I I
Time (mins)
Ben 1 Ben 1
Ben 2 Ben 2
Ben 3 Ben 3

Latency (hours/tray):

Throughput (trays/hour):

>

Spatial Parallelism (Ben & Jon)

5 10 15 20 25 30 35 40 45 50 55 60

>
I I I I I I I I I I I I

Time (mins)
Ben 1 Ben 1l
Jon1 Jon 1
Ben 2 Ben 2
Jon 2 Jon 2
Ben 3 Ben 3
Latency (hours/tray): Jon 3 Jon 3

Throughput (trays/hour):

Note: Jon owns a tray and oven (hardware duplication)

Pipelining (Ben Only)

10

15

20

25

30

35

40

45

50

55 60

Ben 1

Ben 1

Latency (hours/tray):

Ben 2

Ben 2

Ben 3

Throughput (trays/hour):

Note: Ben decides not to waste a separate tray and oven

Ben 3

Ben 4

I I
Time (mins)

>

Spatial + Temporal Parallelism

10 15 20 25 30 35 40 45 50 55 60
I I I I I I I I I I I
Time (mins)
Ben 1 Ben 1
Jon 1 Jon1
Ben 2 Ben 2
Jon 2 Jon 2
Ben 3 Ben 3
Jon 3 Jon 3
Ben 4
Latency (hours/tray): Jon 4

Throughput (trays/hour):

>

Answers Explained

= No parallelism
= Latency is clearly 20 minutes (1/3 hours/tray)
= Throughput is 3 trays per hour
= Spatial parallelism
*" Latency remains unchanged as it still takes 20 mins to finish a tray
= Throughput is doubled via duplication: 6 trays per hour
= Pipelining
= Latency for a single tray remains unchanged
= Throughput: Ben puts a new tray in the oven every 15 minutes, so the
throughput is 4 trays per hour
= Note that in the first hour, Ben loses 5 minutes to fill the pipeline
= Spatial parallelism + pipelining
= Latency remains unchanged
= Throughput: Ben & Jon combo puts two trays in the oven every 15
minutes, so the throughput is 8 trays per hour

12

Sequential Laundry

> =
(a1 o .
oWash Dry Fold Hang e Time ’

= A new load begins every 2 hours

Pipelined Laundry

iy . I

= A new load begins every 30 mins = speedup of 4

14

Pipelining Circuits

* Divide a large combinational circuit into shorter stages

" Insert registers between the stages

= The outputs of one stage are copied into a register and communicated
to the next stage

" Run the pipelined circuit at a higher clock frequency

= Each clock cycle, data flows through the pipeline from left to the right

= Multiple tasks can be spread across the pipeline

15

Pipelined Microarchitecture

16

Stages in “Instruction Processing”

MEM
FETCH DECODE/RF-READ EXECUTE ACCESS

i o
— 15 -1
3:0 ~0LI Y >§ ALUResult A RD ReadData
ﬂ A2 RD2 0 SchJ Data
sz [A3 Register WiriteData W‘Emmy
" — wp3 File
-DPCPIUSS R15 1

0
|| Extend ExtImm

WRITEBACK

Result

17

Pipelined Microarchitecture: Key Idea

Multiple instructions (up to 5) can be in the pipeline in any
cycle

Each instruction can be in a different stage
" |dea is for “maximizing utilization” of hardware resources

Stages must be isolated from one another using pipelined
register (non-arch. registers). Referred to as “PPR”

The work of a stage should be preserved in a PPR each cycle

18

Key Idea (Continued)

The work of a stage should be preserved in a PPR each cycle

PPR acts as a source of data the next stage needs in a
subsequent cycle

If any subsequent stage down the pipeline needs data from an
earlier stage it must be passed through the PPRs

" ... Things don’t always go smoothly as we shall see!

19

Stages

Fetch (F)

Decode/RF-Read (D or DE/DEC or RF)
Execute (E or EX)

Memory (M or MEM)

Writeback (W or WB)

20

Pipeline Register Names

PC is often referred to as the Fetch PPR

B/w Fetch and Decode: Decode PPR

B/w Decode and Execute: Execute PPR

Similarly, Memory PPR

Writeback PPR

eeeeee

== Memory “~~ ritebacl

21

Let’s complete the picture

= Start with the single-cycle microarchitecture

" And insert pipeline registers

Single-Cycle
il W |
ZL‘:‘JO/\ | ra1[™ WEs _ ‘ SrcA N WE
— 151 S| ALUResult ReadData
30 M Ra =2 A RD
1 A2 RD2 0 SchJ Data
oz [A3 Register ! WiriteData \')"VeDm"y
— wWD3 File
4-D PCPlus8 R15

" Once we insert pipeline registers, we would need to
pass the results of one stage to the next stage via the
pipeline registers

* What is the outcome of the FETCH stage?

Pipeline Microarchitecture

Single-Cycle

ResultW

Fetch

Decode

Execute

Memory

ClLK | C:_K
2 ——10 | rat[™ WES ‘ SrcA V' WE
A RD 15 1 D| ALUResult ReadData
) 30 07 RA2 = A RD
In;liruchon) A2 RD2 07 srcB Data
emory
‘ 1 M
1512 r A3 Register Write Data WeDmory
4 — wWD3 File
| PCPlus8 R15
|PcPiusa D 0
aL —
230 i Extend ExtImm
Result
Pipelined
CLK Cik Cik Cik
d7 CILK | d7 ClLK | d7
S1 5 . H H H
glilg — | RatD[" WE3 e Y wel |
7| |o A1 RD1 ¢ : :
A RD [3:35 1 ALUResultE A RD i | ReadDataW
Instruction H 0 |RA2D 1] : :
s i) A2 RD2 H ; Data H
emory ! ' H :
H ' H H M H
; 15:12 r WA3D! A3 Register ; Write DataE 5 WeDmory 5
: 4 — wD3 File : : :
| JpcPussl | oo : : :
JBCPlus4F | l|:| 5 | LaLuoutv 5
s] z — z z
230 | Extend BE ExtimmE

Writeback

Pipeline Microarchitecture

CLK cik clk cik
CILK d7 CILK
=3 =3 . H
elile —o | rRa1D| Y WE3 : NV WE
EIHE A1 RD1 fH ! :
A RDI—: 151 5 S| ALUResulte i | ReadDataw
. H 30 0 H - A RDPM:
Instruction : RA2D L] <
M ! 1 A2 RD2 : Data
emory : :
: _ M
H 15:12 r WA3D A3 Register E Write DataE E WeDmory
4 — wD3 File : ;
: -DPCPIUSS R15 : H
JECPlusaF | l|'/*| 5 | LALuoutv
L I
| Extend Bk ExtimmE :
: i | Resultw
Fetch an Decode - Execute -— Memory “~- Writeback

0 Stages and their boundaries are indicated in blue

Q Signals are given a suffix (F, D, E, M, or W) to indicate the stage in
which they reside

Pipeline Operation

= Consider the example instruction sequence

Il: ADD RO, R5, #10
I2: ADD R1, R5, #10
I3: ADD R2, R5, #10
I4: STR RO, [R7, #4]
I5: STR R1, [R7, #8]
I6: STR R2, [R7, #12]

Pipeline Operation: Cycle 1

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

11

 Is the pipeline fully utilized? NO

Pipeline Operation: Cycle 2

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

12

11

 Is the pipeline fully utilized? NO

Pipeline Operation: Cycle 3

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

13

12

11

 Is the pipeline fully utilized? NO

Pipeline Operation: Cycle 4

CiK CiK CLK CLK
N o X ll
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RD MY PFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 30 0 : : A RDH:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : Wirite DataE : emen 1 |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ExtlmmE
: : : ' | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

14

13

12

 Is the pipeline fully utilized? NO

11

Pipeline Operation: Cycle 5

CiK CiK CLK CLK
N o X ll
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RD MY PFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 30 0 : : A RDH:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : Wirite DataE : emen 1 |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ExtlmmE
: : : ' | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

15

14

13

 Is the pipeline fully utilized? YES

12

11

Pipeline Operation: Cycle 6

CiK CiK CLK CLK
N o X ll
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RD MY PFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 30 0 : : A RDH:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : Wirite DataE : emen 1 |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ExtlmmE
: : : ' | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

16

15

14

 Is the pipeline fully utilized? YES

13

12

Pipeline Operation: Cycle 7

CiK CiK CLK CLK
N o X ll
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RD MY PFE— 1541 ; E :
H ' ALUResultE : : | ReadDataW
. H 30 0 : : A RDH:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : Wirite DataE : emen 1 |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] z p— z z
e 1 Extend [ExtlmmE
: : : ' | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

16

15

 Is the pipeline fully utilized? NO

14

13

Pipeline Operation: Cycle 8

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

16

 Is the pipeline fully utilized? NO

15

14

Pipeline Operation: Cycle 9

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

 Is the pipeline fully utilized? NO

16

15

Pipeline Operation: Cycle 10

CiK CiK CLK CLK
N o X el
S5 ' H H H
glile ol raw| 7 wes __ ||l [we] [
A RroHHiPF—] 151 ; E :
H ' ALUResultE : : | ReadDataW
. H 3:0 0 H : A RDP:
Instruction : RA2D L] i :
- !) A2 RD2 ! ! Data !
emory ! ' H H
H ' H H M H
: e [waso A3 Register : WriteDataE : emen |
: J - i HH wo -
: 4 — WD3 File : : :
: -DPCPIUSS R15 : : :
PCPlus4F | | l|'/*| : | LaLuoutv 5
L] s p— s s
e 1 Extend [ExtlmmE
: : : i | Resuttw
Fetch - Decode - Execute -— Memory - Writeback

 Is the pipeline fully utilized? NO

16

Pipeline Operation

CiK CiK CLK CLK
CLK CLK |
sl . L L
alile =—o 1l Rraip| N WEs : V' WE
=1 B = A1 RD1 [:
A RO Jeu : ALUResultE A rp | i [ReadDataw
Instruction H 0 |rRA2D [] :
M : 1 A2 RD2 : Data
emory ! H
: 15:12 r WA3D A3 Register : WriteDataE Memory
9 ; WD
4 — WD3 File :
-DPCPIUSS R15 :
|PCPlusaF .'j : ALUOQutM
L — |
= 1 Extend [ExtlmmE
: ResultW
Fetch - Decode - Execute -— Memory - Writeback

J No more instructions to execute

Performance Analysis

" The 6 instructions took 10 cycles to finish execution

= Cycles per Instruction (CPI) is : 10/6 = 1.66
= Conversely, instruction per cycle (IPC) is: 0.6

= |deally, we want the IPC to be closeto 1
" One instruction finished every cycle

= Why is the throughput(IPC) less than 17
" |t takes some time to fill and some time to drain the pipeline

" During this time pipeline is operating below its potential
38

Pipeline Idealism vs. Reality

Pipeline fill time: The time it takes to fill the pipeline and make it
operate at maximum efficiency

Pipeline drain time: The time that is wasted when there is no
more work to do in the pipeline

The two factors limit the pipeline from delivering ideal speed-up

= |n the case when the amount of work is small relative to the
number of stages in the pipeline

39

Recall: Pipel

ined Laundry

-) |
; O iy . I

Performance Analysis

The 6 instructions took 10 cycles to finish execution

Cycles per Instruction (CPI) is : 10/6 = 1.66
= Conversely, instruction per cycle (IPC) is: 0.6

What if we have 1 billion instructions instead of 67
= CPI=(4+1000000000)/1000000000 ="~1

Computer programs execute billions of instructions, so the
overhead of filling/draining is amortized

41

Pipelined Data

Clk
M- | CLK | < CLK
(28 a = 10 rAaDl Y WE3 : NV WE
I E A1 RD1 [! H
A RD 3_35 1 : A RD i | ReadDataW
. : 0 : :
In;llruchon) RA2D A2 RD2 Data
emory r H
15:12 WA3D . Memory
i : WriteDataE
C\?D?’ Re'g:;illiter : riteData WD
4'D PCPlus8 R15
.C| PCPlus4F] ; ALUQuiM
4 S
230 | Extend BE ExtimmE :
: ¢t | ResutW
[Fetch —— Decode - Execute Memory Writeback]

" From Fetch to Decode: Instruction and PC+4
= From Decode to Execute: Two register values and extended immediate

" From Execute to Memory: AL.LUResultE and WriteDatak

WriteDatak is one of the registers read from the RF', and M stage may need it for writing to
memory in the case of an STR instruction

= From Memory to Writeback: Output of ALU (AT.UOutM) and data read from memory (ALUOut W)

= Think: What is the width of each pipeline register?

42

CLK cik cik Cik
d; Clc | d; d; CLK
=1 Bl =2 . H H H
glile ~=o | ratp| ~ WE3 ‘ SrcAEI‘LJ V' WE
M O A1 RD1 ™ H
— 15 -1 S| ALUResulte ReadDataW
3:0 0RAZD = A RD
1 A2 RD2 M+ 0lsreBel < Data
1 M
e [“wae] Register Write DataE wo Y
4 — WD3 File
DPCPlUSB R15 1
PCPlus4F r : AL UOQutM : AL UQutW 0
[Extend] ExtimmE
: : ¢t | ResultW
Fetch Decode == Execute == Memory Y- Writeback

" There is a “hardware bug” in the pipelined
microarchitecture
= Canvyou spot it?

43

Bug in Pipelined Hardware!

= The errorisin the register file write logic that operates in the writeback stage

CLK Cik Ccik Cik

M- CLK ¢ d7 CLK
=} 3 . . .
2lile o Lraw| Y Wes : SICAE il [we
M |w) A1 RD1 M : H H
A RD I a5 S| ALUResulte ReadDataW.
Instruction ' 0 |[rRA2D = A RD M
s : 1 A2 RD2 [H OlsrcBE| < ; Data
emo H : H
v H 15:12 r WA3D A3 Register H 1 Write DataE Memory
WD
— WD3 File
4-D PCPlus8 R15
-Cl PCPlus4F B ' ALUQutM
4 S
280 [Extend [| ExtimmE
H i | Resultw
Fetch an Decode == Execute == Memory Y- Writeback

= The data value comes from ResultW, a Writeback stage signal

= But the write address comes from InstrD,..,, (WA3D), a Decode stage signal

= Without correction, during cycle 5, the result of the instruction in the
writeback stage would be incorrectly written to a different destination register

44

Bug in Pipelined Hardware!

= Without correction, during cycle 5, the result of the LDR instruction would be

incorrectly written to R5 instead of R2

LDR R2,
ADD R3,
SUB R4,
AND RS,
STR R6,

ORR R7,

[RO, #40]

R9, RI10

R1, R5

R12, R13

[R1, #20]

R11, #42

10

-
Time (cycles)
RO
R2
M =2 | RF 40 |E:|— B RF
R9
R3
m 22] rF Rle:D_ DM RF
R1
R4
M =25 | RF[ks |E:|— OM RF
R12
R5
i R U RE R13]:E'_ DM RF
R1
R6
v 2 H] RE[0]:D— . RF
R11
R7
M 22 H RE[42 DM RF

45

Corrected Pipelined Datapath

Here is the corrected pipelined datapath

CLK CLK CLK CLK

CLK
al (2 21| rato Y WES SreAH] ~WE
= C A1 RD1 -
RD 15 1

| ALUResultE ReadDataW
| i = 0 RA2D — 2 A RDM
nstruction A2 RD2 HH 0)srcBE] <<
Data
Memory l— 1 1 Memo
A3 Wirite DataE Y

Register

[Jasul
as

4_EE|CP'U38 — wD3 File Wb
1 PcPiussF ' R15 ALUOUtM ALUOUtW
+] 1512 WA3D WA3E WA3M WA3W
|/Extend/_ ExtlmmE|
L L — e L
Result

The WA3 signal is now pipelined along through the Execution, Memory, and
Writeback stages so it remains sync with the rest of the instruction

WA3W and ResultW are fed back together to the register file in the
Writeback stage 46

Optimized Pipelined Datapath

Remove adder by using PCPlus4F after PC has been updated to PC+4

o w L
CLK
> > 19:16 J) |] |
el |2 =10 rat1D| Y WE3 N WE
?1 O A1 RD1 [+
A RD 15 —{ 1
a0 ALUResultE A RD ReadDataW
Instruction 0 |rAZD| ,, rRD2 HH
M 1 Data
e l— Memory
A3 Register Wiite DataE
g WD
4_FECP'“58 — wD3 File
| PcPiusaE : R15 ALUOQUtM
15127 WA3D WA3E
/
23:0 |/Extend || ExtImmE]
L - _—
CLK CLK CLK CLK CLK
CLK
56 > 19:16 (J) I 6 é l I é
2| lz2 == T107| rato[¥ WEs SrcA] ' WE
T) A1 RD1 |-
A RD 151 | ALUResultE ReadDataW
| ; - 0|RA2D -~ 2 A RD [—
nstruction A2 RD2 H- 0\SrcBE = Data
Hemory I_ 1 1 Memo
A3 Register Wiite DataE WD v
— WD3 File
PCPlus4F R15 ALUOutM ALUOUtW
. s WA3D WAS3E WA3M WA3
/
o 23:0 [/Extend | ExtlmmE|
PCPlus8D ‘ — [[

47

Control Unit for Pipelined uArch

= Same control signals as the single-cycle processor
= Therefore, uses the same control unit

" The control unit examines the Op and Funct fields of the
instruction in the Decode stage to produce the control signals

" These control signals must be pipelined along with the data
= Remember: The control unit also examines the Rd field (back flow)

" Special treatment for RegWrite and WA3 (backward flow)

Pipelined Processor Control

0 No need to send the circled signals to the next stage because they are no longer needed

CLK T CLK CLK
(\ Q
«Q
PCSreD N PCSreE = N PCSrcM PCSrcW
Control T WriteD RegWriteE DD
Unit preg\rite egWrite — RegWriteM RegWriteW
MemtoRegD MemtoRegE -l—{ MemtoRegM MemtoRegW
27i26 Op Z/I I_elrJnCV(\)/n:eDlD > m\ . MemWriteM
25:20 Funct ntro o hgtro g—
15:12 Rd BranchD ranc
ALUSrcD ALUSIcE ED
FlagWriteD FlagWriteE
(_\ Mt SrcD
31:28 \ CondE Cond
CLK CL\§ FlagsE Unit LK
CLK 5 =3 (l) 1 |]
2 2 N T WE3 ALURags NV OWE
A RD T O A1 RD1 |
—1 ALUResultE
Instruction (A RD ReadDalaW
2 RD2
Memory Mz:lt:ry
A3 Register WiiteDataE WD
wD3 File .
PCPIusAF R15 ALUOUtM ALUOutW | o
4 15:12 WAS3E WA3M WA3W
|| 23:0 [XExtemd/ || ||
PCPlus8D
ResultW

49

Timing Diagrams

" To visualize the execution of many instructions in a pipeline we
can use timing diagrams where:

"= Time is on the horizontal axis

" |nstructions are on the vertical axis

Timing Diagrams
Assumption of logic element delays from Table 7.5 of textbook

Single-Cycle

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 15(10
)

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Instr
Time (ps)

1 Fetch gea(; Executg Memory | Wr
Instruction ;eq ALU | Read/ Write|Reg
5 Fetch RDea((:i Executq Memory | Wr
Instruction Re ALU | Read/ Write|Reg
eq
Instr
1 Fetch RDea(c;j Executeg Memory | Wr
Instruction Reea ALU Read / Write|Reg
5 Fetch Sea% Executd Memory | Wr
Instruction RZG ALU Read / Write| Reg
3 Fetch RDea(; Executd Memory | Wr
Instruction Reeo ALU Read / Write| Reg

Performance Analysis

" |n the previous slide, what is the throughout in terms of

instructions per second (IPS) for single-cycle microarchitecture?
=] instruction every 680 picoseconds

= 1.47 Billion Instructions per Second

» What about the pipelined microarchitecture?

* The length of the pipeline stage is set by the slowest stage to
be 200 ps

= 1 instruction per 200 ps
= 5 billion instructions per second

52

Instruction Latency with Pipelining

= Pipelining does not help to reduce the latency of a single
instruction

= Latency of a single instruction increases
= Sequencing overhead of pipeline registers
" Clock cycle time decided by slowest pipeline stage (internal
fragmentation due to imbalanced stages)

" Pipelining helps increase the throughput of an entire workload
» Workload = Number of instructions
» Workload must be “sufficiently” large

53

Abstract Diagrams of Pipelined uArch

ILDR

ADD

SUB

STR

ORR

R2,

R3,

R4,

R5,

R6,

R7,

[RO, #40]

R9, RI10

R1, R5

R12, R13

[R1, #20]

R11, #42

1 4 5 6 7 8 9 10
>
Time (cycles)
RO]
R2
M 28 HI RE[40 :B— —ED'V'— RF
RO]]
R3
M 22 U RF [=1 :B— 1M RF
R1 ™ 4 VR4
M 23 H| RF (&5 :B— 1M RF
4 R12M 4 RS
M P2 H] RF (13 :B— 1M RF
R1
ST DM R6
IM J[-[RF| 20]:D— —r RF
—|— | -

R11

42

IM ORR]-[RF

DM

RF

_Di

RF Read/Write in Pipelined uArch

1 2)/4\5 6 7 8 9 10
-

/ \ Time (cycles)
0 ™ 4 ~

2
LDR R2, [RO, #4071 |m = HIRrF[40 :B— _EDM_ 22 IRF
ADD| 22 M M vR3
ADD R3, R9, R10 IM {| RF [&10 :B— - oM RF
M R1 M g VR4
SUB R4, R1, R5 M 23 H| RF (&5 :D_ - OMj— K-
AND) R12M M vR5
AND R5, R12, R13 IM | RF (=15 :B— T DML RF
ST Rl M RO

R11M
;
ORR R7, R11, #42 IM ORR]—[RF| 4 :D_[T DM—DR— RF

Write in first half of clock cycle, read in the second half. In one cycle, an
instruction's writeback can be visible to a younger instruction’s reg read

Simplified View of Pipelining

SWU&ER W o -

Cl C2 CG3 C4 C5 Cb6 C7 C8

F| D|E[M|W
F | D|E[M|W
F | D|E[M|W
F (D | E | M
F D | E
F (D

56

Next: Pipeline Hazards

= When multiple instructions are handled concurrently there is a
danger of hazard

CAUTIC

=" Hazards are a part of real life

FIRE
HAZARD

= We need to cope with hazards using extra hardware
[NOTICE)

(i, L2

WEAR
FACE
MASK

% AVOID
% CONTACT
MAINTAIN

DISTANCE
1.5 METRES)

LX)

Pipeline Hazards (Three Types)

= Structural hazard
= \When two instructions want to use the same resource

= Memory for instructions (F) and data (M)
" Register file is accessed in two different stages (what are
those?)
= Data hazard
* When a dependent instruction wants the result of an earlier
instruction
= Control hazard
* When a PC-changing instruction is in the pipeline (why is this a
hazard?)

Hazard Mitigation

= Hardware for concurrent instruction execution must deal with
hazards

" From the processor’s perspective:
" Different solutions with different tradeoffs
" Architectural state requires “serious” repair
= Architectural state is untouched, and hazard avoided
" Dedicated logic may be needed for hazard avoidance
" Defensive mindset: stall the CPU until hazard is gone
= Power, energy, latency are all considerations

59

Pipeline Hazards (Another View)

" |nstructions and data generally flow from left to right

= Right-to-left flow affect future instructions and leads to hazards

" Writeback stage places the result into the register file
(potential for data hazard)

= Selection of next PC, choice of PC + 4 or branch target

address
= Also backward flow and a hazard: control hazard

Pipeline Hazards (Another View)

|dentify backward flows (control and data)

CLK T CLK CLK
(‘ 8
PCSreD ~ PCSrcE - N PCSrcM PCSrcw
Control , : DD
Unit [egriteD Reg\WriteE — RegWriteM RegWriteW
MemtoRegD MemtoRegE 'l—{ MemtoRegM MemtoRegW
27:26 Op MemWriteD MemWriteE - MemWriteM
25:20 F ALUControlD ALUControlE o
unct 5 e 3_
15:12 Rd BranchD ranc
ALUSrcD ALUSIcE ED
FlagWriteD FlagWriteE
ImmSrcD
31:28 N CondE Cond
CLK z FlagsE Unit
L o 5} %LK e | o u
z .@. 19:16 0 é o[wes SreAE ALURags \l/ WE
S HE RAID Y At RD1 H e
A RD — . 15 1 | 5| ALUResultE ReadDatawW
Instructi - 0] RA2D ~ — A RD [
nstruction A2 RD2 [0] SrcBE < Data
Memory ! 1 | — Memo
A3 Register Write DataE o v
wD3 File Y 1
PCPlus4F R15 3 ALUOuUtM ALUOuW | |
4 15:12 m WAS3E WA3M WA3W
|| 23:0 {XEXEM/—_ || ||
PCPlus8D
ResultW

61

Data Dependences

= |n Von Neumann model, instructions depend on each other for data
= One type of dependence is called true dependence

= Data (True) Dependence: One instruction produces a result that the
subsequent instruction consumes

ADD RQ, RO, #4 ADD RO, R1, #4
LDR R1, ~SPRO, #0] LDR R2, [R3, #0]
SUB R2,SR1, #1 ADD R4, R5, #1
Dependence b/w ADD & LDR NO dependences b/w instructions

Dependence b/w LDR and SUB
= |nstruction chains with dependences need special care in pipelined uarch

62

Read-After-Write Hazards

True dependences lead to read-after-write hazards

These hazards are not possible in a single-cycle
microarchitecture

Two Very Important points to remember:
* True dependencies are a property of the program
(programmer’s intention is expressed by way of them)

= Hazards are a property of microarchitecture

= A dependency may or may not lead to a hazard
63

Pipeline Hazards (Example)

= | ook at the instructions on the left. There are three data hazards

1 2 3 4 5 6 7 8
|
— Time (cycles)
. R4 M ol Mi: Write in one half, and read on
F . .
ADD R1, R4, K> i i g _:Di__l_ — other half eliminates the hazard
Mo == q

AND R8, R1, R3 M 22 H] R 5 | RS R

ORR R9, R6, RI1 M FEE

SUB R10, R1, R7

SUB

RO
DM — RF

1| RF (&

—

V:B M DM]Rlo RE

= Use a clever register read/write policy to eliminate one hazard

= What can we do about the remaining two hazards?

64

Solution # 1: Software Interlocking

" Insert NOPS in code at compile time

" NOP is an instruction that does nothing
" |dea: Insert enough NOPS for results to be ready

" OR better, move independent useful instructions forward at
compile time

Example: Software Interlocking

ADD R1, R4, R5

NOP

NOP

AND R8, R1, R3

ORR R9, R6, RI1

SUB R10, R1, R7

1 2 3 4 5 6 7 8 9 10
Time (cycles)
R4
i 229 N RE (s :B_]T DM_rRl -
NOP| N DM
IM RF —|— RF
NOP) N DM
IM RF —I— RF
R1
v 22D] RE[25]:B_ _I_DM_rRS -

R6

RF

R1

SUB

DM

RO
—H—RF

RF

R1
R7 DM

R10

RF

Solution # 1: Software Interlocking

* Drawbacks of software interlocking
" Programming is complicated

= Speed is degraded

67

Solution # 2: Forwarding or Bypassing

* Hardware solution: Data hazards can be solved by forwarding or
bypassing (except some special scenarios)

" Extra hardware to send result from the Memory or Writeback
stage to a “dependent” instruction in Execute stage

= Key: We can bypass the register file and get results early
from pipeline register

" Requires adding muxes in front of the ALU to select the operand
from one of the many sources
= (1) RF, (2) Memory PPR, (3) Writeback PPR

68

Why Forwarding Works?

1 2 3 4 5 6 7 8

L
ﬂ

R4 4 1
ADD R1, R4, R5 IM @D{ RF |5]:B— DM

R1 =8

AND R8, R1, R3 M w[l{ RF []T w_[l_ .
R6 9

ORR R9, R6, RI M %[{ RF I]‘!B]T DM_D_ -
L R10

SUB R10, R1, R7 M [] RE] = j:B_[lTDM || "

= Sum from the ADD instruction is computed by ALU in cycle 3
and is needed by the AND instruction in cycle 4

" No need to wait for the results to appear in register file

69

Forwarding Exercise

SWU&ER W o -

Cl C2 C3 C4 C5 C6 C7 C8
FloJelm]w
FloJelm]w
FloJemv]w
FIpJe v]w

" |s forwarding from [1(M) to 12(E) valid?
* |s forwarding from I1(W) to I3(E) valid?
* |s forwarding from I1(W) to 12(E) valid?

PPR Code

/0

Forwarding Example

1 2 3 4 5 6 7 8

ADD

R4 4
R1
ADD R1, R4, RS M RF[ae]:E'_ DM_D .

Next 2 r1 .
AND R8, R1, R3 M R U RE =5]1— DV'—[I— RF
younger L

“dependent” | oz 9, rs, w1 M %[{ s }B]T DM—Di RF

instructions)
expose a SUB R10, R1, R7 o S e]:B_DT R 5K

hazard

= When is forwarding necessary?
= Check if source register read in EX stage matches
destination register written in MEM or WB stage
= |f so, forward result

/1

Necessary Conditions for Forwarding

" When an instruction in Execute stage has a source
register that matches the destination register of
an instruction in Memory or Writeback stage

" Let’s write equations for generating control signals
that indicate whether to forward or not

72

Necessary Conditions for Forwarding

= Execute stage register matches Memory stage register?
Match_1E_M = (RALE == WA3M)
Match_2E_M = (RA2E == WA3M)

= Execute stage register matches Writeback stage register?
Match 1E W = (RA1E == WA3W)
Match 2E W = (RA2E == WA3W)

= |f it matches, forward result:

if (Match_1E_M e RegWriteM) ForwardAE = 10;

else if (Match_1E_W e RegWriteW) ForwardAE = 01;

else ForwardAE = 00;
ForwardBE same but with Match2E

Pipelined Processor with Forwardin

oQ

Hazard Unit

CLK - CLK CLK
(\ Q
«Q
PCSrcD N PCSrcE - N PCSrcM PCSrcW
Control ; , DD
Unit HRegWriteD RegWriteE N\ RegWriteM RegWriteW
MemtoRegD MemtoRegE 'l—{ MemtoRegM MemtoRegW
27:26 op MemWriteD MemWriteE MemWriteM
2620 - ALUControlD ALUControlE 9
unct a
15:12 Rd BranchD BranchE
ALUSrcD ALUSIcE E-D
Flag WriteD Flag WriteE
ImmSrcD
31:28 N CondE Cond
Pyl Unit
CLK =
& CLK agsk CLK
K 2[Ma g) ALUF B : B
’(ﬁ g)’ 19:16 [e] v ~ ags
2l |2 0 E3 WE
S HE ORATD] A1 RD1 00 SICAE] ™™
A RrROH H 1541 -:L(]n S| ALUResutE ReadDataW
Instruction = 0] rRA2D < = < A RD |
u A2 RD2 H 00 0| srcBE < Data
Memory 1 o 1 |_— M
mo
A3 Register WiriteDataE emory
wD3 File N o A ;
PCPlus4F R15 3 ALUOutM ALUOutw |
. 15:12 —— m WA3E FaS—y— | WA3W
23:0 /EX‘EM/_
| { | | -
PCPlus8D N\
N Resultw
2|z 3.8
s |= < =
2 |2 =z |23
S g 5 |zlE h for th
m|m S [=|= three sources for the

] ALU to choose from

74

Load-Use Hazard

* Recall: Execution of Load has a two-cycle latency (E + M)

" L.DR does not finish reading data until the end of the MEM
stage
" The result cannot be forwarded to the EX-stage of the next

instruction
= We call Load followed by its use a Load-Use hazard

" Load-Use hazard cannot be solved with forwarding

= Solution: stalling the pipeline until the data is available
/5

Load-Use Hazard

The LDR instruction received data from memory at the end
of cycle il 1 2 3 4 5 6 7 8

R4
R1
IDR R1, [R4, #40]1 | %[I-[RF [40]:D—]—r DM F
Trouble!
AND &l M R8
AND RS, R1, R3 IM RF [r3 T DM RF
oR R6 4 ng
ORR R9, R6, R1 IM J[I—[RF [&1 }D —|—D'V'— RF

2L M N R10
SUB R10, R1, R7 M =25 H| RF| =7 :B— DM RF

The AND instruction needs that data at the beginning of
cycle 4
We cannot go backward in time and fix things up!

|
Time (cycles)

Stalls to Resolve Load-Use Hazards

* The dependent instruction can be detected as the “user” of
L.DR after it has been decoded at the end of Decode stage

" |dea: Stall the dependent instruction in the Decode stage
for one cycle (until LDR completes the memory read)

" Furthermore, the instruction immediately behind the “user”
of LDR must remain in the Fetch stage because the Decode
stage is full

Stalls to Resolve Load-Use Hazards

= Stall the dependent instruction (AND) in Decode stage

IDR R1, [R4, #40]

AND R8, R1, R3

ORR R9, R6, Rl

SUB R10, R1, R7

1

2[3 4] 5 6 7 8 9

-
Time (cycles)

LDR| ||

= AND remains in Decode, and ORR remains in Fetch

" Cycle 5: result forwarded from WB of LDR to EX of AND

/8

What does a stall look like?

= Stalling stage X does three things
= Stalls stage X (obviously)
= Stallsstage X -1

" Sends a bubbleinstage X+ 1

79

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

Cycle # Fetch Decode Execute Memory Writeback

N2V R MR

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

Cycle # Fetch Decode Execute Memory Writeback
il

N2V R MR

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

Cycle # Fetch Decode Execute Memory Writeback
il
i2 il

N2V R MR

Let’s Visualize Stall in Decode stage

= i1 —i5 are five instructions. Load-use hazard between il —i2

Cycle # Fetch Decode Execute Memory Writeback
il
i2 il
i3 i2 il

N2V R MR

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

Cycle # Fetch Decode Execute Memory Writeback
il
i2 il
i3 i2 il
(stall) [B i2]OOOOOOOO il

N2V R MR

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

Cycle # Fetch Decode Execute Memory Writeback
1: i1
2: i2 il
3: i3 i2 il
(stall) 4 i3 i2 00000000 | i1
5: i4 i3 i2 00000000 | i1
6:
7:

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

(stall)

Cycle #

N2V R MR

Fetch
il
i2
i3
i3
i4
i5

Decode

Execute

i1
00000000
12
E

Memory Writeback

i1
00000000 i1
12 00000000

86

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

(stall)

Cycle #

N2V R MR

Fetch
il
i2
i3
i3
i4
i5

Decode

Execute

i1
00000000

Memory Writeback

i1

00000000 i1

12 00000000
E 12

87

Let’s Visualize Stall in Decode stage

= j1—i5 are five instructions. Load-use hazard between i2 — i3

(stall)

Cycle #

N2V R MR

Fetch Decode Execute Memory Writeback
il

i2 il

i3 i2

i3 i2

i4 i3

i5 i4

15 i4 13 12

88

Pipeline Bubbles

" EXisunusedincycle 4
" MEM isunusedin cycle 5
= WBisunusedincycle 6

" This used stage propagating through the pipeline is called a
bubble

= |t behaves like a NOP instruction

89

Implementing Stalls

Stalling a stage requires disabling the pipeline register, so that the
contents do not change
= All previous stages must also be stalled

Bubble is introduced by clearing the pipeline register directly after
the stalling stage
" Prevents bogus information from propagating forward

Forgetting to introduce a bubble may wrongly update the
architectural state

Stalls degrade performance so must be used only when needed 0

Logic to Compute Stalls and Flushes

" |seither source register in the Decode stage the same as the one
being written in the Execute stage?

Match 12D E = (RA1D == WA3E) + (RA2D == WA3E)

" |s LDR in the Execute stage AND Match 12D Eis TRUE?

Idrstall = Match_12D E AND MemtoRegE
StallF = StallD = FlushE = Idrstall

Pipelined CPU with Stalls to Solve Load-Use Hazard

CLK m CLK CLK
— & el e
PCSrcD Y| PCSrcE @, . 2
Control ; PCSrcM PCSrcW
unit |RegWriteD RegWriteE P RegWriteM RegWriteW |
MemtoRegD Mo —| MemtoRegM MemtoRegW
2726 Op MemWriteD MemWriteE 9 MemWriteM
2520 Funct ALUControlD ALUControlE o
12 Rd BranchD BranchE il
ALUSrcD ALUSIcE m
FlagWriteD FlagWriteE
ImmSrcD
3128 CondE
CLK I CLK FlagsE
0 1€] CLK
CLK SAS 1 g - - - -
» o |19:16 N
T 1 0] |S) WE3 o WE
=l |5 . RAD | arer L > SroAE [
% B P B 7 3| _ALUResultE ReadDataW
.) o A RD |
Instruction RAZ2D | Ao RD2 b < -
Memory ! L— Me;gw
— A3 Register WriteDataE Wi
wp3 File o :
PCPlus4F K15 = ALUOUtM ALUOUtW d—
2 2 _— m WASE WA3M WA3W
o ————r o _
PCPlus8D
ResultW
=
g |3 e g
513 g% |
2 0 £ ERE g 5|2 |2
g 1 s |23 g 2|3 |8
) O m m (m S [z|s |m

Hazard Unit

—/

Figure 7.54 in textbook
92

Control Hazards

" Control hazards are due to changes in sequential control flow
" Branch (B) instructions

= Writesto PC (R15) by regular instructions

" The pipelined processor does not know which instruction to fetch
next

Branch decision has not been made when the instruction is
fetched

" But the PC register is incremented in the Fetch stage

Solving Control Hazards

" There are two solutions

= Stall the pipeline on a branch instruction
= |nstruction is fetched in the first stage
= Branch is resolved in the last (fifth) stage
= Stall for 4 cycles — a very high penalty to pay for every branch instruction

" Predict the branch outcome (aka. branch prediction)
= |f the outcome is correct, continue execution (zero penalty)
= |f the outcome is wrong (branch misprediction), clean up the pipeline, and
restart from the correct target instruction (aka., recovery)
= Branch misprediction penalty depends on when recovery is initiated

94

Simplest Branch Predictor

" Predict-always-untaken
= Keep fetching the next sequential instructions

" Predict-always-taken
" CPU stalls for four cycles because target address not available

" Both predictors above use a static prediction policy

= Dynamic branch prediction
= Different predictions for different executions of same branch

= Takes recent branch behavior into account
95

Predict-always-untaken: Branch is Taken

= predict-always-untaken seems reasonable if target is not known

20 B 3C

24 AND R8, Rl, R3

28 ORR R9, R6, RI1

instructions

2C SUB R10, R1, R7

30 SUB R11, R1, R8

u o

64 ADD R12, R3, R4

= BUT, four instructions are flushed when branch is taken
= Misprediction penalty of 4 wasted cycles for taken branches
= |dea: Predict the branch early

96

Static Branch Prediction: All Scenarios

" Predict-always-untaken (Keep the pipeline busy)
" |f prediction is correct, nothing to do
» |f prediction is incorrect, flush 4 instructions and repair the
architectural state (i.e., update PC with correct target)

" Predict-always-taken (Ok to waste slots in the pipeline)
" |f prediction is correct, branch to the target inst., no harm
» |f prediction is incorrect, use incremented PC of next
instruction (4 cycles are wasted)

Alternative: Early Branch Resolution

" The earliest stage branch target is known is EX
= Update the PC in EX to save two cycles

1 2 3 4 5 6 7 8 9 10

Time (cycles)

20 B 3C

24 AND R8, R1, R3

28 ORR RY9, R6, R1

2C SUB R10, R1l, R7

30 SUB R11, R1, RS

T

64 ADD R12, R3, R4

= Flush the two instructions in the Fetch and Decode stages

Hardware Changes for Early Resolution

" |dea: Determine the branch target address (BTA) in the EX-stage
= Branch misprediction penalty = 2 cycles

= Hardware changes
" Add a branch multiplexer before PC register to select BTA from

ALUResultE
* Add BranchTakenE select signal for this multiplexer (only
asserted if branch condition satisfied)

99

Pipelined Processor Early Resolution

BranchTakenE
(iK m CéK CLK
4 \ o))
«Q
PCSreD PCSrcE - — PCSrcM PCSrcw
Control : :]
Unit RegWriteD RegWriteE _< RegWriteM RegWriteW
MemtoRegD MemtoRegE '—,/ MemtoRegM MemtoRegW
27:26 op MemWriteD MemWriteE - —\ MemWriteM
2520 - ALUControD ALUControlE R
unct g_
15:12 Rd BranchD BranchE
ALUSrcD ALUSICE ED—
FlagWriteD FlagWriteE e
ImmSrcD
31:28 ~ CondE Cond
CLK Py Unit
- 1& CLK | | FlagsE -
oK Mz g] ALUA] :]
@ @ [19:16 o A4 ~ ags N
= = 0 WE3 WE
PO I I = ORAID] A3 RD1 A By SIeAE] T
%8 5| ALUResultE ReadDataWV,
3:0 0 e 1 A RD
Instruction RA2D | 55 rRD2 HH P Data
Memory
_— Memo
A3 Register Wirite DataE WeD vy
wD3 File m
PCPIlus4F R15 3 ALUOutM ALUOUtW
4 15:12 | m WA3E WA3M WA3W
. — .
z2 230 Extend o
d 1 [] | |
O]
PCPIlus8D
gl 2 .5
s = ele |3
% o (2 R FIE = 5[5 |5
E ElE 5 S|& 2 3| |a
B o| O m m[m S -

(Hazard Unit J

100

Flush Logic with Early Branch Resolution

= Flush Decode if branch is taken
FlushD = BranchTakenE

= Flush Execute if branch is taken
FlushE = BranchTakenE

Stall + Flush Logic with Early Branch
Resolution + Load-Use Hazard
= Stall Fetch if load-use hazard is discovered

StallF = IdrStallD

= Flush Decode if branch is taken
FlushD = BranchTakenE

= Flush Execute if branch is taken
FlushE = IdrStallD + BranchTakenE

= Stall Decode if load-use hazard is discovered

StallD = IdrStallD

Optional: Writes to PC

= Writes to PC still stall the CPU for 4 cycles (contrast with B
instruction)

= Stall Fetch if PC write is discovered in Decode, Execute, or Memory
StallF = PCSrcD + PCSrcE + PCSrcM

= Flush Decode if PC write is discovered in Decode, Execute, Memory,
or Writeback

FlushD = PCSrcD + PCSrcE + PCSrcM + PCSrcW

Flush and Stall Logic for Writes to PC

Explaining the logic for StallF control signal

Cycle #1
Cycle #2
Cycle #3
Cycle #4
Cycle #5

: PC-changing instruction (1) is fetched

: lis decoded and PCSrcD is asserted

. |is executed and PCSrcE is asserted

. lisin M stage and PCSrcM is asserted

: PCSrcW is asserted, and new PC is written to the ResultW bus

PC is a register so will be updated in the next clock cycle (cycle # 6)

In cycle #5, StallF is asserted, so that the next cycle the PC register is set up
properly to capture the new value of instruction address (ResultW)

In the first four cycles, StallF is deasserted to not cause a change to PC

Flush and Stall Logic for Writes to PC

Explaining the logic for FlushD control signal

Cycle #1
Cycle #2
Cycle #3
Cycle #4
Cycle #5

: PC-changing instruction (1) is fetched

: lis decoded and PCSrcD is asserted

. |is executed and PCSrcE is asserted

. lisin M stage and PCSrcM is asserted

: PCSrcW is asserted, and new PC is written to the ResultW bus

If we keep FlushD asserted during cycle 5, then at the beginning of cycle # 6
when rising edge arrives, register will still read all zeroes

In cycle # 6, FlushD is released so in cycle # 7, when the correct instruction
advances to the Decode register, the instruction is captured at the edge of
the clock (in cycle # 7)

Full Control Stalling Logic (page # 440)

" __PCWrPendingF =1 if write to PC in Decode, Execute or Memory
[PCWrPendingF = PCSrcD + PCSrcE + PCSrcM | PC write is in progress in D, E, M

= Stall Fetch if PCWrPendingF
: \ Stall fetch if LDR-Use hazard or PC
[StallF = IdrStallD + PCWrPendingF anferen >€ hazard or
J writein D, E, or M

= Flush Decode if PCWrPendingF OR PC is written in Writeback OR branch is

taken
[FlushD = PCWrPendingF + PCSrcW + BranchTakenE]
" Flush Execute if branch is taken Flush D if PC write in progress in D,
FlushE = IdrStallD + BranchTakenE E, M, or W, or branch taken in E

= Stall Decode if /drStallD (as before)
[StallD = IdrStallD]

Stall Decode if LDR-Use hazard

106

ARM Processor with Full Hazard Handlin

BranchTakenE
CJ_7K - (QI;K CLK
(\ D
«Q
PCSrcD PCSrcE - — PCSrcM PCSrcW
Control T o0 writeD RegWriteE i
Unit eg\Writef egWrite —< RegWriteM Reg WriteW
MemtoRegD MemtoRegE = MemtoRegM MemtoRegW
27:26 op MemWriteD MemWriteE . ~— MemWriteM
2520 . ALUControlD ALUControlE o
unet Bi hD B hE al
1512 Rd ranc ranc
ALUSrcD ALUSICE E%D_
FlagWriteD FlagWriteE e
ImmSrcD
31:28 "’ CondE Cond
CLK 3 FlagsE Unit
—i8 CLK L] ags CLK
CLK =1 v = @ o)] — | —
7 o |19:16 o \vg ~ ALURags
= = 0 WE3 WE
R | & e ORAID| ro1 | @ SrcAE [T
30 5 i 2 ALUResultE L 1A RD ReadDataW
Instruction RA2D A2 RD2 <
1 B =
A3 Register WiiteDataE | | || WD
wD3 File m
PCPlus4F R15 3 | ALUOUtM |
4 15:12 | —— m WAE WA3M
. l/l/_)
B2 230 Extend o
d 1] |
PCPlus8D
33 23 .5
. 22 &8 |3
2 9 |z 2 |22 =z [3[3 [§
o of (& % & 2 |5|3 |@
T g| o m m|m S I = Q
(Hazard Unit J

107

Simplified View of Pipeline

PC

T

Decode

=y o/
T Mem2Reg

Execute Memory Writeback
7]
/ 7 /
Control # : ’
L
/ / /
o & g
j N o
- ,..- / /
A2
’ MemDa apl"
RF] ALUResult DM t
A3 o 5 o
WD3 ; :: ::
5 ﬁ
/ / /
o L o
L
/ / /

Result

Simplified View of Pipeline

PC

T

=y o/
T Mem2Reg

Result

stall

Decode Exe;ute Memory Writeback
"]
7 / 7 /
/ Control # :
N o
:: :: forwardM :: forwardwW E
N L L o
s 70y b :=

A2

| RF ; ALUResult O
5 A3 o 5]
Y WD3 /) B Y Y
:: :: :: ,,
N 5 5
/ 7 / /
N o L o
o o
/ /. / /

clear

clear
clear

clear

Simplified View of Pipeline

Decode Exe;ute Memory Writeback
?
N o /
/ Control :
N o 0o
§ :; 5 forwardM ﬂ forwardwW ; %
$ 5 g 5 5 5
J= ’ Al / A] Y s
0) / A2 ﬁ / MembDat p{ N
PC M] RF o ALUResult]# DM == a,..i 0
1/ N A3 o B L o
] WD3] . 1
s :: / ﬂ /
N o L o
'5— 4 / / // /)
r i r
N o L o
/ / /) /
Result

Hazard Detection Unit

<+——— Match

l«————— Control

Simplified View of OO0 Pipeline

Issue Queue (1Q)

Read inst. from
memory
Increment PC

Decode inst.
Read register if
value is ready
Set scoreboard
entry to Logic 1
to indicate
destination busy
Read value/tag

operands ready

ISsue EXecute WriteBack
Copy inst. into Many ALUs and | ¢« Writeback result to
the issue queue memory here RF and IQ
(1Q) if an entry Memory can * Reset scoreboard
is available handle multiple entry
Pick a ready requests
inst. and send Forwarding to
for execution if IQ from here

Simplified View of OO0 Pipeline

Issue Queue (1Q)

FEtch DEcode AlLlocate SChedule EXecute WriteBack
* Read inst. from * Decode inst. * Copy inst. into * Pick a ready * ManyALUsand | ¢ Writeback result to
memory * Read register if the issue queue inst. and send memory here RF and IQ
* Increment PC value is ready (1Q) if an entry for execution if * Memory can * Reset scoreboard
* Set scoreboard is available operands ready handle multiple entry
entry to Logic 1 requests
to indicate * Forwarding to
destination busy IQ/EX from

* Read value/tag here

When to Forward?

= Read-after-write hazard between two instructions where the first
or “older” instruction is not a load

ADD RO, R1, R2
SUB R4, RO, #1

MUL R12, R2, R3
ADD RO, R12, #1

When to Stall?

" Load-use hazard
= Stall the Decode and Fetch stages when the “use” is discovered

" PC-changing instructions
" Possible but not implemented for complexity reasons
= Stall Fetch for four cycles

When to Flush?

= Load-use hazard
= Flush the Execute pipeline register

= PC-changing instructions
= Keep flushing the Decode stage until the new instruction (branch
target) is available in the Decode pipeline register

= Branch instructions
= When branch is resolved early in the Execute stage, flush the
pipeline registers in the Decode and Execute stages

How does the CPU Stall and Flush?

= Stall
= Use Enable input to hold/retain the value stored in the
pipeline register

" Flush
" Use the Clear input to zero the register contents

Superscalar Processor

117

Superscalar: Idea and Datapath

= Multiple copies of datapath hardware to execute instructions simultaneously
= Example: 2-way superscalar fetches and executes 2 instructions per cycle

< & & &
CLK
PC RDp— A1
A2
| ’ A = A3 RD1 |—| ~ | I_
A4 . RD4 1™ 3 Al RD1[_|
Instruction |: A5 Register =" A2 RD2[] =
A6 file RD2 |— < Dat
memory e — ata
WB% — memory
WD1
WD2

= Requires 6-ported register file (4 reads, 2 writes), 2 ALUs, 2-ported data memory
= |deal CPI=0.5andIPC=2

= Dependencies and hazards inhibit ideal IPC

= Above figure does not show forwarding and hazard detection logic
118

Superscalar: Pipeline Operation

= Example program where IPC = 2 is possible

LDR

ADD

SUB

AND

ORR

STR

1

2

3

4

8
>

R8, [RO,#40]

LDR:{
ADDE{

RY, Bl,R2

RO R

40

RF

R1 |

R2 [

BlO, Rl, R3

Rl1l, R3; R4

SUBJ¢

AND| !

R12,; Rl; R5

R5,; [RO,%#80]

[
o

Y] R8

DM

| RO

RF

- -; -----

R1 R

R3 |i

RF

R3 |

R4 |}

ORR|}

STR|:

R10

DM

RF
R11

R1

R5 |}

RF

RO |+

80 |:

- -.'._.H --

YUYy

cofpecccccccaaaa

R12

DM
R5

RF

iTnne(cydes)

119

Superscalar: Impact of Dependencies

" Example of program with data dependences

1

6

N/
LDR R8, [RO, #40] —
> M .
\\
\\
\\

2
ADD RY, (R8), R1

SUB R8, R2, R3
v‘\\
R
T
e
AND R10, R4, (R8)

ORR R11, R5, R6

STR R7, [(Ri;“w, #80]

B M M=z10

RS

RS I Dl RF
RL1

R6 :D—

11K/ M R7
80 ,
I

v

Time (cycles)

" CPU completes (on average) 6 instructions in 5 cycles (IPC of 1.2)
" Can also compute IPC from the fetch side (6 instructions are issued

in five cycles)

120

In-Order Superscalar: Tradeoffs

= Superscalar processors encompass spatial + temporal parallelism
= Two pipelined lanes in one CPU with duplicated resources

= 2-wide, 4-wide, and 6-wide superscalars are common (wide = way)

= Too many dependencies (data + control) in real programs
= Hard to find many instructions to issue (in order) every cycle
= Qut-of-order CPUs unlock this bottleneck

" Large number of execution units and complex forwarding and hazard
detection logic costs area, power, and energy

121

In-Order Superscalar: Role of Compiler

In-order (superscalar) CPU: Instructions are executed in the exact
order determined by the assembly programmer or compiler

The compiler can change instruction order to maximize pipeline
utilization

Goal: Achieve maximum IPC (e.g., IPC of 2 for 2-wide superscalar
CPUs)

Branch Prediction

123

Static Branch Prediction

= Static (fixed) policy #1: Always predict that the branch is not taken
= Static policy # 2: Always predict that the branch will be taken

" The cost of a branch misprediction (branch misprediction penalty)
increases for superscalars

" Effort to process “wrong path” instructions is wasted

= We need more accurate branch predictors (>99% accuracy)

124

Dynamic Branch Prediction

" Predict the outcome of a branch instruction (in fetch stage)
based on the recent behavior of the branch

= What do we need?

" Branch identification (PC uniquely identifies a branch)

= Recent branch behavior (taken/untaken last time)

Branch Identification & Behavior

" Branch identification
" Use the branch address in instruction memory
" Cangrab it from PC

= Branch behavior
= Qutcome of the condition test from ALU
" Also need to store the branch target the last time the
branch executed

One-Bit Predictor

" Branch History Table (BHT) or Branch Prediction Buffer

= Small amount of memory indexed by low-order branch address bits
= Store a single bit that says branch was recently taken or not

BHT

1-bit
branch M predictio[\

7 >
address

R P R R, O O r O

"= Due to limited entries in the table, there are conflicts (aka. aliasing)

One-Bit Predictor: Operation

= Placed in the Fetch stage
* Predicted untaken: Fetch the next instruction
* Predicted taken: Compute the target address and fetch from target

= Updates to the BHT
* Nothing to do if outcome matches prediction
" |f outcome does not match prediction
= Flip the entry in the BHT
= Flush the pipeline and update the PC

= Questions
" s correctness affected by misprediction?
" |s performance affected by misprediction?

Accuracy/Perf of 1-bit Predictor

MOV

Consider the following loop: FOR

CMP

BGE DONE

ADD

B FOR
DONE

* What is the prediction accuracy of a 1-bit branch predictor?

Bl 12 3 456789 10

Accuracy/Perf of 1-bit Predictor

MOV RO, #1

Consider the following loop: FOR
CMP RO, #10
BGE DONE
ADD RO, RO, #1
B FOR

DONE

* What is the prediction accuracy of a 1-bit branch predictor?

Bl 12 3 456789 10

Actual Direction NT NT NT NT NT NT NT NT NT T

Accuracy/Perf of 1-bit Predictor

MOV RO, #1

Consider the following loop: FOR
CMP RO, #10
BGE DONE
ADD RO, RO, #1
B FOR

DONE

* What is the prediction accuracy of a 1-bit branch predictor?

Bl 12 3 456789 10

Actual Direction NT NT NT NT NT NT NT NT NT T

Current State/Prediction

New State

Accuracy/Perf of 1-bit Predictor

MOV RO, #1

Consider the following loop: FOR
CMP RO, #10
BGE DONE
ADD RO, RO, #1
B FOR

DONE

* What is the prediction accuracy of a 1-bit branch predictor?

Bl 12 3 456789 10

Actual Direction NT NT NT NT NT NT NT NT NT T
Current State/Prediction T NT NT NT NT NT NT NT NT NT

New State

Accuracy/Perf of 1-bit Predictor

MOV RO, #1

Consider the following loop: FOR
CMP RO, #10
BGE DONE
ADD RO, RO, #1
B FOR

DONE

* What is the prediction accuracy of a 1-bit branch predictor?

Bl 12 3 456789 10

Actual Direction NT NT NT NT NT NT NT NT NT T
Current State/Prediction T NT NT NT NT NT NT NT NT NT
New State NT NT NT NT NT NT NT NT NT T

Anomalous Decision

" Accuracy of one-bit predictor is 80% for a branch that is NOT
TAKEN 90% of the time

= Anomaly: When branches that are strongly biased toward one
direction suddenly takes a different path or direction

" A 1-bit predictor is “thrown off” by a single anomolous decision

134

Smith’s Algorithm

= 1979: James E. Smith notices the performance pathology of 1-bit
predictor at loop termination

5

" Proposes Smith’s branch prediction algorithm
= Key insight: Add hysterisis (inertia) to the predictor’s state

= The same outcome must occur multiple times to reach the strong states

= A saturating counter maps the outcomes of several recent branches on to a
counter with different states

k=2

= Four states
= Strongly not-taken (SN or 00)
= Weakly not-taken (WN or 01)
= Weakly taken (WT or 10)

= Strongly taken (ST or 11)

136

Smith’s Algorithm

taken
& Untaken Ji
Taken ken Taken
Untaken]taken
. Untak
Predict e
00 01
Untaken
taken

N

Untaken

137

Smith’s Predictor Hardware (k = 2)

BHT

00 2™ k-bit counters
branch address o1

e
10 updated counter value
11

saturating counter
> increment/decrement

\\3

I 1 branch outcome

MSB

> branch prediction

Accuracy of Smith’s Predictor

Below: Accuracy of Smith, (1-bit counter) and Smith, (2-bit counter) on a
sequence of branches with sudden shifts in branch behavior

Branch
Direction

1
1
0

Accuracy of Smith’s Predictor

Below: Accuracy of Smith, (1-bit counter) and Smith, (2-bit counter) on a
sequence of branches with sudden shifts in branch behavior

Branch Smith;
Direction | gite Prediction

1 1 1

1 1 1

0 1 1
(misprediction)

1 0 L
(misprediction)

1 1 1

1 1 1

Accuracy of Smith’s Predictor

Below: Accuracy of Smith, (1-bit counter) and Smith, (2-bit counter) on a
sequence of branches with sudden shifts in branch behavior

Branch Smith,
Direction State Prediction
1 11 1
1 11 1
0 11 1
(misprediction)
1 10 1
1 11 1
1 11 1

Accuracy of Smith’s Predictor

Below: Accuracy of Smith, (1-bit counter) and Smith, (2-bit counter) on a

sequence of branches with sudden shifts in branch behavior

Branch Smith, Smith,
Direction | giate Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0 1 1 11 1
(misprediction) (misprediction)

1 0 0 10 1
(misprediction)

1 1 1 11 1

1 1 1 11 1

Branch Target Buffer (BTB)

Buffer = A small memory for storing “some” information

Recall the CPU needs to know in the fetch stage
" Branch direction
" Branch target address

BTB stores the target addresses for taken branches

Does not make sense to search the BTB for targets of untaken
branches

143

Operation with BTB

" Branch is predicted to be taken
" Get target address from BTB

" Branch is predicted untaken
= PC = PC + 4

" |f the prediction is correct: continue normal execution

" |f the prediction is incorrect: flush all pipeline stages containing
instructions from the mispredicted path

144

Correlating Branch Predictors

In real programs, the outcome of one branch often depends on the

behavior of other branches |aa=0;bb =0:

if (cond1)
aa=1;

if (aa == bb)
()

Traditional (non-correlating) predictors that rely only on the outcome of
a single branch fail to capture these relationships

Correlating branch predictors improve accuracy by using
= Local history (past behavior of the same branch)
" Global history (outcomes of recent branches across the program)
= Branch address (to distinguish branches with similar histories)

A Lot More to Say on Branch Prediction!

* Important component of a modern processor
" Especially superscalar and out-of-order processors
" Prediction accuracy above 99%

= State of art: Deep neural networks, machine learning approaches

= COMP4045: Students implement and compare state of the art
branch predictors in a C++ simulator

146

Real pipelines have caches and real memory
latencies!

= Each memory access costs 100s of cycles (we assumed 1 cycle data memory
access for simplicity)

= Cache hit cost 1-4 cycles
= Cache miss costs close to 100 cycles

= Therefore, an in-order pipelined CPU can stall for many cycles on memory
accesses

= Next step

= Qut-of-order CPU that continues doing useful work in the presence of
long-latency memory accesses

