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General Idea of 
     Pipelining 
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Speed of a Circuit

Digital 
Circuitinputs outputs

tpd

§ A digital circuit processes a group of inputs (task) and produces 
a group of outputs

§ Latency:  Time required to produce one group of outputs 
§ Throughput: Number of input groups processed per unit of time
§ Parallelism is a key technique for increasing throughput and processing 

several inputs at the same time
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Spatial Parallelism
§ Spatial Parallelism:  Use multiple copies of hardware 

(circuit) to get multiple tasks done at the same time

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

§ Suppose a task has a latency of L second
§ No spatial parallelism:  Throughput is 1/L (one task per L second)
§ N copies of hardware:  Throughput is N/L (N tasks per L second)
§ Gain in throughput (speedup) = N 
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Spatial Parallelism does not reduce the 
latency of the circuit.  We can finish more 
tasks per unit of time.  But each task still 
takes L seconds 
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Pipelining
§ Temporal Parallelism (pipelining):

§ Break down a circuit into stages
§ Each task passes through all stages 
§ Multiple tasks are spread through stages

§ If a task of latency L is broken into M stages, and all stages are of equal length, 
then the throughput is M/L 

§ The challenge of pipelining is to find stages of equal length 

Arbitrary
Circuit

Tc

Arbitrary
Circuit

Tc
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§ What is the latency and throughput for a tray of cookies?

§ Step 1: Roll cookies (5 minutes)

§ Step 2: Bake in the oven (15 minutes)

§ Once cookies are baked, start another tray

§ Latency (hours/tray):

§ Throughput (trays/hour):

Cookie Parallelism
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Cookie Parallelism: Scenarios
§ Ben and Jon are making cookies.  Let’s study the latency and 

throughput of rolling and baking many cookie trays with

§ No parallelism

§ Spatial parallelism

§ Pipelining

§ Spatial parallelism + pipelining
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No Parallelism (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Latency (hours/tray):
Throughput (trays/hour):
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Spatial Parallelism (Ben & Jon) 

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Note: Jon owns a tray and oven (hardware duplication)

Latency (hours/tray):
Throughput (trays/hour):
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Pipelining (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Ben 4

Note: Ben decides not to waste a separate tray and oven

Latency (hours/tray):
Throughput (trays/hour):
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Spatial + Temporal Parallelism

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Ben 4
Jon 4Latency (hours/tray):

Throughput (trays/hour):
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Answers Explained
§ No parallelism

§ Latency is clearly 20 minutes (1/3 hours/tray)
§ Throughput is 3 trays per hour

§ Spatial parallelism
§ Latency remains unchanged as it still takes 20 mins to finish a tray
§ Throughput is doubled via duplication: 6 trays per hour

§ Pipelining
§ Latency for a single tray remains unchanged
§ Throughput: Ben puts a new tray in the oven every 15 minutes, so the 

throughput is 4 trays per hour
§ Note that in the first hour, Ben loses 5 minutes to fill the pipeline

§ Spatial parallelism + pipelining
§ Latency remains unchanged
§ Throughput: Ben & Jon combo puts two trays in the oven every 15 

minutes, so the throughput is 8 trays per hour
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Sequential Laundry
Time

Alice

Bob

Tim

Wash Dry Fold Hang

§ A new load begins every 2 hours

6 
PM

8 
PM
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Pipelined Laundry
Time

Alice

Bob

Tim

6 
PM

8 
PM

6:
30

 

§ A new load begins every 30 mins à speedup of 4
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§ Divide a large combinational circuit into shorter stages 

§ Insert registers between the stages

§ The outputs of one stage are copied into a register and communicated 
to the next stage

§ Run the pipelined circuit at a higher clock frequency

§ Each clock cycle, data flows through the pipeline from left to the right

§ Multiple tasks can be spread across the pipeline

Pipelining Circuits
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Pipelined Microarchitecture

16
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Stages in “Instruction Processing” 
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Pipelined Microarchitecture: Key Idea
§ Multiple instructions (up to 5) can be in the pipeline in any 

cycle

§ Each instruction can be in a different stage
§ Idea is for “maximizing utilization” of hardware resources

§ Stages must be isolated from one another using pipelined 
register (non-arch. registers).   Referred to as “PPR”

§ The work of a stage should be preserved in a PPR each cycle
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Key Idea (Continued)
§ The work of a stage should be preserved in a PPR each cycle

§ PPR acts as a source of data the next stage needs in a 
subsequent cycle

§ If any subsequent stage down the pipeline needs data from an 
earlier stage it must be passed through the PPRs

§ .... Things don’t always go smoothly as we shall see! 
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Stages
§ Fetch (F)

§ Decode/RF-Read (D or DE/DEC or RF)

§ Execute (E or EX)

§ Memory (M or MEM)

§ Writeback (W or WB)
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Pipeline Register Names
§ PC is often referred to as the Fetch PPR

§ B/w Fetch and Decode: Decode PPR

§ B/w Decode and Execute: Execute PPR

§ Similarly, Memory PPR

§ Writeback PPR
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Let’s complete the picture
§ Start with the single-cycle microarchitecture

§ And insert pipeline registers
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§ Once we insert pipeline registers, we would need to 

pass the results of one stage to the next stage via the 
pipeline registers

§ What is the outcome of the FETCH stage?
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q Stages and their boundaries are indicated in blue

q Signals are given a suffix (F, D, E, M, or W) to indicate the stage in 
which they reside
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Pipeline Operation

I1:  ADD  R0,  R5,  #10
I2:  ADD  R1,  R5,  #10
I3:  ADD  R2,  R5,  #10
I4:  STR  R0,  [R7, #4]
I5:  STR  R1,  [R7, #8] 
I6:  STR  R2,  [R7, #12] 

§ Consider the example instruction sequence
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q Is the pipeline fully utilized?   NO
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Performance Analysis
§ The 6 instructions took 10 cycles to finish execution

§ Cycles per Instruction (CPI) is : 10/6 = 1.66
§ Conversely, instruction per cycle (IPC) is: 0.6

§ Ideally, we want the IPC to be close to 1
§ One instruction finished every cycle

§ Why is the throughput(IPC) less than 1?
§ It takes some time to fill and some time to drain the pipeline 
§ During this time pipeline is operating below its potential



39

Pipeline Idealism vs. Reality 
§ Pipeline fill time:  The time it takes to fill the pipeline and make it 

operate at maximum efficiency

§ Pipeline drain time: The time that is wasted when there is no 
more work to do in the pipeline

§ The two factors limit the pipeline from delivering ideal speed-up
§ In the case when the amount of work is small relative to the 

number of stages in the pipeline



Recall: Pipelined Laundry
Time

Alice

Bob

Tim

6 
PM

8 
PM

6:
30

 

§ Ideal speedup = 4, Actual speedup = 2
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Performance Analysis
§ The 6 instructions took 10 cycles to finish execution

§ Cycles per Instruction (CPI) is : 10/6 = 1.66
§ Conversely, instruction per cycle (IPC) is: 0.6

§ What if we have 1 billion instructions instead of 6?
§ CPI = (4 + 1000000000)/1000000000  = ~1

§ Computer programs execute billions of instructions, so the 
overhead of filling/draining is amortized
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Pipelined Data

§ From Fetch to Decode: Instruction and PC+4
§ From Decode to Execute: Two register values and extended immediate
§ From Execute to Memory: ALUResultE and WriteDataE

§ WriteDataE is one of the registers read from the RF, and M stage may need it for writing to 
memory in the case of an STR instruction

§ From Memory to Writeback: Output of ALU (ALUOutM) and data read from memory (ALUOutW)

§ Think: What is the width of each pipeline register?
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Bug in Pipelined Hardware!

§ There is a “hardware bug” in the pipelined 
microarchitecture
§ Can you spot it?
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§ The error is in the register file write logic that operates in the writeback stage

§ The data value comes from ResultW, a Writeback stage signal
§ But the write address comes from InstrD15:12 (WA3D), a Decode stage signal
§ Without correction, during cycle 5, the result of the instruction in the 

writeback stage would be incorrectly written to a different destination register
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§ Without correction, during cycle 5, the result of the LDR instruction would be 
incorrectly written to R5 instead of R2

Bug in Pipelined Hardware!

Time (cycles)
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Corrected Pipelined Datapath
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§ Here is the corrected pipelined datapath

§ The WA3 signal is now pipelined along through the Execution, Memory, and 
Writeback stages so it remains sync with the rest of the instruction

§ WA3W and ResultW are fed back together to the register file in the 
Writeback stage
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Optimized Pipelined Datapath
§ Remove adder by using PCPlus4F after PC has been updated to PC+4
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Control Unit for Pipelined uArch
§ Same control signals as the single-cycle processor

§ Therefore, uses the same control unit

§ The control unit examines the Op and Funct fields of the 
instruction in the Decode stage to produce the control signals

§ These control signals must be pipelined along with the data

§ Remember: The control unit also examines the Rd field (back flow)

§ Special treatment for RegWrite and WA3 (backward flow)
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Pipelined Processor Control
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q No need to send the circled signals to the next stage because they are no longer needed
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Timing Diagrams
§ To visualize the execution of many instructions in a pipeline we 

can use timing diagrams where:

§ Time is on the horizontal axis

§ Instructions are on the vertical axis
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Timing Diagrams

Time (ps)
Instr

Fetch
Instruction

Dec
Read 
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 15001000

Instr

1

2

(b)

3

Fetch
Instruction

Dec
Read 
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read 
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read 
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Fetch
Instruction

Dec
Read 
Reg

Execute
ALU

Memory
Read / Write

Wr
Reg

Single-Cycle

Pipelined

Assumption of logic element delays from Table 7.5 of textbook
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Performance Analysis
§ In the previous slide, what is the throughout in terms of 

instructions per second (IPS) for single-cycle microarchitecture?
§ 1 instruction every 680 picoseconds
§ 1.47 Billion Instructions per Second

§ What about the pipelined microarchitecture?
§ The length of the pipeline stage is set by the slowest stage to 

be 200 ps
§ 1 instruction per 200 ps
§ 5 billion instructions per second
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Instruction Latency with Pipelining
§ Pipelining does not help to reduce the latency of a single 

instruction

§ Latency of a single instruction increases
§ Sequencing overhead of pipeline registers
§ Clock cycle time decided by slowest pipeline stage (internal 

fragmentation due to imbalanced stages)

§ Pipelining helps increase the throughput of an entire workload
§ Workload = Number of instructions
§ Workload must be “sufficiently” large
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Abstract Diagrams of Pipelined uArch
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RF Read/Write in Pipelined uArch
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Write in first half of clock cycle, read in the second half. In one cycle, an 
instruction's writeback can be visible to a younger instruction’s reg read
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Simplified View of Pipelining
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Next: Pipeline Hazards
§ When multiple instructions are handled concurrently there is a 

danger of hazard

§ Hazards are a part of real life

§ We need to cope with hazards using extra hardware
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Pipeline Hazards (Three Types)
§ Structural hazard

§ When two instructions want to use the same resource
§ Memory for instructions (F) and data (M) 
§ Register file is accessed in two different stages (what are 

those?)
§ Data hazard

§ When a dependent instruction wants the result of an earlier 
instruction

§ Control hazard
§ When a PC-changing instruction is in the pipeline (why is this a 

hazard?)
58



Hazard Mitigation
§ Hardware for concurrent instruction execution must deal with 

hazards

§ From the processor’s perspective:
§ Different solutions with different tradeoffs

§ Architectural state requires “serious” repair
§ Architectural state is untouched, and hazard avoided
§ Dedicated logic may be needed for hazard avoidance
§ Defensive mindset: stall the CPU until hazard is gone

§ Power, energy, latency are all considerations 
59
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Pipeline Hazards (Another View)
§ Instructions and data generally flow from left to right

§ Right-to-left flow affect future instructions and leads to hazards

§ Writeback stage places the result into the register file     
(potential for data hazard) 

§  Selection of next PC, choice of PC + 4 or branch target       
address 
§ Also backward flow and a hazard: control hazard
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Pipeline Hazards (Another View)
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§ Identify backward flows (control and data)



Data Dependences
§ In Von Neumann model, instructions depend on each other for data

§ One type of dependence is called true dependence

§ Data (True) Dependence:  One instruction produces a result that the 
subsequent instruction consumes

§ Instruction chains with dependences need special care in pipelined uarch 

ADD   R0,  R0,  #4
LDR   R1,  [R0, #0]
SUB   R2,  R1,  #1

ADD   R0,  R1,  #4
LDR   R2,  [R3, #0]
ADD   R4,  R5,  #1

NO dependences b/w instructionsDependence b/w ADD & LDR 
Dependence b/w LDR and SUB
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Read-After-Write Hazards
§ True dependences lead to read-after-write hazards

§ These hazards are not possible in a single-cycle 
microarchitecture

§ Two Very Important points to remember:
§ True dependencies are a property of the program 

(programmer’s intention is expressed by way of them)

§ Hazards are a property of microarchitecture
§ A dependency may or may not lead to a hazard 
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Pipeline Hazards (Example)

Time (cycles)
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IM ADD

ORR

SUB

Write in one half, and read on 
other half eliminates the hazard 

§ Look at the instructions on the left.   There are three data hazards

§ Use a clever register read/write policy to eliminate one hazard
§ What can we do about the remaining two hazards?



Solution # 1: Software Interlocking
§ Insert NOPS in code at compile time

§ NOP is an instruction that does nothing
§ Idea: Insert enough NOPS for results to be ready

§ OR better, move independent useful instructions forward at 
compile time
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Example: Software Interlocking
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Solution # 1: Software Interlocking

§ Drawbacks of software interlocking

§ Programming is complicated 

§ Speed is degraded
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Solution # 2: Forwarding or Bypassing
§ Hardware solution: Data hazards can be solved by forwarding or 

bypassing (except some special scenarios)

§ Extra hardware to send result from the Memory or Writeback 
stage to a “dependent” instruction in Execute stage 
§ Key: We can bypass the register file and get results early 

from pipeline register

§ Requires adding muxes in front of the ALU to select the operand 
from one of the many sources 
§ (1) RF, (2) Memory PPR, (3) Writeback PPR
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Data Forwarding

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

Why Forwarding Works?

§ Sum from the ADD instruction is computed by ALU in cycle 3 
and is needed by the AND instruction in cycle 4

§ No need to wait for the results to appear in register file
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Forwarding Exercise

F D E M W
F D E M W

F D E M W
F D E M W

I1
I2
I3
I4

C1 C2 C3 C4 C5 C6 C7 C8 D

à
 Insts

§ Is forwarding from I1(M) to I2(E) valid?
§ Is forwarding from I1(W) to I3(E) valid?
§ Is forwarding from I1(W) to I2(E) valid?

E
M
W

PPR Code
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Data Forwarding

§ When is forwarding necessary?
§ Check if source register read in EX stage matches 

destination register written in MEM or WB stage
§ If so, forward result

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

Forwarding Example
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Data Forwarding

§ When an instruction in Execute stage has a source 
register that matches the destination register of 
an instruction in Memory or Writeback stage

§ Let’s write equations for generating control signals 
that indicate whether to forward or not 

Necessary Conditions for Forwarding

72



Data ForwardingNecessary Conditions for Forwarding
§ Execute stage register matches Memory stage register?
 Match_1E_M = (RA1E == WA3M)
 Match_2E_M = (RA2E == WA3M)

§ Execute stage register matches Writeback stage register?
 Match_1E_W = (RA1E == WA3W)
 Match_2E_W = (RA2E == WA3W)

 

§ If it matches, forward result:
       
       if          (Match_1E_M • RegWriteM)  ForwardAE = 10; 
       else if  (Match_1E_W • RegWriteW) ForwardAE = 01; 
       else                                 ForwardAE = 00;
  ForwardBE same but with Match2E
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Data ForwardingPipelined Processor with Forwarding

ExtIm
m
E

CLK

A RD

Instruction
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+
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WD3

RD2

RD1
WE3

A2

Register
File

0
1

A RD
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WD

WE

1
0

PCFPC'

InstrD

19:16

15:12

23:0

25:20

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

 
ResultW

27:26

ImmSrcD

MemWriteD
MemtoRegD

ALUSrcD

RegWriteD

Op
Funct

Control
Unit

ALUFlags
CLK

ALUControlD

AL
U

PCPlus8D

R15

3:0

31:28

FlagWriteD

15:12 Rd

15
RA1D

RA2D

0 1

Extend

0
1

0
1

R
egSrcD

CLK

InstrF

CLK

ALUOutM ALUOutW
WA3E WA3M WA3W

CLK CLK

MemWriteE
MemtoRegE

ALUSrcE

RegWriteE

ALUControlE
MemWriteM
MemtoRegM
RegWriteM

MemtoRegW
RegWriteW

BranchD

FlagsE

FlagWriteE

BranchE

CondE

C
ondExE

1
0

PCSrcD PCSrcE PCSrcM PCSrcW

Flags'

Cond
Unit

00
01
10

00
01
10

Hazard Unit

Forw
ardA

E
Forw

ardB
E

R
egW

riteM

M
atch

R
egW

riteW

CLK
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Data ForwardingLoad-Use Hazard
§ Recall: Execution of Load has a two-cycle latency (E + M)

§ LDR does not finish reading data until the end of the MEM 
stage 
§ The result cannot be forwarded to the EX-stage of the next 

instruction
§ We call Load followed by its use a Load-Use hazard

§ Load-Use hazard cannot be solved with forwarding

§ Solution: stalling the pipeline until the data is available
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Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM LDR

ORR

SUB

Trouble!

Load-Use Hazard
§ The LDR instruction received data from memory at the end 

of cycle 4

§ The AND instruction needs that data at the beginning of 
cycle 4

§ We cannot go backward in time and fix things up! 



StallingStalls to Resolve Load-Use Hazards
§ The dependent instruction can be detected as the “user” of 
LDR after it has been decoded at the end of Decode stage

§ Idea: Stall the dependent instruction in the Decode stage 
for one cycle (until LDR completes the memory read)

§ Furthermore, the instruction immediately behind the “user” 
of LDR must remain in the Fetch stage because the Decode 
stage is full
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Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM LDR

ORR

SUB

9

RF R3

R1

IM ORR

Stall

Stalls to Resolve Load-Use Hazards
§ Stall the dependent instruction (AND) in Decode stage

§ AND remains in Decode, and ORR remains in Fetch

§ Cycle 5: result forwarded from WB of LDR to EX of AND
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What does a stall look like?
§ Stalling stage X does three things

§ Stalls stage X (obviously)

§ Stalls stage X – 1 

§ Sends a bubble in stage X + 1 
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Let’s Visualize Stall in Decode stage

Cycle # Fetch Decode Execute Memory Writeback

1:

2:

3:

4:

5:

6:

7:

§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

80



Cycle # Fetch Decode Execute Memory Writeback

1: i1

2:

3:

4:

5:

6:

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3:

4:

5:

6:

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4:

5:

6:

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i1 – i2 
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 i2 00000000 i1

5:

6:

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

(stall)
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 i2 00000000 i1

5: i4 i3 i2 00000000 i1

6:

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

(stall)
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 i2 00000000 i1

5: i4 i3 i2 00000000 i1

6: i5 i4 i3 i2 00000000

7:

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

(stall)
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 i2 00000000 i1

5: i4 i3 i2 00000000 i1

6: i5 i4 i3 i2 00000000

7: i5 i4 i3 i2

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

(stall)
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Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 i2 00000000 i1

5: i4 i3 i2 00000000 i1

6: i5 i4 i3 i2 00000000

7: i5 i4 i3 i2

Let’s Visualize Stall in Decode stage
§ i1 – i5 are five instructions. Load-use hazard between i2 – i3 

(stall)
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StallingPipeline Bubbles
§ EX is unused in cycle 4
§ MEM is unused in cycle 5
§ WB is unused in cycle 6

§ This used stage propagating through the pipeline is called a 
bubble

§ It behaves like a NOP instruction
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StallingImplementing Stalls
§ Stalling a stage requires disabling the pipeline register, so that the 

contents do not change
§ All previous stages must also be stalled

§ Bubble is introduced by clearing the pipeline register directly after 
the stalling stage 
§ Prevents bogus information from propagating forward

§ Forgetting to introduce a bubble may wrongly update the 
architectural state  

§ Stalls degrade performance so must be used only when needed 
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StallingLogic to Compute Stalls and Flushes
§ Is either source register in the Decode stage the same as the one 

being written in the Execute stage?

  Match_12D_E = (RA1D == WA3E) + (RA2D == WA3E)

§ Is LDR in the Execute stage AND Match_12D_E is TRUE?

  ldrstall = Match_12D_E AND MemtoRegE
  StallF = StallD = FlushE = ldrstall

91



Pipelined CPU with Stalls to Solve Load-Use Hazard

Figure 7.54 in textbook
92



StallingControl Hazards
§ Control hazards are due to changes in sequential control flow 

§ Branch (B) instructions
§ Writes to PC (R15) by regular instructions

§ The pipelined processor does not know which instruction to fetch 
next

§ Branch decision has not been made when the instruction is 
fetched
§ But the PC register is incremented in the Fetch stage
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StallingSolving Control Hazards
§ There are two solutions

§ Stall the pipeline on a branch instruction
§ Instruction is fetched in the first stage
§ Branch is resolved in the last (fifth) stage
§ Stall for 4 cycles – a very high penalty to pay for every branch instruction

§ Predict the branch outcome (aka. branch prediction)
§ If the outcome is correct, continue execution (zero penalty)
§ If the outcome is wrong (branch misprediction), clean up the pipeline, and 

restart from the correct target instruction (aka., recovery)
§ Branch misprediction penalty depends on when recovery is initiated
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StallingSimplest Branch Predictor
§ Predict-always-untaken

§ Keep fetching the next sequential instructions

§ Predict-always-taken 
§ CPU stalls for four cycles because target address not available
 

§ Both predictors above use a static prediction policy

§ Dynamic branch prediction
§ Different predictions for different executions of same branch
§ Takes recent branch behavior into account
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StallingPredict-always-untaken: Branch is Taken
§ predict-always-untaken seems reasonable if target is not known

§ BUT, four instructions are flushed when branch is taken 
§ Misprediction penalty of 4 wasted cycles for taken branches 
§ Idea: Predict the branch early

Time (cycles)

B 3C RF RFDM

RF R3

R1
RF& DM

RF R1

R6
RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM B

ORR

20

24

28

2C

34... ...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM ADD

RF R7

R1
RF- DMIM SUB

RF R8

R1
RF- DMIM SUBSUB R11, R1, R830

10
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StallingStatic Branch Prediction: All Scenarios
§ Predict-always-untaken (Keep the pipeline busy)

§ If prediction is correct, nothing to do
§ If prediction is incorrect, flush 4 instructions and repair the 

architectural state (i.e., update PC with correct target)

§ Predict-always-taken (Ok to waste slots in the pipeline)
§ If prediction is correct, branch to the target inst., no harm
§ If prediction is incorrect, use incremented PC of next 

instruction (4 cycles are wasted) 
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StallingAlternative: Early Branch Resolution
§ The earliest stage branch target is known is EX
§ Update the PC in EX to save two cycles

§ Flush the two instructions in the Fetch and Decode stages 

Time (cycles)

B 3C RF RFDM

RF R3

R1
RF& DM

RF R1

R6
RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM B

ORR

20

24

28

2C

34... ...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM ADD

SUB R11, R1, R830

10

98



StallingHardware Changes for Early Resolution
§ Idea: Determine the branch target address (BTA) in the EX-stage

§ Branch misprediction penalty = 2 cycles

§ Hardware changes
§ Add a branch multiplexer before PC register to select BTA from 
ALUResultE

§ Add BranchTakenE select signal for this multiplexer (only 
asserted if branch condition satisfied)
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StallingPipelined Processor Early Resolution
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StallingFlush Logic with Early Branch Resolution

§ Flush Decode if branch is taken

 FlushD = BranchTakenE

§ Flush Execute if branch is taken

 FlushE = BranchTakenE
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StallingStall + Flush Logic with Early Branch 
Resolution + Load-Use Hazard
§ Stall Fetch if load-use hazard is discovered
 StallF = ldrStallD
§ Flush Decode if branch is taken
 FlushD = BranchTakenE
§ Flush Execute if branch is taken
 FlushE = ldrStallD + BranchTakenE
§ Stall Decode if load-use hazard is discovered
 StallD = ldrStallD
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StallingOptional: Writes to PC 
§ Writes to PC still stall the CPU for 4 cycles (contrast with B 

instruction)

§ Stall Fetch if PC write is discovered in Decode, Execute, or Memory
 StallF = PCSrcD + PCSrcE + PCSrcM

§ Flush Decode if PC write is discovered in Decode, Execute, Memory, 
or Writeback 

 FlushD = PCSrcD + PCSrcE + PCSrcM + PCSrcW 
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StallingFlush and Stall Logic for Writes to PC 
§ Explaining the logic for StallF control signal

§ Cycle #1: PC-changing instruction (I) is fetched
§ Cycle #2:  I is decoded and PCSrcD is asserted
§ Cycle #3:  I is executed and PCSrcE is asserted
§ Cycle #4:  I is in M stage and PCSrcM is asserted
§ Cycle #5:  PCSrcW is asserted, and new PC is written to the ResultW bus

§ PC is a register so will be updated in the next clock cycle (cycle # 6)
§ In cycle #5, StallF is asserted, so that the next cycle the PC register is set up 

properly to capture the new value of instruction address (ResultW)
§ In the first four cycles, StallF is deasserted to not cause a change to PC
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StallingFlush and Stall Logic for Writes to PC 
§ Explaining the logic for FlushD control signal

§ Cycle #1: PC-changing instruction (I) is fetched
§ Cycle #2:  I is decoded and PCSrcD is asserted
§ Cycle #3:  I is executed and PCSrcE is asserted
§ Cycle #4:  I is in M stage and PCSrcM is asserted
§ Cycle #5:  PCSrcW is asserted, and new PC is written to the ResultW bus

§ If we keep FlushD asserted during cycle 5, then at the beginning of cycle # 6 
when rising edge arrives, register will still read all zeroes

§ In cycle # 6, FlushD is released so in cycle # 7, when the correct instruction 
advances to the Decode register, the instruction is captured at the edge of 
the clock (in cycle # 7)
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StallingFull Control Stalling Logic (page # 440)
§ PCWrPendingF = 1 if write to PC in Decode, Execute or Memory
 PCWrPendingF = PCSrcD + PCSrcE + PCSrcM
§ Stall Fetch if PCWrPendingF
 StallF = ldrStallD + PCWrPendingF 
§ Flush Decode if PCWrPendingF OR PC is written in Writeback OR branch is 

taken
 FlushD = PCWrPendingF + PCSrcW + BranchTakenE
§ Flush Execute if branch is taken
 FlushE = ldrStallD + BranchTakenE
§ Stall Decode if ldrStallD (as before)
 StallD = ldrStallD

PC write is in progress in D, E, M

Stall fetch if LDR-Use hazard or PC 
write in D, E, or M

Flush D if PC write in progress in D, 
E, M, or W, or branch taken in E

Stall Decode if LDR-Use hazard
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StallingARM Processor with Full Hazard Handling
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StallingSimplified View of Pipeline
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StallingSimplified View of Pipeline
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StallingSimplified View of Pipeline
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StallingSimplified View of OOO Pipeline
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FEtch DEcode EXecute WriteBack

• Read inst. from 
memory

• Increment PC

• Decode inst.
• Read register if 

value is ready
• Set scoreboard 

entry to Logic 1 
to indicate 
destination busy

• Read value/tag

• Many ALUs and 
memory here 

• Memory can 
handle multiple 
requests

• Forwarding to 
IQ from here

• Writeback result to 
RF and IQ 

• Reset scoreboard 
entry

ISsue

• Copy inst. into 
the issue queue 
(IQ) if an entry 
is available

• Pick a ready 
inst. and send 
for execution if 
operands ready

Issue Queue (IQ)



StallingSimplified View of OOO Pipeline
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FEtch DEcode SChedule EXecute WriteBack

• Read inst. from 
memory

• Increment PC

• Decode inst.
• Read register if 

value is ready
• Set scoreboard 

entry to Logic 1 
to indicate 
destination busy

• Read value/tag

• Pick a ready 
inst. and send 
for execution if 
operands ready

• Many ALUs and 
memory here 

• Memory can 
handle multiple 
requests

• Forwarding to 
IQ/EX from 
here

• Writeback result to 
RF and IQ 

• Reset scoreboard 
entry

ALlocate

Issue Queue (IQ)

• Copy inst. into 
the issue queue 
(IQ) if an entry 
is available



When to Forward?
§ Read-after-write hazard between two instructions where the first 

or “older” instruction is not a load

ADD R0, R1, R2
SUB R4, R0, #1

MUL R12, R2, R3
ADD R0, R12, #1
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When to Stall?
§ Load-use hazard

§ Stall the Decode and Fetch stages when the “use” is discovered

§ PC-changing instructions
§ Possible but not implemented for complexity reasons
§ Stall Fetch for four cycles
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When to Flush?
§ Load-use hazard

§ Flush the Execute pipeline register

§ PC-changing instructions
§ Keep flushing the Decode stage until the new instruction (branch 

target) is available in the Decode pipeline register

§  Branch instructions
§ When branch is resolved early in the Execute stage, flush the 

pipeline registers in the Decode and Execute stages
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How does the CPU Stall and Flush?
§ Stall

§ Use Enable input to hold/retain the value stored in the 
pipeline register

§ Flush
§ Use the Clear input to zero the register contents
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Superscalar Processor
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StallingSuperscalar: Idea and Datapath
§ Multiple copies of datapath hardware to execute instructions simultaneously
§ Example: 2-way superscalar fetches and executes 2 instructions per cycle

§ Requires 6-ported register file (4 reads, 2 writes), 2 ALUs, 2-ported data memory
§ Ideal CPI = 0.5 and IPC = 2
§ Dependencies and hazards inhibit ideal IPC
§ Above figure does not show forwarding and hazard detection logic

118



StallingSuperscalar: Pipeline Operation
§ Example program where IPC = 2 is possible
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StallingSuperscalar: Impact of Dependencies
§ Example of program with data dependences

§ CPU completes (on average) 6 instructions in 5 cycles (IPC of 1.2)
§ Can also compute IPC from the fetch side (6 instructions are issued 

in five cycles)
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StallingIn-Order Superscalar: Tradeoffs
§ Superscalar processors encompass spatial + temporal parallelism

§ Two pipelined lanes in one CPU with duplicated resources

§ 2-wide, 4-wide, and 6-wide superscalars are common (wide = way)

§ Too many dependencies (data + control) in real programs
§ Hard to find many instructions to issue (in order) every cycle
§ Out-of-order CPUs unlock this bottleneck

§ Large number of execution units and complex forwarding and hazard 
detection logic costs area, power, and energy
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StallingIn-Order Superscalar: Role of Compiler
§ In-order (superscalar) CPU: Instructions are executed in the exact 

order determined by the assembly programmer or compiler

§ The compiler can  change instruction order to maximize pipeline 
utilization

§ Goal: Achieve maximum IPC (e.g., IPC of 2 for 2-wide superscalar 
CPUs)

122



Branch Prediction
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Static Branch Prediction
§ Static (fixed) policy #1: Always predict that the branch is not taken

§ Static policy # 2: Always predict that the branch will be taken

§ The cost of a branch misprediction (branch misprediction penalty) 
increases for superscalars 

§ Effort to process “wrong path” instructions is wasted

§ We need more accurate branch predictors (>99% accuracy)
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Dynamic Branch Prediction
§ Predict the outcome of a branch instruction (in fetch stage) 

based on the recent behavior of the branch

§ What do we need?

§ Branch identification (PC uniquely identifies a branch)

§ Recent branch behavior (taken/untaken last time)
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Branch Identification & Behavior
§ Branch identification

§ Use the branch address in instruction memory
§ Can grab it from PC

§ Branch behavior
§ Outcome of the condition test from ALU
§ Also need to store the branch target the last time the 

branch executed
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One-Bit Predictor
§ Branch History Table (BHT) or Branch Prediction Buffer

§ Small amount of memory indexed by low-order branch address bits
§ Store a single bit that says branch was recently taken or not

BHT

0

1

0

0

1

1

1

1

branch 
address

1-bit 
predictionm

§ Due to limited entries in the table, there are conflicts (aka. aliasing)
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One-Bit Predictor: Operation
§ Placed in the Fetch stage

§ Predicted untaken: Fetch the next instruction
§ Predicted taken: Compute the target address and fetch from target

§ Updates to the BHT
§ Nothing to do if outcome matches prediction
§ If outcome does not match prediction

§ Flip the entry in the BHT
§ Flush the pipeline and update the PC

§ Questions
§ Is correctness affected by misprediction?
§ Is performance affected by misprediction?
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Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R0,  #1
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R0,  R0,  #1
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?
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Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT TNew State

Current State/Prediction

§ What is the prediction accuracy of a 1-bit branch predictor?
i = 
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   CMP  R0,  #10
   BGE  DONE
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   B FOR
DONE

Actual Direction



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT TNew State

Current State/Prediction

§ What is the prediction accuracy of a 1-bit branch predictor?
i = 
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Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

Actual Direction

New State

Current State/Prediction

§ What is the prediction accuracy of a 1-bit branch predictor?
i = 
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   B FOR
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Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT TNew State

Current State/Prediction

§ What is the prediction accuracy of a 1-bit branch predictor?
i = 
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   B FOR
DONE

Actual Direction



Anomalous Decision
§ Accuracy of one-bit predictor is 80% for a branch that is NOT 

TAKEN 90% of the time

§ Anomaly: When branches that are strongly biased toward one 
direction suddenly takes a different path or direction

§ A 1-bit predictor is “thrown off” by a single anomolous decision
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Smith’s Algorithm
§ 1979: James E. Smith notices the performance pathology of 1-bit 

predictor at loop termination

§ Proposes Smith’s branch prediction algorithm 
§ Key insight:  Add hysterisis (inertia) to the predictor’s state

§ The same outcome must occur multiple times to reach the strong states

§ A saturating counter maps the outcomes of several recent branches on to a 
counter with different states
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k = 2
§ Four states

§ Strongly not-taken (SN or 00)

§ Weakly not-taken (WN or 01)

§ Weakly taken (WT or 10)

§ Strongly taken (ST or 11)

136



Smith’s Algorithm

Predict 
Taken

Predict 
Taken

Predict 
Untaken

Predict 
Untaken 

Untaken

taken

Untaken

taken

takenUntaken

Untaken

taken

01

1011

00
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Smith’s Predictor Hardware (k = 2)

branch address

BHT

00

01

10

11

….

2m k-bit counters

m

branch predictionMSB

saturating counter
increment/decrement

branch outcome

updated counter value
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Accuracy of Smith’s Predictor

Branch
Direction

Smith1 Smith2 

State Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0 1 1
(misprediction)

11 1
(misprediction)

1 0 0 
(misprediction)

10 1

1 1 1 11 1

1 1 1 11 1

Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with sudden shifts in branch behavior
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Accuracy of Smith’s Predictor

Branch
Direction

Smith1 Smith2 

State Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0 1 1
(misprediction)

11 1
(misprediction)

1 0 0 
(misprediction)

10 1

1 1 1 11 1

1 1 1 11 1

Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with sudden shifts in branch behavior
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Accuracy of Smith’s Predictor

Branch
Direction

Smith1 Smith2 

State Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0 1 1
(misprediction)

11 1
(misprediction)

1 0 0 
(misprediction)

10 1

1 1 1 11 1

1 1 1 11 1

Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with sudden shifts in branch behavior
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Accuracy of Smith’s Predictor

Branch
Direction

Smith1 Smith2 

State Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0 1 1
(misprediction)

11 1
(misprediction)

1 0 0 
(misprediction)

10 1

1 1 1 11 1

1 1 1 11 1

Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with sudden shifts in branch behavior
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Branch Target Buffer (BTB)
§ Buffer = A small memory for storing “some” information

§  Recall the CPU needs to know in the fetch stage
§ Branch direction 
§ Branch target address

§ BTB stores the target addresses for taken branches

§ Does not make sense to search the BTB for targets of untaken 
branches
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Operation with BTB
§ Branch is predicted to be taken

§ Get target address from BTB

§ Branch is predicted untaken
§ PC = PC + 4

§ If the prediction is correct: continue normal execution

§ If the prediction is incorrect: flush all pipeline stages containing 
instructions from the mispredicted path
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§ In real programs, the outcome of one branch often depends on the 
behavior of other branches

§ Traditional (non-correlating) predictors that rely only on the outcome of 
a single branch fail to capture these relationships

§ Correlating branch predictors improve accuracy by using
§ Local history (past behavior of the same branch)
§ Global history (outcomes of recent branches across the program)
§ Branch address (to distinguish branches with similar histories)

aa = 0; bb = 0;
if  (cond1)
 aa = 1;
if  (aa == bb)
 {…}

Correlating Branch Predictors
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A Lot More to Say on Branch Prediction!
§ Important component of a modern processor

§ Especially superscalar and out-of-order processors
§ Prediction accuracy above 99%

§ State of art: Deep neural networks, machine learning approaches

§ COMP4045: Students implement and compare state of the art 
branch predictors in a C++ simulator
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Real pipelines have caches and real memory 
latencies!
§ Each memory access costs 100s of cycles (we assumed 1 cycle data memory 

access for simplicity)
§ Cache hit cost 1– 4 cycles
§ Cache miss costs close to 100 cycles
§ Therefore, an in-order pipelined CPU can stall for many cycles on memory 

accesses 

§ Next step
§ Out-of-order CPU that continues doing useful work in the presence of 

long-latency memory accesses 


