COMP2300-COMP6300-ENGN2219
Computer Architecture

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

“ Australian
== National
s University

Instruction-Level Parallelism (ILP)

Instruction-Level Parallelism (ILP)

Overlapping the execution of instructions is called instruction-level
parallelism

We have seen ILP
= Scalar in-order pipeline (partial overlap)
= Superscalar in-order pipeline (full overlap)

Full overlap requires multiple functional units and datapaths

ILP processors bet that many instructions in the program are independent
of each other

We will now see more aggressive ILP exploitation

Dependences and Hazards

= Uncovering ILP aggressively requires understanding dependences
and hazards

= Recall: Dependence is a program’s property
= Recall: Hazard is a microarchitecture property
= We have seen

= Read-after-write hazard (due to true dependences)
* Control hazard (due to branches in programs)

True dependence =4

1. LDR R2, [R6, #O]

\
2. ADD R3, R2, RS

= Data or true dependence
= 2 needstheresultof 1

= We have a single (dependent) instruction chain %

True dependences

1. LDR R2, [R6, #O]

\
- ADD R3, R2, R5

R4, [R6, #O]

\
. ADD R7, R4, R9

> w N
|—
U
xJ

* Two independent instruction chains

glc

Anti dependence

1. LDR R2, [R6, #O]

> ADD R6,‘/RB, RS

= Anti dependence
=) needs to write what 1 needs to read

" Anti dependence is an example of false dependence
" One way to eliminate this dependence is to replace R6 in
instruction # 2 with a different register

Output dependence

1. LDR Rlz, [R6, #0]
2. ADD R2, R7, RS

= Qutput dependence
= 1 and 2 wants to write to the same register

= Again, it is a false dependence
= We can replace register R2 in instruction # 2 with a different
register to eliminate the dependence

Dependences and Hazards

" True dependence results in

= Read-after-write hazard (RAW)
= Anti-dependence results in

= Write-after-read hazard (WAR)
= Qutput dependence results in

= Write-after-write hazard (WAW)

= Single-cycle CPU

= None of the dependences result in a hazard (no concurrent execution)
= Basic ARM 5-stage in-order pipeline

= Multiple instructions in different stages (possibility of RAW)

= 00O CPUs we will study exhibit WAR and WAW hazards

From In-Order to Out-of-Order

In-Order Pipeline

In-order pipeline: Instructions are fetched, decoded, and executed in
program order

CPU hardware does no reordering of instructions to avoid stalls or execute
independent instructions during a cache miss

The simple in-order pipeline we have seen exploits limited parallelism
It “completely” stalls because of
= Cache misses

" Floating point multiply and divide (long-latency operations)

We will make it more aggressive and see that there is still a problem

In-Order Pipeline w/t Cache

" Add a data cache and realistic data memory with 100 cycle latency
= Stalls on a cache miss due to structural dependency

" One ALU capable of executing “one operation” at a time

" Memory can only handle “one request” at a time

" |fthe MEM stage stalls, then EX stalls, and the entire pipeline
stalls (aka. stall-on-miss pipeline)

In-Order Pipeline w/t Cache

Decode Execute Memory Writeback
]] r
/ / / /
|1""——| Control ! /) /
) ; ;‘ ,W / forwardW ; b
3 / 5 // / £
o AL A g s
0 L A2 1 L Y
PC M A RF ’ ALUResulf DM MemDataf 0
1 A i Y /
/ / / /
4 ‘ 5 / N
/ 5 / ’
A 4 / /
Result

stall
stall

clear
clear
clear
clear

Aggressive In-Order Pipeline/Cache

We will use a different more “aggressive” in-order pipeline to
understand problem with in-order pipelines

" Many ALUs and memory capable of handling multiple requests
at a time

" Eliminating the structural dependency and rearranging stages

" Fetches, decodes, and issues one instruction in order every cycle
to the functional units, but many of them can be in execution in
any cycle

Stall-on-Use Pipeline

Decode and register read stages are separate
Memory access happens in the execute stage
+ | Big | asen

. Tinyl ALU | D$

Memory can handle multiple memory requests ALY Viem

A data cache is used to exploit locality

Register read stage also implements the issue policy
" [ssuing is sending an instruction to the ALU for execution
when operands are ready

15

Stall-on-Use Pipeline .

= Assumptions about execute stage DE

@l Register Read

= Non-blocking execute stage (multiple functional units) EX

+ | Big | asen

= Many functional units (concurrent instruction execution) Til ALU | DS
ALU

Mem
WB

= |Instructions do not stall due to structural dependency

" Load is divide into:
= address generation (agen)
= data cache access (DS)
= memory access (if load miss or cache miss)

16

} = Assumptions about issue logic in RR stage:

= RAW hazard: Instruction stalls if its source registers

+ Big agen
Tyl ALU | Ds are not ready
ALU Mem
= WAW: Instruction stalls if its destination register is

llbu Sy”

= WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction

Load miss followed by independent instructions

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

O,

Scenario 1: load miss followed by independent instructions
i1: LDR R2, [R1, #0]
i2: ADD R4, [R3, #1]
i3: ADD Re, R5, #2
_ N
i4: ADD R7, Re6, #3

| | 1]2(3[4a[5][6]7]8]9]10]11]12]13]
i1 FE

i2

i3

i4

19

Fetch

Decode

Register Read

Execute

Big
ALU

> -
>
c2|t

agen

DS

Mem

Writeback

0 Scenario 1: load miss followed by independent instructions
i1: LDR R2, [R1, #0]
i2: ADD R4, [R3, #1]
i3: ADD Re, R5, #2
_ N
i4: ADD R7, Re6, #3

112 13/4/5]/6]7]8]9]10]11]12]13]

i1 FE DE
i2 FE
i3
i4

20

Decode Scenario 1: load miss followed by independent instructions

i1:LDR R2, [R1,#0]

Register Read

Execute i2: ADD R4, [R3, #1]

+ | Big | agen 31 ADD R6,\ RS, #2

B Kl ML 4:ADD R7, R6, #3
Mem

112]3/4/5]/6]7]8]9]10]11]12]13]
RR

i1 FE DE

i2 FE DE
i3 FE
i4

Scenario 1: load miss followed by independent instructions

i1:LDR R2, [R1,#0]

: 2:ADD R4, [R3, #1]

+ | Big | ase il i3: ADD R6,\‘R5, H2
B Kl ML 4:ADD R7, R6, #3
Mem

i1 FE RR EXg
i2 FE DE RR
i3 FE DE

i4 FE

Decode

Scenario 1: load miss followed by independent instructions

Register Read i1:LDR R2, [R1, #0]

Execute i2: ADD R4, [R3, #1]
@ Big | agen i3: ADD R6,\ RS, #2
AOLALU | Do il) miss 4:ADD R7, R6, #3

Mem

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX
i3 FE DE RR

i4 FE DE

Scenario 1: load miss followed by independent instructions
i1:LDR R2, [R1, #0]
i2:ADD R4, [R3, #1]

@ Big | agen i3: ADD R6,\ RS, #2
AOLALU | Do il) miss 4:ADD R7, R6, #3

Mem

wiiceback (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX

i4 FE DE RR

Scenario 1: load miss followed by independent instructions
i1:LDR R2, [R1, #0]
i2:ADD R4, [R3, #1]

@ Big | agen i3: ADD R6,\ RS, #2
AOLALU | Do il) miss 4:ADD R7, R6, #3

Mem

_wiiceback (@)

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR EX WB
i3 FE DE RR EX WB

i4 FE DE RR EX

i5)| Big | asen
ALU | DS(|i1) miss

ny
ALU

Mem

Scenario 1: load miss followed by independent instructions
i1: LDR R2, [R1, #0]
i2: ADD R4, [R3, #1]
i3: ADD Re, R5, #2
_ N
i4: ADD R7, Re6, #3

i1
i2
i3
i4

RR EXe EXos .miss..
EX WB
RR EX WB

DE RR EX WB

Fetch
Decode

Register Read

Execute

+ | Big | agen
Tinvf ALU | D$

Mem

Writeback

Scenario 1: load miss followed by independent instructions
i1: LDR R2, [R1, #0]
i2: ADD R4, [R3, #1]
i3: ADD Re, R5, #2
_ N
i4: ADD R7, Re6, #3

112 13/4]/5]/6]7]8]9]10]11]12]13]

RR EXe EXos ...miss... WB
RR EX WB
DE RR EX WB

FE DE RR EX WB

27

Fetch

Decode

Register Read

Execute

+ | Big
Tiny, ALU

agen

DS

Mem

Writeback

O,

11213
it FE DE RR
2 FE DE
3 FE
i4

Scenario 1: load miss followed by independent instructions

i1:LDR R2, [R1, #0]
2:ADD R4, [R3, #1]
i3:ADD R6, R5, #2
, W

i4:ADD R7, R6, #3

Aggressive in-order pipeline does work “underneath a load miss” to

hide the memory latency

28

Load miss followed by dependent instruction,
followed by independent instructions

Fetch (:::)

Scenario 2: load miss followed by dependent instruction, followed by

independent instructions
0B R, [R1, #0
2:ADD R4, R2, #1
+| Big | 28 3:ADD R6, RS, #?2
Tinyl ALU DS \
ALU Mem i4: ADD R7, R6, #3
Writeback

112 /3/4]/5]/6]7]8]9]10]11]12]13]
i1 FE

2

3

4

30

()
e Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
1108 R, [R1, #0
2:ADD R4, R2, #1
+| Big | %60 3:ADD R6, RS, #?2
Tinyl ALU | DS NN
ALU Mem i4: ADD R7, Ro, #3
Writeback

112 13/4/5]/6]7]8]9]10]11]12]13]

i1 FE DE
i2 FE
i3
i4

31

Decode Scenario 2: load miss followed by dependent instruction, followed by

independent instructions

Register Read i1: LDR R2, [R1, #0]
AW

Execute i2: ADD R4, R2, #1
* Big | agen i3: ADD R6, R5, #2
Tiny| ALU | DS N\
ALU — i4: ADD R7, R6, #3

112]3/4/5]/6]7]8]9]10]11]12]13]
RR

i1 FE DE

i2 FE DE
i3 FE
i4

32

Register Read

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:LDR R2, [R1, #0]
N

| i2: ADD R4, R2, #1
+ | Big |agen\! i3: ADD R6, R5, #2
Tiny| ALU | DS N\

ALU o i4: ADD R7, R6, #3

i1 FE RR EXg
i2 FE DE RR
i3 FE DE
i4 FE

33

= rech (@)

e Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
Register Read [(E)) 0B R, [R1, #0
2:ADD R4, R2, #1
L* | Big |26 3:ADD R, RS, #?2
ALJ A MDS@ i4: ADD R>R6 #3
em 14))

i1 FE RR EXe@ EXpsg ..Miss..
i2 FE DE RR RR
i3 FE DE DE
i4 FE FE

34

= rech (@)

e Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
Register Read [(E)) 0B R, [R1, #0
2:ADD R4, R2, #1
e 3:ADD R, RS, #?2
ALU A MDS@ i4: ADD R>R6 #3
em 14))

i1 RR EXe@ EXpsg ..Miss..

i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE
i4 FE FE FE FE FE FE

35

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
:L0R R, [RI, #0]

N
2:ADD R4, R2, #1

@ Big | agen 3:ADD R6, R5, #?2
| ALU | DS N
ALU —— 4: ADD R7, R6, #3

_vricoeci (@)

i1 RR EXe@ EXpsg ..Miss..

i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR
i4 FE FE FE FE FE FE DE

36

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
:L0R R, [RI, #0]

N
2:ADD R4, R2, #1

@ Big | agen 3:ADD R6, R5, #?2
| ALU | DS N
ALU —— 4: ADD R7, R6, #3

_vricoeci (@)

i1 RR EXe@ EXpsg ..Miss..

i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX
i4 FE FE FE FE FE FE DE RR

37

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions
:L0R R, [RI, #0]

N
2:ADD R4, R2, #1

@ Big | agen 3:ADD R6, R5, #?2
| ALU | DS N
ALU —— 4: ADD R7, R6, #3

_viebac (@)

i1 RR EXe@ EXpsg ..Miss..

i2 FE DE RR RR RR RR RR RR EX WB

i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX

38

Fetch

Decode

Register Read

Execute

Big

Tiny, ALU

agen

DS

Mem

Writeback

i1
i2
i3
i4

Scenario 2: load miss followed by dependent instruction, followed by

independent instructions
i1: LDR R2, [R1, #0]
N
i2: ADD R4, R2, #1
i3: ADD R6, R5, #2
N
i4: ADD R7, Ro, #3

112 13/4]/5]/6]7]8]9]10]11]12]13]
DE

FE RR EXe EXos ...miss... WB
FE DE RR RR RR RR RR RR EX WB
FE DE DE DE DE DE DE RR EX WB

FE FE FE FE FE FE DE RR EX WB

39

Fetch

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

i1:LDR R2, [R1, #0]
N

Decode

Register Read

Execute i2: ADD R4, R2, #1
+ | Big | ogen i3: ADD R6, R5, #2
Tiyl ALU | DS$ N
ALU Mem i4: ADD R7, Ro, #3

1123

i1 FE DE RR |EXg |EXos
i2 FE DE | RR | RR
i3 FE | DE | DE | DE DE DE DE
i4 FE | FE | FE FE FE FE

EX WB
RR EX WB
DE RR EX WB

Even aggressive in-order pipeline cannot hide the latency of a load
miss when confronted with a RAW hazard. Independent

instructions wait, hindering ILP exploitation

40

What have we established?

= 2 mustwaitforil
= j2dependsonil
= 13,14 donotneed to wait forthe 11-12 dependent chain (they are
independent)
= Butthe 13-14 chain stalls
= Key insight: In-order issue translates into a structural hazard
= RR stage (issue stage) blocked by the stalled 12

= In-order issue policy is the problem
= |f a younger instruction has a RAW hazard with an older instruction (must stall
and it’s ok!)
= What about instructions after it?
= Some of the younger instructions may be independent
= This is where the problem lies!

41

Nature of OO0

= Qut of order pipeline

= An instruction stalls if it has a RAW hazard with a
previous instruction (that’s ok!)

" |Independent instructions after it do not stall: they
may issue out of program order (O0O)

42

Issue Queue

OO0O pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions

”n «u » «u

= |tis called “reservation stations”, “issue buffer”, “issue queue”,

n «u

“scheduler”, “scheduling window”
Stalled instructions do not impede instruction fetch

Younger ready instructions issue and execute out of order with respect to
older non-ready instructions

Issue queue opens up the pipeline to future independent instructions
= Tolerate long latencies (cache misses, floating point)
= Exploit ILP better

43

Dynamic Scheduling

44

Instruction Scheduling

= Deciding the order in which instructions are executed, where each ordering is
called a schedule
" The goal is to maximize ILP
= All dependences must be respected

= Static scheduling
= Compiler decides the ordering of instruction execution
= Jtrelies on hardware for correct execution (hazard detection)
= ARM 5-stage pipeline is statically scheduled
= 2-way in-order superscalar we saw before is also statically scheduled

= Dynamic scheduling
= Hardware decides the ordering transparently to software
= “Smart hardware, dumb software”

What is dynamic scheduling?

" Deciding which instructions to execute next, using extra hardware
(i.e., stalled instructions do not impede instruction fetch)

" |Inadynamically scheduled pipeline, younger, ready instructions
issue and execute out of order w.r.t. older non-ready instructions

" |ssue queue opens up the pipeline to future independent
instructions

" Dynamically scheduled processors are superscalar, but we will
assume scalar execution to simplify illustration of principles

Out-of-Order Scalar Pipeline (v.1)

=

Fetch

— In-order fetch/dispatch engine

insert instructions in order
~ lssue Queue (1Q)
\

remove instructions out of order

. 00O issue/execute engine
+ B|g agen
Tinyl ALU | DS
ALU Mem

)

Version # 1: CDC 6600 Scoreboard

" The idea of a scoreboard was introduced by Control Data

Corporation (CDC) in CDC6600 machine
= New stages
= Dispath stage

= |ssue stage

= New components
= Scoreboard

= Common Data Bus (CDB) for data writeback and forwarding

48

Fetch

Decode

Register Read

Dispatch

Issue

Execute

tag (wakeup)

+ | Big

agen

Tiny, ALU

DS

Mem

Writeback

Scoreboard Register File
v value
ro] 1 rO| #10
rif 1 rl #44
r2| 1 r2| #11
r3] 1 r3| #33 |
r4a| 1 r4 H#7
r5(1 r5 #15
re| 1 ré #-7
r7 1 r7| #345
Issue Queue (1Q)
v | dst [rsl rsl rs2 rs2
-> tag |rdy|tag/value |rdy|tag/value

data

Common Data Bus (CDB)

49

CDC 6600 Scoreboard (Key Additions)

Dispath stage

= Copy the instruction from the RR/DI PPR to the issue queue (if there is
an empty slot in the queue)

= Set vto 1 (means busy) for the occupied slot in the instruction queue

= |ssue stage
= |f both operands are ready, the issue stage sends the instruction to the
execution unit
= Deallocate the issue queue entry by settingv =0

= Scoreboard
= When an instruction has register rN as a destination (N =0 —7), set the
corresponding bit to O (NOT READY)
" |nstructions capture the tag if v=0 and value otherwise (from RF)

CDC 6600 Scoreboard (Key Additions)

How are instructions selected for execution?

" The issue queue waits for destination tags to appear

= When the destination tag appears, it wakes up all instructions waiting
for that tag

= One of the “ready” instructions is sent to the execute next

= Easy way to remember: Capture-Tag-And-Go-For-Execution

Common Data Bus (CDB)

= The values are broadcasted over the CDB bypassing register file writes

= This bus implements forwarding

= Values are forwarded to the issue queue, register file, and execute stage

Scoreboard Register File
value

:
rol 1 ro #10
r2| 1 r2 #11
Register Read r3| 1 r3| #33 |
r4g| 1 r4 #7
Dispatch r5| 1 r5| #15
re| 1 ré #-7
r7] 1 r7| #345
sve Quewe ()
tag (wakeup) v | dst |rs1 rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value
+ Big agen
Tinyl ALU | DS
ALU Vo
Writeback
data Common Data Bus (CDB)

. |1]2]3]l4/5]6]7]8]09]10][11[12[13]14]15]16]17]
i1: LDR r2, [r1,#0]
i2: ADD r4, r2, #i
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

Scoreboard Register File

()

v value
rof 1 ro #10
r2(1 r2 #11
rd| 1 r4 #7
re| 1 ré H#-7
r7] 1 r7| #345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

1112 /3]4]/5]6 1718 9]10[11]12]13]14]15]16]17]

i1: LDR r2, [r1,#0] FE
i2: ADD r4, r2, #1
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

Scoreboard Register File

()

v value
rof 1 rO| #10
r2(1 r2 #11
rd| 1 r4 #7
re| 1 ré H#-7
r7] 1 r7| #345

ssue Queue 1)

v | dst |rsl rsl rs2 rs2

tag (Wakeup)
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

1112 /3]4]/5]6 1718 9]10[11]12]13]14]15]16]17]

i1: LDR r2, [r1,#0] FE DE
i2: ADD r4, r2, #i FE
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

e (O
oecode ()

Register Read ° r2, #0, #44

Issue

+ Big agen
Tinvf ALU | D$
ALU Mem

Scoreboard Register File
v value
ro] 1 rO| #10
rif 1 rl #44
r2| 0 [% r2 -
r3] 1 r3| #33 |
r4a| 1 r4 H#7
r5(1 r5 #15
re| 1 ré #-7
r7 1 r7| #345
Issue Queue (1Q)
v | dst [rsl rsl rs2 rs2
tag |rdy|tag/value |rdy|tag/value
0
0
0

data

1112 /3]4]/5]6 1718 9]10[11]12]13]14]15]16]17]

i1: LDR
i2: ADD
i3: ADD
i4: ADD

re,
r4,
ro,
r/,

Common Data Bus (CDB)

[r1,#0]
r2, #1
r5, #2
ro, #3

FE

DE
FE

RR
DE
FE

Scoreboard Register File

e ()

v value
ro] 1 rO| #10
r2| O r2 -
Q rd, r2, #1 13| 1 3 #33 |
rd| 0 |k r4 -
re| 1 ré #-7
r2, #0, #44 r7[1 r7|_#345

ssue Queue 1)

dst [rsl rsl rs2 rs2

tag (Wakeup) v
-------------- tag |rdy|tag/value |rdy|tag/value

+ | Big | agen 8
Tinyl ALU | DS 0
ALU o
data Common Data Bus (CDB)

1112 /3]4]5]6 1718 9]10[11]12]13]14]15]16]17]

i1: LDR r2, [r1,#0] FE DE RR DI
i2: ADD r4, r2, #i FE DE RR
i3: ADD r6, r5, #2 FE DE
i4: ADD r7, ro, #3 FE

Scoreboard Register File

ro| 1 ro| #10
r2| 0 r2 -

e r6, #15, #2 3| 1 3 #33 |
rd| O r4 -
Iy 6| 0 |% ré -
@,’ rd, r2, #1 (7] 1 7| #345

ssue Queue 10
tag (wakeup) v | dst [rsl rsl rs2 rs2
"""""" @ tag |rdy|tag/value |rdy|tag/value

. 1 r2 1 #0 1 HA44
+ B|g agen 0
Tinvf ALU | D$ 0
ALU

Mem

data Common Data Bus (CDB)

—---n-n-nn

i1: LDR r2, [r1,#0] FE DE RR DI

i2: ADD r4, r2, #i FE DE RR DI
i3: ADD r6, r5, #2 FE DE RR
i4: ADD r7, ro, #3 FE DE

Scoreboard Register File
Fetch v value
rof 1 ro #10
e i 1 rl| #44
r2 O r2 -
Reglster Read r7, r6, #3 r3| 1 r3| #33 |
rd| O r4 -
Dispatch 5| 1 r5| #15
re| O ré -
r7| 0 |% r7 -
Issue Queue (1Q)
v | dst [rs1 rsl rs2 rs2
tag |rdy|tag/value |rdy|tag/value
0 r2 1 #0 1 #44
* @ 1| ra H 1| #
Tinyl ALU 0
ALU

Mem

Writeback

data Common Data Bus (CDB)

1112 /3]4]5]6 1718 9]10[11]12]13]14]15]16]17]

il: LDR r2, [r1,#0] FE DE RR DI IS EXe
i2: ADD r4, r2, #i FE DE RR DI IS
i3: ADD r6, r5, #2 FE DE RR DI
i4: ADD r7, ro, #3 FE DE RR

Scoreboard Register File
value

:
rol 1 rOf #10
r2| O r2 -
rd| O r4 -

—— 6| 0 ré -
’*ﬁ_\.{ r7, ré, #3 70 0 (7 }

Issue Queue (1Q)

tag (wakeup) v | dst |rs1 rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value
. 0 r2 1 #0 1 HAA
+[Big [=een i2 1] ra 1| #1
Tinyl ALU | D3/’ 1 3) 1] r6 |1] #15 |1| #2
ALU
Me 5%
Writeback
data Common Data Bus (CDB)
3< cache miss
r2, @44 . l1l213l4al5[6[7[8]910[11]12]13]14]15]16] 17|
’ i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #1 FE DE RR DI IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS

i4: ADD r7, r6, #3 FE DE RR DI

Scoreboard Register File

rol 1 rOf #10
r2| O r2 -
Register Read r3| 1 r3| #33 |
' r4| 0 r4 -
Dispatch r5| 1 r5| #15
‘%‘_ ‘a re| O ré -
F S r71 0 7L -
ssue Queue 10
tag (wakeup) v | dst rs2 rs2
--:;--6----- . tag |rdy|tag/value |rdy|tag/value
T eig [een f 4 1] 1] #3
13 g i2 1 r4 1 #1
6, AL”J ALU D$f 1 0| r6 1 #2
#15, Me
2 Writeback
data Common Data Bus (CDB)
< cache miss
r2, @44 .]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
’ i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #i FE DE RR DI IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX

i4: ADD r7, r6, #3 FE DE RR DI IS

Scoreboard Register File
value

:
rof 1 rO| #10
r2 O r2 -
rd| O r4 -
_ 6| 1 [% 6| #17 | %k
12 r7] O r7 -

Issue Queue (1Q)

_ tag (wakeup) |V | dst |rsl| rs1 |rs2} rs2

Execute — SEEEEETEEEEEEE - tag |rdy|tag/value |rdy|tag/value

Issue

: 0| r7 |1 #17k | 1 #3
(43| Big |zeen @ 4 1]
7 1yl ALU D$f 1 o| 6 | 1| #15 |1 #2

o —
3 % r6, #17

=

#17,

3 Writeback
data Common Data Bus (CDB)

@ r6, #17
3< cache miss

1112 /3]4]/5]617]8]9]10[11]12]13]14]15]16]17]

r2, @44 : .
il: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, r6, #3 FE DE RR DI IS EX

Scoreboard Register File
value

:
rof 1 ro #10
r2 O r2 -
rd| O r4 -
s 1 rs|_#15
re| 1 ré #17
(7| 1 |K r7| #20 |k

Issue Queue (IQ)
tag (wakeup) v | dst |rsl rsl rs2 rs2

Issue

Execute — EECEETEEEEEEE - tag |rdy|tag/value |rdy|tag/value
+ | Bi agen 0 r7 1 #17 1 #3
L 8 @ 1| 4 1| #m
m| ALU | ps(l4 0| 6 | 1| #5 |1] #
ALU e
< * r7, #20
Writeback
data Common Data Bus (CDB)
r7, #20
3< cache miss
r2, @44 . J|1]2(3]4]l5]6]7][8]9]10][11]12[13]14]15][16]17|
’ i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

Scoreboard Register File
value

:
rof 1 ro #10
r2 O r2 -
rd| O r4 -

5[1 rs|_#1s
re| 1 ré #17
r7(1 r7 #20

Issue Queue (1Q)

tag (wakeup) v | dst [rsl rsl rs2 rs2
--;—-2- ------- -> tag |rdy|tag/value |rdy|tag/value
) r o| 7 [1] w17 1| #
+ | Big | asen @ 1| r4 1| #
Ty ALU | D$(] 1 0| r6 [1| #15 |1] #2
ALU e %
Writeback
data Common Data Bus (CDB)
< cache miss
r2, @44 .]1]2]3]4]5(6]7]8]9]10]11]12[13]14]15]16]17
’ i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #i FE DE RR DI IS IS IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

4, \Lu

#666,
#1

@

Scoreboard Register File
ro] 1 ro #10
2] 1 [X r2| #666 |X
rd| O r4 -
re| 1 ré #17
r7(1 r7 #20
Issue Queue (1Q)
tag (wakeup) v | dst [rs1 rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value
: * r4 ol 7 | 1| #17 [1] #3
Big |asen 0 r4 | 1 [k#666 | 1| #1
ALU | DS 0| r6 |1 #15 1 #2
Mem * r2, #666
Writeback
data Common Data Bus (CDB)
@rZ,#GGG

1112 /3]4]/5]617]8]9]10[11]12]13]14]15]16]17]
WB

i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
i2: ADD r4, r2, #i FE DE RR DI IS IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, ro, #3 FE DE RR DI IS EX WB

IS

EX

Scoreboard Register File
value

:
rof 1 ro #10
r2(1 r2| #666
rdl 1 |% r4| H667
re| 1 ré #17
r7(1 r7 #20
Issue Queue (1Q)

tag (wakeup) v | dst |rsl rsl rs2 rs2
-------------- > tag |rdy|tag/value |rdy|tag/value

Bi Jeen 0 r7 1 #17 1 #3
+|blg |28 0| ra | 1| #666 | 1|
Tinyl ALU | DS 0| 6 |1 #15 1 #2
ALU o
% r4, #667
Writeback
data Common Data Bus (CDB)
®r4,#667
. |1]2]3]l4]/5]6]7]8]9]10][11[12[13]14]15]16]17]
i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ... WB
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

What have we studied?

= Dynamically scheduled superscalar processor
= Hardware does “dynamic scheduling” during program execution
= Can reorder instructions to extract maximum ILP

= Hardware can construct different “instruction schedules” based on different
executions of the same sequence of instructions
= To account for change in branch behavior

= Dynamically scheduled processors extract ILP by gathering instructions in a large
instruction window and then performing dataflow analysis
= |f operands ready and no hazards, execute the instruction
= Multiple independent instruction chains are in execution in any cycle

66

Three problems with OO0 v.1

Cannot recover from misspeculation due to branch misprediction

= Younger instructions are speculative with respect to older instructions
= Possible to have older predicted branches that have not executed yet

Exceptions are not precise, i.e., register file is being updated out of the
original program order

Reverts to in-order when two producers have the same destination register
= WAR and WAW lead to stalls

= Must stall younger producer in Register Read stage until older producer
executes

67

Scoreboard Register File
value

:
rol 1 r0 #10
r2| 1 r2| #666
Register Read r3| 1 r3| #33
ral 1 Al #7 Can’t recover
Dispatch 5 1 5] #15 original values
re| 1 ré of r6, r7
r7] 1 r7
ssue Queue 10
tag (wakeup) v | dst [rsl rsl rs2 rs2
-------------- +> tag |rdy|tag/value |rdy|tag/value

< i£ #666 1= 0 8 - 1 ##61676 1 i(g)
br,anCh t_o 7 0| 6 | 1] #15 |1 #2
A mispredict

* r2, #666 Misprediction

Writeback

@

Can’tflushis, @ 111213/ 4]5[/6]7]8]9]10]11]12]
i4: they are i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXps ... MISS ... WB

i2: BNE r2, i7 FE DE RR DI IS IS IS IS IS IS EX

i3: ADD r6, r5, #2 FE DE RR DI IS EX WB

i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

data Common Data Bus (CDB) detected
r2, #666

“long gone”

Scoreboard Register File

rof 1 rO| #10 Incorrect
: r2| O 2l - A WAW: i1 will
3] 1 r3|#33 overwrite i3,
r4| 0 r4 -
5[1 5|15 et
re| 1 ré #-7
r7| O r7 -
Issue Queue (1Q)
tag (wakeup) v | dst rs2 rs2
--;--2-----) tag |rdy|tag/value|rdy|tag/value Correct
Tbis [ren] *° W4l - Wakeup A
3 >) 1] r4 1] #1 —
r2, v ALU DS{1 ol m 1 H2 Incorrect
#15A,LU Me Wakeup: WAR
:
data Common Data Bus (CDB)
3< cache miss
r2, @44
- |1]2[3]4]5]6]7]8]9]10[11[12]13]14]15]16]17]
what happensif we i1: LDR r2, [r1,#0] FE DE RR DI IS EXe EXps ... Miss ...
do not stall i3 in RR i2: ADD r4, r2, #1 FE DE RR DI IS IS IS
until il executes? i3 ADD r2, 15, #2 FE DE RR DI IS EX

i4: ADD r7, r2, #3 FE DE RR DI IS

Precise Interrupts/Exceptions

/70

Precise Exception
= An exception is precise if

= All instructions before the faulting (exception causing)
instruction have been completed and their effects are visible

= The faulting instruction has not been completed — it either
caused the exception or was not executed at all

= No later instructions have been executed or made any visible
changes to the machine state (e.g., registers or memory)

/1

Precise Exception: Example

" Consider a load instruction that cause a memory protection fault

= ILDR R1, [R1l, #0]

" |n a precise exception system
= Allinstructions before this one are completed
®" This instruction causes a fault and is not completed
= No instructions after this have started execution
= (OS can now handle the protection fault (e.g., fix the address)
" And resume the program from the LDR instruction safely

Imprecise Exception: Example

In CDC6600, the following scenario is possible
= T.DRis waiting for data from memory (cache miss)
= 13,14, and 15 have finished execution out of order

il: ADD RO, RO, #4
i2: LDR R1, [RO, #0]
i3: ADD R2, R2, #1
i4: ADD R3, R3, #2
i5: ADD R4, R3, #1
i6: SUB R5, R1l, #1

= Later on, LDR generates a software exception (illegal memory address)

= The CPU branches to the exception handler, setting PC to handler address

= When exception handler is run, it should see the architectural state (RF) in a state
consistent with the sequential programming model
= But the contents of RF reflect that 13, 14, and 15 have finished execution

= We say that the exception is not precise, and CPU does not implement precise

exceptions (or interrupts) 73

Precise Exceptions

To implement precise exceptions in a dynamically scheduled
CPU, we need a mechanism that allows:

= Qut-of-order execution of instructions,
= Butin-order commitment to the architectural state.

= A new structure called the reorder buffer or ROB enables
precise exceptions

= And recovery from branch misprediction

74

Hardware Speculation

Based on IBM 360/91

75

Hardware Speculation

= Combines four key ideas
= Register renaming to avoid WAR and WAW hazards
= Dynamic branch prediction to avoid control hazards
" Dynamic scheduling to execute instruction OO0

= Reorder buffer (ROB) for precise interrupts and recovery from
branch misprediction (a type of misspeculation)

76

Two Humps in a Modern Pipeline

> '\
S —
- :;;_..- ’ 9
‘f'.. R
B s e [T,
‘,\-;.. :-Q .’J ‘4 \
» “_::m.\ Mes sl
mrcomIOwW
T ™ -
..-qaf“_\
R R
~ & ¢
.-:: 4 ' k
& .

- =
: -
-~

ok

AMmMOXOOMm:Aa

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

77

http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Out-of-Order Pipeline (v.2)

= Solution for WAR/WAW and (im)precise interrupts: Reorder Buffer (ROB)
= ROB enables OO0 execution, while at the same time supports recovery
from mispredictions and exceptions

= ROB also implements register renaming

Rename non-unique destination tags (architectural register
specifiers) to unique destination tags (ROB tags)

Source tags are renamed as well, linking without ambiguity
consumers to their producers

No reverting back to in-order due to WAR and WAW hazards, as they
are eliminated after renaming

value

v __ Tag 1l #aa Architectural
” 2l #11 Register File
3 Map Table rd| #7
Register Read " (RMT) 5[#15
c ré H#-7
Dispatch :6 7| #345
r7 i i
value dst rdy exc misp PC
sue Queue () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 8 [Ty e yi<e HT rob3
+ | Big | agen rob4
Tinyl ALU | DS rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: LDR r2, [r1,#0]

i2: BNE r2, i7

i3: ADD r2, r5, #2

i4: ADD r7, r2, #3

Retire

Renaming Example

Original sequence to the left. “Renamed sequence” is to the right
= Each destination register is renamed to a unique ROR tag
= Assuming R/ and R8 in RF are up to date

il: ADD RO, R7, #4 il: ADD ROBO, R7, #4
i2: ADD R1, RO, #1 i2: ADD ROB1l, ROBO, #1
i3: ADD RO, RS8, #8 i3: ADD ROB2, RS, #8
id: ADD R2, RO, #1 id: ADD ROB3, ROB2, #1

WAW b/w 11 and i3 is eliminated

All true dependences are still respected

ROBO, ROR1, are an expanded set of microarchitectural registers
= They are not visible to the programmer (non-architectural)

80

Expanded Registers

= The “Register File” is replaced with an expanded set of registers split into
two parts

= Architectural Register File (ARF): Contains values of architectural
registers as if produced by an in-order pipeline. That is, contains
committed (non-speculative) versions of architectural registers to which
the pipeline may safely revert to if there is a misprediction or exception.

= Reorder Buffer (ROB): Contains speculative versions of architectural
registers. There may be multiple speculative versions for a given
architectural register.

= ROB is a circular buffer with head (H) and tail (T) pointers

Register Renaming: Operational Details

= New Rename Stage (after Decode and before Register Read)

= The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also
its unique “ROB tag”

= Source register specifiers are renamed to the expanded set of registers, the
ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to
their producers.

= Destination register specifier is renamed to the instruction’s unique ROB tag

= Rename Map Table (RMT) contains the book-keeping for renaming. (Intel calls it the
Register Alias Table (RAT))

82

Register Read

= Register Read Stage

= A consumer instruction obtains its source values from one of three
places:
= AREF: if producer of value has retired from ROB
= ROB (using renamed source): if producer of value has executed but
not yet retired from ROB
= Bypass: if producer of value has not yet executed

= |f renamed to ROB, ROB may indicate value not ready yet
= Producer hasn’t executed yet
" |nstructions keep renamed source as proxy for value

Writeback, Retirement, and Recovery

= Writeback Stage
= |nstruction writes its speculative result OOO into its ROB entry instead of
writing to the register file

= New Retire Stage safely commits results from ROB to ARF in program order

= Misprediction/exception recovery
= Offending (mispredicted) instruction writes misprediction or exception
bit in its ROB entry out of order
= CPU waits until offending instruction reaches head of ROB (oldest
unretired instruction)
= When that happens, CPU flushes all instructions in pipeline and ROB,
and restore RMT to be consistent with an empty pipeline

Operation with ROB (1-Page Cheat sheet)

The “Register File” is replaced with an expanded set of registers split into two parts
= Architectural Register File (ARF): Contains values of architectural registers as if produced by an in-order pipeline. That is, contains committed (non-
speculative) versions of architectural registers to which the pipeline may safely revert to if there is a misprediction or exception.
= Reorder Buffer (ROB): Contains speculative versions of architectural registers. There may be multiple speculative versions for a given architectural register.
ROB is a circular FIFO with head and tail pointers
= A list of oldest to youngest instructions in program order
= |nstruction at ROB Head is oldest instruction
= |nstruction at ROB Tail is youngest instruction
New Rename Stage (after Decode and before Register Read)
= The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also its unique “ROB tag”.
= Source register specifiers are renamed to the expanded set of registers, the ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to their producers.
= Destination register specifier is renamed to the instruction’s unique ROB tag.
= Rename Map Table (RMT) contains the bookkeeping for renaming. (Intel calls it the Register Alias Table (RAT).)
Register Read Stage
= Obtain source value from ARF or ROB (using renamed source)
= |f renamed to ROB, ROB may indicate value not ready yet
= Producer hasn’t executed yet
= Keep renamed source as proxy for value
= A consumer instruction obtains its source values from ARF, ROB, and/or bypass, depending on situation:
= ARF: if producer of value has retired from ROB
= ROB: if producer of value has executed but not yet retired from ROB
= Bypass: if producer of value has not yet executed
Writeback Stage
= |nstruction writes its speculative result OO0 into ROB instead of ARF (at its ROB entry)
New Retire Stage safely commits results from ROB to ARF in program order
Misprediction/exception recovery
= Offending instruction posts misprediction or exception bit in its ROB entry 000
= Wait until offending instruction reaches head of ROB (oldest unretired instruction)
= Squash all instructions in pipeline and ROB, and restore RMT to be consistent with an empty pipeline

85

value

v __ Tag 1l #aa Architectural
” 2l #11 Register File
3 Map Table rd| #7
Register Read " (RMT) 5[#15
c ré H#-7
Dispatch :6 7| #345
r7 i i
value dst rdy exc misp PC
sue Queue () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 8 [Ty e yi<e HT rob3
+ | Big | agen rob4
Tinyl ALU | DS rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: LDR r2, [r1,#0]

i2: BNE r2, i7

i3: ADD r2, r5, #2

i4: ADD r7, r2, #3

Retire

value
_ rech (@) ROB o[_#10 _
v __ Tag 1l #aa Architectural
2l #11 Register File
o] nename a3 ()
I - Map Table rd| #7
Register Read al o - (RMT) r5(#15
ré H#-7
Dispatch :2 8 - 7| #345
r7| O - i i
value dst rdy exc misp PC
sue Queue () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 g y17ag AL HT rob3
+ [Big | agen 0 rob4
Tinyl ALU | DS 0 rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: LDR r2, [r1,#0] FE

i2: BNE r2, i7

i3: ADD r2, r5, #2

i4: ADD r7, r2, #3

Retire

value
@ ROB o[#10

v __ Tag 1l #aa Architectural
= becoie (@ o[0T o
2l #11 Register File
1 penome e 2
I - Map Table rd| #7
Register Read al o - (RMT) 5[#15
ré H#-7
Dispatch :2 8 - 7| #345
r7| O - i i
value dst rdy exc misp PC
sue Queue () o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) =5 8 [Ty e yi<e HT rob3
+ | Big | agen 0 rob4
Tinyl ALU | DS 0 rob5
ALU v rob6
em
- rob7
Writeback >
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
il: LDR r2, [r1,#0] FE DE

i2: BNE r2, i7 FE

i3: ADD r2, r5, #2

i4: ADD r7, r2, #3

value
@ ROB o[#10

v Tag 1l #aa Architectural
_ Decode (@) [rO 8 — r2[_#11_| Register File
rl -
@ rob3, #0,r1 % 2| 1 —3 Rename r3| #33 (ARF)
I - Map Table rd| #7
Register Read 2o - (RMT) 5[#15
ré H#-7
ol e
r7| O - G
value dst rdy exc misp PC
e Queve (19 o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 B TV 06 Y188 H rob3 - r2 | 0 0 0| i1
+ | Big | asen 0 T rob4
Tinyl ALU | DS 0 rob5
ALU v rob6
em
: rob7
=
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: LDR r2, [r1,#0] FE DE RN

i2: BNE r2, i7 FE DE

i3: ADD r2, r5, #2 FE

i4: ADD r7, r2, #3

value

v Tag 1 #aa Architectural
_ Decode (@) 0 8 - r2[_#11_| Register File
rl -
@ robd, rob3, #0 (12| 1 | vob3] Rename r3| #33 (ARF)
310 - Map Table rd| #7
Register Read @robS’, #0, #44 al o - (RMT) 5[#15
ré H#-7
Lol T
r7| O - i i
value dst rdy exc misp PC
sue Quee (10 o
v | dst [rsl rsl rs2 rs2 robz
---------- > tag [rdy|tag/value |rdy|tag/value ro
tag (wakeup) =5 e e Y1k H rob3 - ol ol o]i
+ | Big | agen 0 robd| - -lofJofoi2
Tinyl ALU | DS 0 T robs
ALU v rob6
em
- rob7
=
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
i1: LDR r2, [r1,#0] FE DE RN RR

i2: BNE r2, i7 FE DE RN

i3: ADD r2, r5, #2 FE DE

i4: ADD r7, r2, #3 FE

value

v Tag Architectural
rl #44
r0 8 ' 2l #11 Register File
rl -
Rename r3| #33 (ARF)
BTN GS) o5, 5, 2
robo, >, *:g Cl) ro_bS Map Table rd #7
Register Read @ rob4, rob3, #0410 - (RMT) r5| #15
ré #-7
T (i) robs, #o, #44 [:Z 1) r7[_#345
r7{ O - ﬁ
value dst rdy exc misp PC
sve Quete () o
v | dst |rs1 rsl rs2 rs2 robz
---------- tag |rdy|tag/value |rdy|tag/value ro
tag (wakeup) 0 e v Hlrob3| - 2 0]lo]o]il
+ [Big [agen 5 robd| - - lofoJoli
Tinyl ALU | DS 0 rob5 - r2 | O 0 0 | i3
ALU Ve T rob6
- rob7
=
Common Data Bus (CDB)
rob31

—nnnnnn-nnmmmmmmm
i1: LDR r2, [r1 #0] FE DE RN RR

i2: BNE r2, FE DE RN RR

i3: ADD r2, r5, #2 FE DE RN

i4: ADD r7, r2, #3 FE DE

value

v Tag 1 #aa Architectural
‘ rob6, rob5s, #3 Rename r3[#33 (ARF)
@ [:g Cl) ro_bS] Map Table rd| #7
Register Read @ rob5, #15, #2 al o - (RMT) [r5 #15]
ré #-7
" Dispatch (DR M 7w
ré| O -
il * r7| 1 | rob6 | |
value dst rdy exc misp PC
Issue Queue (1Q) rob0
tag (wakeup)| V dst [rsl rsl rs2 rs2 robl
---------- > tag |rdy|tag/value |rdy|tag/value rob2 .
: @ 1 |rob3]| 1 #0 1| #44 H rob3 . 21041010110
+ | Big |2a8en 0 rob4 - - O[O0 0] 2
Tinyl ALU | DS 0 rob5 - r2 | O 0 0 | i3
ALU Ve rob6 - r7 0 0 0 i4
: T rob7
=
Common Data Bus (CDB)
rob31

.]|1]2]3|4]/5/6]7[8]9]10]/11[12[13[14][15]16]17
il: LDR r2, [r1,#0] FE DE RN RR DI IS

i2: BNE r2, i7 FE DE RN RR DI

i3: ADD r2, r5, #2 FE DE RN RR

i4: ADD r7, r2, #3 FE DE RN

value
SEREE :2 8 - 2l #11 Register File
I - Map Table rd| #7
Register Read rob6, rob5, #3 40 - (RMT) ol #15
ré #-7
Dispatch @ rob5, #15, #2 :Z 8 : 7| #345
i2 r7| 1 | rob6 | |
value dst rdy exc misp PC
e Quese (0 o
tag (wakeup)| V dst [rsl rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
— 17 \0b3, #0, #44__| O |rob3| 1| #0 | 1| #44 Hrob3] - 210410101411
+| Big |(Lh @ 1 I roba 1T #0 rob4| - -loflo]o]i
Tinyl ALU | DS 0 rob5 - r2 | O 0 0 i3
ALU Ve rob6 - r7 0 0 0 i4
- T rob7
Writeback >
Common Data Bus (CDB)
rob31

112 /3 /4/516]7 181910 11/12113]14]15]16]17
i1: DR r2, [1,#0] FE DE RN RR DI IS EXe

i2: BNE 12, i7 FE DE RN RR DI IS

i3: ADD 12, 15, #2 FE DE RN RR DI

i4: ADD 17, 12, #3 FE DE RN RR

3<rob3,

0 0
Fetc @44 miss ROB ro| #10

v __ Tag 1l #aa Architectural
:3 5 ro_ Map Table rd| #7
Register Read (RMT) 5[#15
4l 01 - 6| #7
Dispatch rob6, rob5, #3 5 0 - r7| #345
re| O -
@-3: r7] 1 rob6 i i
[value dst rdy exc misp PC
sve Quete ()
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 robl
---------- > tag |rdy|tag/value |rdy|tag/value rob2 .
- 0 |rob3| 1| #0 | 1| #44 Hrob3| - 2101010111
* | Big |een i2) 1 [rob4 1| #0 robdl - - | 01010} @2
Tyl ALU |(i1 Y 1 |robs[1| #15 |1] #2 rob5| - 2101010383
ALU Narm rob6 - r7 0 0 0 i4
- T rob7
Writeback >
Common Data Bus (CDB)
rob31
.]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
il: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss...
i2: BNE r2, i7 FE DE RN RR DI IS IS

i3: ADD r2, r5, #2 FE DE RN RR DI IS
i4: ADD r7, r2, #3 FE DE RN RR DI

value
@ addrd, r2, r7 ROB o #10

v __ Tag 1l #aa Architectural
r0f O . 2l #11 Register File
o] rename o] (e
:3 5 ro_ Map Table rd| #7
Register Read (RMT) 5[#15
4l 01 - 6| #7
Dispatch 5 0 - 7| #345
ré| O -
@Zp r7] 1 rob6 i i
[value dst rdy exc misp PC
sste Quese (0
> robl
tag (wakeup)| V s b2
---------- » gl -
: * rob5 (4 1 "3 H rob3 - r2 | 0 0 0 | il
@ Blg agenvy iz 1 #0 r0b4 = = 0 0 O |2
Tiny ﬂ@ 5) robs| - 2] o] o] o0]i3
bgLU#IS 72 Mem rob6 - r7 0 0 0 i4
ro i i ‘ T rob7
Common Data Bus (CDB)
rob31
.]1]2(3]/4]5[6]7|8]9]10[11]12[13 14151617
il: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss...
i2: BNE r2, i7 FE DE RN RR DI IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX

i4: ADD r7, r2, #3 FE DE RN RR DI IS

value

v __ Tag 1l #aa Architectural
BRI ® ootz O[5] Regiser Fie
- Rename 3 #33 ARF
S r ane)
N - Map Table rd| #7
Register Read (RMT) 5[#15
4l 01 - 6| #7
Dispatch 5 0 - 7| #345
re| O -
i2 r7| 1 | rob6 | |
value dst rdy exc misp PC
sve Quete ()
robl
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
;(--ra-b-6----> tag |rdy|tag/value|rdy|tag/value .
@ : 0 [rob6| L [k 417 | 1| #3 Hrob3| - 2101010111
4) Big | agen @ 1 {roba 11 #0 rob4| - - |o0Jojo]|i2
Tyl ALY (i1 0 [robs| 1| #15 |1 w2 *robS| #17 || r2 111010113
ALU Narm rob6 - r7 0 0 0 i4
rob6, #17, #3 * robs, #17 T rob7
Writeback >
Common Data Bus (CDB)
rob31
robs, #17 .]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
il: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss...
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX

value

v Tag 1l #aa Architectural
r0 8 ' 2l #11 Register File
rl -
ISR ®) oo rob7, robs, (1o 5 | ans) K" s | (ake
rob6 310 - Map Table rd| #7
Register Read *ra| 1 b7 (RMT) r5(#15
<o ré H#-7
Dispatch r - 7| #345
ré| O -
i2 r7] 1 | robe |] | |
value dst rdy exc misp PC
sue Quese 0 o
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
;(--ra-b-6----> tag |rdy|tag/value|rdy|tag/value .
: 0 |rob6| 1| #17 | 1] #3 Hrob3| - 210101011
+ | Big [asen | @ 1 {roba 11 #0 rob4| - - |o0Jojo]|i2
ALU Narm *rob6| #20 r7 1 0 0 i4
: % rob6, #20 rob7 - rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31
robé6, #20 . |1]2[3[4]5]/6]7|8]9]10][11[12]13]|14]15]16]17]
il: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss...
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS
@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB

value

v __ Tag 1l #aa Architectural
r0f O . 2l #11 Register File
] Rename 3Ty ()
:3 5 ro_ Map Table rd| #7
Register Read @ add rob7, #17, (RMT) r5| #15
r4| 1 rob7
#20 <o ré #-7
Dispatch r - 7| #345
ré| O -
i2 r7| 1 | rob6 | |
value dst rdy exc misp PC
sue Queue ()
tag (wakeup)| V dst [rsl rsl rs2 rs2 robl
---------- > tag |rdy|tag/value |rdy|tag/value rob2
% rob3 H rob3 - r2 | O 0 0 i1
: 0 |rob6| 1 #17 1 #3 -
+ | Big | agen | @ 1 {roba 11 #0 rob4| - - 0o o]
ALU o rob6| #20 r7 1 0 0 i4
em
- rob7 - rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31
. l1]/2/3[4a/5[6]7[8]9[10]/11[12]13[14]15]16]17]
il: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss...
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS

i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT

#0!=#0 is false, not-taken, no misp

value

robd, #0, #0 o #o0 |
v d5 1l #44a rchitectura
r0 8 . 2l #11 Register File
rl -
N - Map Table rd| #7
Register Read al 1 b7 (RMT) r5(#15
ré H#-7
Dispatch @ add rob7, #17, :2 8 r7]_#345
#20 r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
- 0 |rob6| 1| #17 | 1] #3 Herob3| #0 2| 1101011
@2) | Big |aeen 0 [roba| 1| #0 *[1] #0 g — - 10101002
ALU Ve rob6| #20 r7 1 0 0 i4
rob4_#0.#0 * rob3, #0 rob7[- 4| 0] o0]o0]i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CLEACUNN 0 (12 [3]4a]5[6]7]8]9] 10/11]12[13[14][15]16]17]
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX

i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

(&)

v rob5 !=rob3 1 #aa Architectural
I - Map Table rd| | #7
Register Read al 1 b7 MT) r5(| #15
ré H#-7
Dispatch :2 8 - r7[| #345
r7] 1 rob6 G
[value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value |rdy|tag/value .
, i5) 1 [rob7| 1| #17 | 1| #20 rob3| #0 21 11010111
+ | Big |agen 0 [roba[1| #0 [1| #0 Herobd| - -~ | 11010]®
ALU Ve rob6| #20 r7 1 0 0 i4
. % rob4, no mispred rob7 - rd | 0 0 0 i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CLo Al [1] 2]3/4l5]6]7[8]9[10][11[12[13[14[15]16]17]
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB

@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

value
v __ Tag 1l #aa Architectural
r0f O - Register File
1l o - . r2 #O hpe
ename 3 #33
SRR r e
N Map Table rd| #7
- - 5| #15
Register Read MERETS, (RMT) :6 =
Dispatch 5 0 - 7| #345
re| O -
r7] 1 rob6 i i
value dst rdy exc misp PC
sue Queue ()
robl
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
;(--ra-b-7----> tag |rdy|tag/value |rdy|tag/value _
—— 0 |rob7| 1| #17 | 1] #20 rob3| #0 2] 11010110
Tinyl ALU | DS 0 [robs| 1| w5 [1] # HrobS| #17 11r2 1 1101010
ﬁ}u#17 420 Mem rob6| #20 r7 1 0 0 i4
roRz rob7| - ral o[o] o]is
Writeback > T
Common Data Bus (CDB)
rob31
.]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT

@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT

rOl #10)
v rob5 == 1 #aa Architectural
o7 *r21 1 #17 Register File
rl -
I —N. Map Table rd| | #7
Register Read al 1 b7 RMT) r5(| #15
ré H#-7
Dispatch :2 8 - r7[| #345
r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value |rdy|tag/value _
0 lrob7 1 1 #17 1 470 rob3 #O r2 1 0 0 i1
ALU Vo H rob6| #20 r7 | 1 0 0| i4
: % rob7, #37 *rob7| #37 rd | O 0 0 i5
Writeback > T
Common Data Bus (CDB)
rob31

®

s 2020202020 1121345167819 [10[11]12133[14[15]1617]
i1: DR r2, [1,#0] FE DE RN RR DI IS EXe EXps .MisS... WB RT
i2: BNE 12, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD 12, 15, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: ADD 17, 12, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT

v Tag rob6 == 1 #aa Architectural
ro] 0 ' Register File
1o - r2 #17 g
oA rename a3 ()
I 7 Map Table r4| #37
Register Read al o T (RMT) r5(#15
ré H#-7
Dispatch 510 |/ - *r7{ ¢ #20
6l 0 Y -
* r7| 0/ rob6 w i i
\ value dst rdy exc misp PC
sve Quete () o
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 N ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
+| Big |[2sen ool T T 0 -1 =0 roba| | - -1 lololi2
ALU v rob6| ' #20 r7 1 0 0 i4
em
: H rob7| #37 r4] 0] 0] O | i5
Writeback > T
Common Data Bus (CDB)
rob31
. |1]2[3[4]5]/6]7|8]9]10][11[12]13]|14]15]16]17]
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

v Tag rob7 == rob7 1™ #aza Architectural
:2 8 - ~ 2 #17 Register File
] o g e
Map Table *rd| 4 #37
Register Read 3 0// - (RMT) 5[] #15
* rlsl 8 rob7% 6 e
Dispatch r - r7| | #20
re| O -
r7| O - i i
value dst rdy exc misp PC
sve Quete () o
tag (wakeup)| V dst |rsl rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
+ Big agen 0 lroba | 1 #0 1 #0 rob4 - - 1 0 0 i2
Tyl ALU | DS 0 [rob5| 1| #15 | 1] # obS11 A1 f| 21 110410108
ALU Mem rob6 #20 r7 1 0 0 i4
- rob7| ' #37 rd | O 0 0 i5
Writeback > HT
Common Data Bus (CDB)
rob31
. |1]2]|3]4/5]/6[7]8]9]10][11[12[13]14]15]16 17|
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...Miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

v __ Tag 1l #aa Architectural
1o - r2 #17 g
I - Map Table r4| #37
Register Read al o - (RMT) 5] #15
<o ré #-7
Dispatch r - r7| #20
ré| O -
r7] O - i i
value dst rdy exc misp PC
sve Quete () o
tag (wakeup)| V dst [rsl rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value |rdy|tag/value _
+ Big agen 0 lroba | 1 #0 1 #0 rob4 - - 1 0 0 i2
Tinyl ALU | DS$ 0 |robs| 1| #15 | 1| # rob5| #17 2| 110101083
ALU v, rob6 #20 r7 1 0 0 i4
em
- rob7 #37 r4 1 0 0 i5
Writeback > HT
Common Data Bus (CDB)
rob31
.]|1]2/3|4]/5]/6]7]|8[9[10]11]12]13]|14]15]16] 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Cycle# 1

4

L)

» 11 (Fetch)

Cycle # 2

o '

»* 11 (Decode)
% 12 (Fetch)

Cycle #3

2 11 (Rename)
1. Allocate entry for 11 in ROB at rob3
** Tail of ROBis at rob3
Rename the destination operand (r2) to rob3
Increment the tail pointer of ROB to rob4
Setv[r2]=1in RMT
One source operand is a constant O
Rename the second source operand r1 to ARF[r1l] because
iNnRMT: v[rl]=0
* 12 (Decode)
* 13 (Fetch)

** The fetch is speculative as 12 is a branch and it may be taken
(our branch prediction strategy is always-untaken)

oOu e WwN

4

L)

(R)

L)

L)

Cycle # 4

11 (Regilister Read)
1. Read the value of the second source operand from the
register file: ARF [r1l] is 44
% 12 (Rename)
Allocate an entry for 12 in ROB at rob4
Rename the destination r2 to rob4
Move ROB tail to rob5
Rename the source operand r2 to rob3 because in RMT:
vir2]=1
¢ Carry this tag to the issue queue (later) and wait for the
value to be produced by the producer (11)
% i3 (Decode)
® 14 (Fetch)

0’0

W N e

Cycle #5

4

<

4

L)

11
1.

12

(Dispatch)

Instruction is being copied into the issue queue

\/

** There are free entries in the issue queue
(Register Read)

1. Nothing to read from register file (source operand is not ready)

13
1.

W

14

(Rename)
Allocate an entry for 13 in ROB at rob5

Rename the destination r2 to rob5, keep v[r2]=1 in RMT

Move ROB tail to rob6
Rename the source operand r5to ARF [r5]
v[r5]=0

(Decode)

because in RMT:

Cycle #6

4

L)

11 (Issue)
1. Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied
¢ The scheduler will pick this instruction for execution (next cycle)
¢ Source operands ready (rsl rdy=1 andrs2 rdy=1)

12 (Dispatch)

1. Instruction is being copied into the issue queue

13 (Reglster Read)

1. Read ARF[r5]=#15

14 (Rename)

1. Allocate an entry for 14 in ROB at rob6 (tail moves to r7)

2. Rename the destination r7 to rob6, setv[r7]=1 in RMT

3. Rename r2 to rob5 becausein RMT: v[r2]=1

Cycle #7

L)

11 (Execute (Agen))
1. Instruction has been issued to the functional unit (agen) for address
calculation: source operands are #0 and #44
2. The corresponding issue queue slot has been freed (v=0)
* 12 (Issue)
1. Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied

¢ The scheduler will pick this instruction for execution when both
source operands are ready (rs1 rdy=0)
* 13 (Dispatch)
1. Instruction is being copied into the issue queue
* 14 (Register Read)
1. Nothing to read from register file (source operand is not ready)

o0

L)

o0

Cycle #8

4

4

<

4

11
1.
12
1.
13
1.

14
1.

(Execute (DS))

Instruction is checking the SRAM data cache for value
(Issue)

Instruction remains in the issue queue due to a RAW hazard
(Issue)

Instruction is now inside the issue queue

\/

** v=1 to indicate the slot in the issue queue has been occupied

¢ The scheduler will pick this instruction for execution next cycle as
source operands are ready (rs1 rdy=1 and rs2 rdy=1)

¢ ALU is free for executing another instruction
(Dispatch)

Instruction is being copied into the issue queue

Cycle #9

» 11 (Execute(...miss...))
1. Cache miss is being resolved (data being read from main memory)
12 (Issue)
1. Instruction remains in the issue queue due to a RAW hazard
» 13 (Execute)
1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction send its destination tag (rob?5)
to the wakeup logic in front of the issue queue
* 14 (Issue)
1. Instruction is now inside the issue queue (will execute next cycle)

\/

** v=1 to indicate the slot in the issue queue has been occupied
* rsl rdy changesfrom 0 to 1 as the wakeup logic has been
notified of the availability of rob5; and rs2 rdy=1

o0

Cycle # 10

4

4

11 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)

12 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard

13 (Writeback)

1. Instruction writes the result to its destination entry in the ROB (rob5)

2. Broadcasts the tag/value over the CDB to forward it to waiting insts.

14 (Execute)

1. Instruction is issued to the Tiny ALU (deallocated from issue queue)

2. Atthe end of the cycle, the instruction sends its tag (rob6) to the
wakeup logic

Cycle # 11

» 11 (Execute(...miss...))
1. Cache miss is being resolved (data being read from main memory)
12 (Issue)
1. Instruction remains in the issue queue due to a RAW hazard
» 13 (Retire)
1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r2
2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i3 will wait for its turn to reach the head of ROB
o 14 (Writeback)
1. Instruction writes the result to its destination entry in the ROB (rob6)
2. Broadcasts the tag/value (rob6, #20) over the CDB to forward it to
waiting insts.

L)

Cycle #12

4

11 (Execute(...miss...))

1. Cache miss is resolved and instruction sends its dst. tag (rob3) to the
issue queue waking up i2

12 (Issue)

1. Instruction wakesup asits rs1l rdy changesfromOto 1

13 (Retire)

1. Instruction is waiting to reach the head of ROB

14 (Retire)

1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r7

2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i4 will wait for its turn to reach the head of ROB

Cycle # 13

4

4

4

L)

11
1.
12

(Writeback)

Instruction writes its result (0) to the dst entry in ROB at rob3
(Execute)

1. The branch condition is evaluated and there is no misprediction as the

2.
13
1.
14
1.

branch is (after execution) not taken

Instruction grabbed r2 (renamed to rob3) from the CDB (forwarding)
(Retire)

Instruction is waiting to reach the head of ROB
(Retire)

Instruction is waiting to reach the head of ROB

Cycle # 14

@ 11 (Retire)
1. Instruction is at the head of ROB and in the retire stage
2. Updates ARF [r2] with the value it hasinits entry on ROB
3. Itchecksthe ROB tagin RMT and since tag corresponding to r2 in
RMT is not rob3, it leaves the v bit unchanged
4. Increment ROB head (moves to rob4)
o 12 (Writeback)
1. No value to writeback as the instruction is a branch
2. Branch instruction sets the mi sp bit in ROB to 0 as the branch is not
taken, and the prediction was that branch is not taken
13 and 14 (Retire)
1. Instructions are waiting to reach the head of ROB

Cycle # 15

% 11 (null)
¢ Instruction has retired (its gone!)

% 12 (Retire)
1. Nothing to write to ARF, so just retire from the pipeline
2. Move head of ROB to rob5

\/

% 13 and i4 (Retire)
1. Instructions are waiting to reach the head of ROB

Cycle # 16

\/
0’0

4

L)

4

4

L)

4

L)

11

\/
0‘0

12

\/
0‘0

13
1.
2.

3.
14
1.

(null)
Instruction has retired (its gone!)
(null)
Instruction has retired (its gonel!)
(Retire)
Head of ROB so writes value (#17) to ARF [r2]
It checks the ROB tag in RMT and since tag corresponding to r2 in
RMT is rob5, it resets the v bitto 0
Move head of ROB to rob6
(Retire)
Instruction is waiting to reach the head of ROB

Cycle # 17

\/
0’0

4

11

\/
0‘0

12

\/
0‘0

13

\/
0‘0

14
1.
2.

(null)
Instruction has retired (its gone!)
(null)
Instruction has retired (its gonel!)
(null)
Instruction has retired (its gonel!)
(Retire)
Head of ROB so writes value (#20) to ARF [r7]
It checks the ROB tag in RMT and since tag corresponding to r7 in
RMT is rob67, it resets the v bitto 0
Move head of ROB to rob7

Instruction 15

L)

\/

4

L)

(R)

L)

L)

* Cycle #9

(Fetch)

** Fetch is not blocked due to a branch and RAW hazard in the pipeline
* Cycle #10 (Decode)

* Cycle #11 (Rename)

1. Allocate entry at rob7 in ROB (increment the tail)
2. Rename two source operands to rob5 and rob 6 because v[r2]and
v[r7] in RMTare 1

4

L)

L)

* Cycle #12 (Register Read)

1. Both renamed src operands are available in the ROB. Capture the values
#13 (Dispatch)

e

*

Cycle
Cycle
Cycle
Cycle
Cycle

e

*

e

*

\/
’0

L)

e

*

i

i
i
i

14 (Issue)=2> Selected to execute next cycle
15 (Execute) > Wakeup walting instructions
16 (Writeback)

17-18 (Retire) =2 Head = Tail (Done!)

Observations

= Compared to scoreboard only
= ROB did not degrade performance
= Fetch did not stall as before (tolerated DS miss)
" |n-order retirement did not impede OOO, speculative execution

= Recovery
= ROB was not called upon for recovery

" Only leverages ROB for renaming

= \We can see the danger of misprediction without ROB

Recovery

Revise the previous scenario assuming mispredicted branch

= il (load instruction) gets the value #666 instead of #0

#666!=#0 is , taken,

value

misprediction ROB ro| #10 _
v Tag 1l #aa Architectural
r0 8 . 2l #11 Register File
rl -
N - Map Table rd| #7
Register Read al 1 b7 (RMT) r5(#15
ré H#-7
Dispatch @ add rob7, #17, :2 8 r7]_#345
#20 r7] 1 rob6 i i
value dst rdy exc misp PC
ssue Queue (19 a1
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 ob2
---------- > tag |rdy|tag/value|rdy|tag/value .
. 0 | ob6 | 1 #17 1 #3 Hxrob3| #666 r2 1 0 0 i1
Qzl Big | agen 0 [rob4| 1| #666%| 1| #0 robd| - - | 01010 }i2
ALU Ve rob6| #20 r7 1 0 0 i4
robd #666,4#0 * rob3, #666 rob7[__- 4|00 o]’
Writeback > T
Common Data Bus (CDB)
@ rob31
CIEACLNN [1] 2 /3[4a[5]6]7][8[910[11][12][13[14[15][16]17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX

i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

(&)

v rob5 !=rob3 1 #aa Architectural
I - Map Table rd| | #7
Register Read al 1 b7 MT) r5(| #15
ré H#-7
Dispatch :2 8 - r7[| #345
r7] 1 rob6 G
[value dst rdy exc misp PC
sueQueue 10 o
tag (wakeup)| V dst |[rs1 rsl rs2 rs2 rob2
---------- > tag |rdy|tag/value |rdy|tag/value
5] 1 [rob7|[1| #17 [1] #20 rob3| #6e6 |l r2 | 1 10 | 0|l
+|Big | een 0 [rob4| 1| #666 | 1| #0 Herobd] - - | 0101102
ALU Ve rob6| #20 r7 1 0 0 i4
: % rob4, misp. rob7 - r4 | 0 0 0 | i5
Writeback > T
Common Data Bus (CDB)
@ rob31
CLNU A 00 (1 /2[3]4a]5[6]7]8]9] 10/11/12[13[14][15]16]17]
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EXe EXps ...miss... WB RT
i2: BNE r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB

@ i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT

i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

Fetch

Decode
Rename
Register Read

Dispatch

Issue

Execute

agen

+ | Big
ALU

t

ROB
Vv Tag
* rof O -
ri] O -
Recover RMT by [- Rename
flash-clearning 3| 0 - Map Table
all valid bits ~ ra[0 | - (RMT)
r51 0 - <
61 0 : FIus!1 RO_B by
71 0 _ setting T=H
Issue Queue (1Q)
ag (wakeup)| Vv dst [rsl rsl rs2 rs2
""""" g tag |rdy|tag/value [rdy|tag/value
0rob7[1] #17 [1] #20
0 |robd] 1 #666 1 #O
0robs| 1] #15 |1 #2

* Flush all pipeline stages. (i5) They
contain younger instructions than
the ROB head, i.e., branch

. |1]2]3|4]/5/6]7[8]9]10][11[12[13[14][15]|16]17
i1: LDR r2, [r1,#0]
i2: BNE r2, i7

i3: ADD r2, r5, #2
i4: ADD r7, r2, #3

FE

DE RN
FE DE
FE

RR
RN
DE
FE

DI IS
RR DI
RN RR
DE RN

EXe EXos
IS IS
DI IS

RR DI

value
ro| #10
1l #aa Architectural
2| #666 Register File
r3| #33 (ARF)
r4 H#7
r5 #15
ré H#-7
o
value dst rdy exc misp PC
rob0
robl
rob2
rob3| #666 r2 1 0 0 il
rob4 - - 0 0 0 i2
HTrobs| #17 2]l 1ol olfli3
rob6 #20 r7 1 0 0 i4
rob7 - r4 0 0 0 i5
rob31
...Mmiss... WB RT
IS IS IS IS EX WB RT

EX WB RT RT RT RT RT

IS EX WB RT

RT RT

RT

In-order to Out-of-Order

- Expanded Register File:
. --------------------------------- Rename []
............. ARF (committed state) + ROB (speculative state)

RF Read/'ssue B Register Read Provides for recovery and eliminated WAR/WAW
: ~ Insert instructions in order

Issue Queue (1Q)

‘e
.
.
a -

Remove instructions out of order

+ Big agen B|g agen
Tinyl ALU | D$ Tinyl ALU DS
ALU Merm ALU

Commit instructions in-order from ROB to ARF

value
"~ rech (@) o

v Tag 1 #aa Architectural
rl -
15 - Rename r3| #33 (ARF)
Y - Map Table rd| #7
Register Read al o - (RMT) r5(#15
ré H#-7
Dispatch 5 0 - 7| #345
re| O - G
r7| O -
value dst rdy exc misp PC

Issue Queue (1Q) rob0
robl

tag (wakeup) v | dst |rsl rsl rs2 rs2
---------- tag |rdy|tag/value |rdy|tag/value rob2 _
0 lrob7 1 1 #17 1 #20 rob3 #H666 r2 1 0 0 i1
+|Big | een 0 [rob4| 1| #666 | 1| #0 robd| - 1 01010 "
ALU v, rob6 #20 r7 1 0 0 i4
em
0 0 0 i5

rob7 - r4
—nnnnnn-nnmmmmmmm

i1: LDR r2, [r1 #0] FE DE RN RR DI IS EXe EXps .Miss.. WB RT
i2: BNE 2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, 15, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT
@ i5: Can fetch moreinsts FE DE RN RR DI IS EX

i7: FE

00O Execution of Loads and Stores

m |oads and stores also execute out of order

= Aload and a store can be done safely out of order, provided they access
different addresses

= |f aload and store access the same address, then the reordering could
result in a hazard

" Load must not consume data from a younger store (WAR respected)

= Most recent store behind (i.e., older) a younger load must produce value
for it (RAW respected)

131

Speculative Load Execution

Load executes speculatively, i.e., before the addresses of all older stores are
known (using a structure called load-store queue or LSQ)

Load searches for all speculative (older) stores with matching addresses
" Load gets the “best it can get” (cache, main memory, ROB, RF,)
= |fit gets a stale value, recovery mechanism will save the day

On execution, store cancels all speculative (younger) loads with matching
addresses

In fact, once we have speculation support, we can predict other things
= Speculating on register values (value prediction)!

132

IBM 360/91 Floating Point Unit

= ARF+ROB is based on Tomasulo’s Algorithm (1967)
= Execute multiple floating-point instructions concurrently

" The original machine was imprecise (no ROB) and used issue queue
for renaming

= |t used “stall on branch,” hence exploited limited ILP

133

ARF + ROB Summary

v ROB tag
ro r0
Rename
ré Register ré Map = Physical register file = ARF + ROB
File Table = Commit values by moving ROB value at
(RMT) head into ARF
r31 r31
{}commit
— Recovery
— <Head = Wait until exception/misprediction
rob31 D= reaches head
= T=H
r5= = Reset all “v” bits in RMT
rob87
< Tail
ROB ready
rob127 | | bits

ROB values 134

Revision: Main Concepts

Dynamic branch prediction
= Choosing which instructions to execute next
Speculation
= Allowing the execution of instructions before dependences are resolved (with the ability
to undo the effects of an incorrectly speculated sequence)
Dynamic scheduling
= Dealing with the scheudling of different combinations of instructions
= Dynamic scheduling without speculation exploits limited ILP as branches must resolve
prior to actually executing instructions in the predicted path
Register renaming
= Rename logical/arch. registers to an extended set of physical registers (avoid WAR/WAW)
Hardware-based speculation
= Dynamic branch prediction + dynamic scheduling + speculation
= Renaming is an optional but important optimization
Precise interrupts
= On an exception, the architectural state must correspond to the sequential execution

Modern Processor Design: Key to High Performance

= Eliminate false dependences with register renaming

= Use dynamic branch prediction to “speculatively” fetch instructions and fill
the issue queue with many instructions

= [ssue instructions out of order to keep all functional units busy
= Use superscalar to fetch, decode,, issue “many instructions” each cycle
= Key reason for above: Hide memory latency. Work underneath a cache miss

= Waiting for memory KILLS performance. Memory accesses are common

136

Modern Processor Design: Key to High Performance

= Remember: Not much ILP in a small instruction sequence (too
many dependences)

= Remember: Need a large scheduling window (aka lots of slots in
the issue queue) to find independent instructions (with properly
sized ROB)

" Modern processors use a variation on ARF+ROB approach
= MUST understand prior designs to build new, better, ones for

emerging applications

137

A Historical Debate

" How best to exploit ILP?

= Dynamically in hardware (dynamic = during program execution)

Portable: no need to recompile code to run on a different processor
Hardware has more knowledge of program, e.g., loop counters, branch
directions, program inputs, load misses

Power, energy, and security issues (no time to cover here)

= Statically in software (static = during program compilation)

Compiler can do whole-program optimizations

Compiler has more time to analyze code to find ILP

Compiler does not know about program inputs, so it needs to guess too
much

A commercial failure 138

ILP Exploitation: Three Classes

= Statically scheduled superscalar processor

Compiler reorganizes (schedules) instructions during program creation
Hardware does no reordering of instructions
Dependency checks in hardware

Compiler can rely on hardware for correct execution

= VLIW (Very Long Instruction Word) processor

Conceptually same as above: Compiler does static scheduling
Compiler creates instruction words called bundles with up to 28 instructions
in @ bundle (instructions in a bundle are all independent of each other)

Compiler does “very smart and deep” program analysis to construct “good
instruction schedules with high ILP”
No dependency checking in hardware

ILP Exploitation: Three Classes

= Dynamically scheduled superscalar processor

* Hardware does scheduling during program execution (can
reorder instructions for ILP)

= Hardware can construct different “instruction schedules”

based on different executions of the same set of
instructions

140

Memory Level Parallelism (MLP)

= 00O CPUs generate many load misses by exploiting ILP and
the rest of the system must cooperate

= Caches are lock-up free (non-blocking)

= DRAM main memory can handle many requests in parallel
using multiple channels, ranks, and banks

= Storage devices (SSDs) also have internal parallelism to
support concurrent accesses

DRAM Subsystem

“Channel” DIMM (Dual in-line memory module)

5

A W%

| i |

| = -

I |

i l

L =]
Processor

Memory channel Memory channel

142

Parallelism across the system

I/O Peripherals

\

Storage

B mY
Ly -
e WO = 4
O Wlh J L“ Ty ©
‘ll i b bl b Jul‘

143

What Else? Other Forms of Parallelism

= Multicores (spatial parallelism, frequency increase not possible)
= AMD has CPUs with 128 cores

* Hyperthreading (2-way hyperthreading, better utilize superscalarO0O0)
= Difficult to find N (4, 8, or 12) instruction to issue for execution every
cycle
= Multiple software threads share resources of a superscalar OOO core
(separate RF + shared OO0 machinery)

= SIMD registers (single instruction, multiple data)
= Wide (up to 1024-byte) registers to execute same instruction on

multiple items
144

What Else? Security Vulnerabilities

" Hardware speculation leads to security vulnerabilities

" Why do we teach O0QO?
= Performance, energy, security (increasingly more imp.)

" We do not have time to cover this subject in this course

= Homework

= Al Prompt: Discuss how hardware speculation enables
Spectre variant 1

What Else? Security Vulnerabilities

= Series of guest lectures on vulnerability research from industry
practitioners as part of COM3703 Software Security

= Venue: Psychology Building 39, Room G06

= Monday, 19t of May, 11am-12pm: Cameron Jack, Director of
Product Strategy at InfoSect. "What does a Vulnerability Research
career look like, and is it for me? Also a pwn2own bug walkthrough"

= Tuesday, 20t of May, 10am-11am: Angus Atkinson, Vulnerability
Researcher at InfoSect (and ANU alumni). "Walkthrough of an N-day
Android GPU driver vulnerability"

= Wednesday, 215t of May, 10am - 11am: Daniel Wood, Senior
Vulnerability Researcher at Interrupt Labs. "Vulnerability Research:

From Userland to Kernel Space" 146

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.infosectcbr.com.au%2F&data=05%7C02%7Cu1093210%40uds.anu.edu.au%7C98e630875efa4971d00308dd92e74062%7Ce37d725cab5c46249ae5f0533e486437%7C0%7C0%7C638828244119972811%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=mwZWcnZihxYfjzmiQJqH8N2W5WlC0kirFwhodTMdj5g%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.interruptlabs.co.uk%2F&data=05%7C02%7Cu1093210%40uds.anu.edu.au%7C98e630875efa4971d00308dd92e74062%7Ce37d725cab5c46249ae5f0533e486437%7C0%7C0%7C638828244119998634%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ZwiPwAMP9xG1vjSS0tcpmeYuoIce2WzPKX47n3JTlvU%3D&reserved=0

From Here

Wall Switch

=

N
[Power Supply

ROB ro #10)
Tag 12 Architectural
| weas R IR .
i i
Register Read W -
i
Dispatch i
il
misp PC
i ey B T 1~ [l ety 1S S | | M, ER e
..... 0 il
+ | Big | agen S
Tinyl ALU | DS 0 i3
ALU 0 i4
Mem
. 0 i5
Writeback

{

_BGOL SHOL SO S SIK
Elmpon Elinpcs Clns g ne "
Rile e
|
mila
g nyrte LA LA L

X i LEL Ll il il Sl SR SR

i5: Can fetchmoreinsts FE DE RN RR DI IS EX
i7: FE

The End!

