
Full Name:

COMP2310/COMP6310, 2022

Final Exam

November 14, 2022

Instructions:

• Make sure that you push your final exam solution via Gitlab.

• There is a sub-folder for each question and a text file for each part of the question in the exam

repository. Please input your solutions (only) in the provided text files for each question. If you need

to attach a diagram, please add it in the relavent folder for that question. You can use any common

image format or a Pdf for your diagrams.

• The exam has a maximum score of 85 points.

• The problems vary in difficulty scale. The point value of each problem is indicated. Advice: Pile up

the easy points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

1 (08):

2 (08):

3 (07):

4 (16):

5 (12):

6 (10):

7 (06):

8 (18):

TOTAL (85):

Page 1 of 18

Problem 1. (20 points):
Multiple choice and Ture/False questions on a variety of topics. Pick one correct answer. To receive credit,

clearly indicate/circle your choice for the correct answer.

1. Which of the following is true about TLB misses on an x86-64 system?

(a) TLB miss occurs when the data CPU requests is not found in the L1-D cache.

(b) TLB miss is handled by the kernel.

(c) TLB miss sometimes results in page fault.

(d) TLB miss is not a performance concern.

2. Which of the following is true about races?

(a) A race occurs when correctness of the program depends on one thread reaching point a before

another thread reaches point b.

(b) Exclusive access to all shared resources eliminates race conditions.

(c) Race conditions are the same as deadlocks.

(d) All race conditions occur inside loops, since that is the only way we can interleave processes.

3. Each thread has its own:

(a) Text data

(b) Global values

(c) Stack

(d) Heap

4. Which of the following is the correct ordering (left-to-right) of a file’s compilation cycle (a filename

with no extension is an executable):

(a) foo.c → foo.o → foo.s → foo

(b) foo → foo.s → foo.o → foo.c

(c) foo.c → foo.s → foo → foo.o

(d) foo.c → foo.s → foo.o → foo

5. How many sets does a 4-way set-associatve cache with 256 byte capacity and 32 byte block size has?

(a) 1

(b) 2

(c) 4

(d) 8

Page 2 of 18

6. Which of the following sentences about reader-writer locks is not true?

(a) Many readers can hold the same rwlock at the same time.

(b) Two writers cannot hold the same rwlock at the same time.

(c) Many readers and exactly one writer can hold the same rwlock at the same time.

(d) An rwlock can be used as a mutex.

7. When can short counts occur?

(a) When an EOF is encountered during a read.

(b) When a short int is used as a counter.

(c) When reading or writing to disk files.

(d) When the kernel runs out of kernel memory.

8. Which of the following is true about the page cache?

(a) Page cache is managed by user-level software.

(b) Page cache is exclusively used for memory-mapped files.

(c) Page cache cannot be bypassed by user software.

(d) Page cache amortizes the cost of accessing disks.

9. We use dynamic memory because:

(a) The heap is significantly faster than the stack.

(b) The stack is prone to corruption from buffer overflows.

(c) Storing data on the stack requires knowing the size of that data at compile time.

(d) Heap allows allocating data that has a lifetime not related to the execution of the current routine.

10. Consider the following segment of network code. Which of the following is true about read()?

fd = socket (AF_INET, SOCK_STREAM, 0) //return success

...

connect (fd, &serveraddr, sizeof(serveraddr)); //return success

write (fd, data, N); //return success

read (fd, buf, N);

...

(a) the read() call is guaranteed to return quickly.

(b) the read() call is guaranteed to never return.

(c) the read() call is not guaranteed to return quickly.

(d) the read() call is guaranteed to result in a program crash.

Page 3 of 18

11. Which of the following is true about signals?

(a) Signals can be used to count events because the kernel efficiently enqueues them.

(b) A signal is sent to a process when a new connection arrives on a listening socket.

(c) A signal handler is a separate logical flow that runs concurrently with the main program.

(d) Kernel blocks pending signals of all types except the one currently being handled.

12. Which of the following is not true about physical pages?

(a) A physical page has the same size as the virtual page.

(b) Physical addresses have a one-to-one mapping to virtual addresses.

(c) Two virtual pages in the same process can be mapped to the same physical page.

(d) Two virtual pages in different processes can be mapped to the same physical page.

13. Multi-level page tables are used because:

(a) They are space-efficient.

(b) They provide faster address translation than single-level page tables.

(c) They reduce the pressure on TLB.

(d) They can be shared among multiple processes.

14. What is the maximum amount of physical memory a server with 44 bit physical addresses can have?

(a) 64 GB

(b) 256 GB

(c) 4 TB

(d) 16 TB

15. What is the approximate capacity of a hard disk with 512 byte sectors, 100 sectors per track, 10,000

tracks per surface, and one platter?

(a) 512 MB

(b) 1 GB

(c) 2 GB

(d) 10 GB

Page 4 of 18

16. I/O multiplexing cannot fully utilize multicore processors.

(a) True

(b) False

17. Processes are more space-efficient for the kernel to manage than threads.

(a) True

(b) False

18. HTTP is a text-based kernel-level protocol.

(a) True

(b) False

19. TCP and UDP are both connection-oriented protocols.

(a) True

(b) False

20. Garbage collection can have an impact on memory locality.

(a) True

(b) False

Page 5 of 18

Problem 2. (10 points):
Consider the C code below, where M and N are constants declared with #define.

int array1[M][N];

int array2[N][M];

void copy_array(int i, int j) {

array2[i][j] = array1[j][i];

}

Suppose the above C code generates the following x86-64 assembly code:

On entry:

%edi = i

%esi = j

#

copy_array:

movslq %esi,%rsi

movslq %edi,%rdi

movq %rdi, %rax

salq $3, %rax

addq %rdi, %rax

addq %rsi, %rax

leaq (%rsi,%rsi,2), %rsi

leaq (%rdi,%rsi,4), %rsi

movl array1(,%rsi,4), %edx

movl %edx, array2(,%rax,4)

ret

What are the values of M and N?

1. M =

2. N =

Annotate the above code with comments next to each assembly statement (e.g., rax=i) to receive

partial credit.

Page 6 of 18

Problem 3. (10 points):
Consider the C program below. (For simplicity assume all calls to fork and wait succeed and that writes

to standard output are unbuffered). Please use the white space on this page to draw the process graph.

void foo() {

if (fork() == 0) {

if (fork() == 0)

printf("A");

else

wait(NULL);

printf("B");

} else {

wait(NULL);

if (fork() != 0) {

printf("C");

wait(NULL);

} else {

printf("D");

}

}

printf("E");

}

A. Draw the process graph for this program.

B. List all the possible different outputs of this program.

Page 7 of 18

Problem 4. (10 points):
The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache

Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48

1 45 1 60 4F E0 23 38 1 06 06 06 37

2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD

3 06 0 3D 94 9B F7 32 1 32 08 7B AD

4 C7 0 06 06 06 06 47 0 40 67 C2 3B

5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7

6 91 1 A0 32 26 2D F0 1 32 32 40 10

7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

For the given cache byte returned on a cache hit, fill in the missing bits of the physical addresses used to

access the cache below. Write your answers (0 or 1) in each of the boxes below. Two one-bit hints are

provided for each cache byte returned.

1. Cache byte returned: 06

Physical Address (one bit per box)

12 11 10 9 8 7 6 5 4 3 2 1 0

0 1

2. Cache byte returned: 32

Physical Address (one bit per box)

12 11 10 9 8 7 6 5 4 3 2 1 0

1 0

Page 8 of 18

Problem 5. (10 points):
Consider a direct mapped cache of size 256 bytes with block size of 32 bytes. Furthermore, the cache

is write-back and write-allocate. You will calculate the miss rate for the following code using this cache.

Remember that sizeof(int) == 4. Assume that the cache starts empty and that local variables and

computations take place completely within the registers and do not spill onto the stack.

Now consider the following code to copy one matrix to another. Assume that the src matrix starts at

address 0 and that the dest matrix follows immediately follows it.

void copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS])

{

int i, j;

for (i=0; i<ROWS; i++) {

for (j=0; j<COLS; j++) {

dest[i][j] = src[i][j];

}

}

}

1. What is the cache miss rate if ROWS = 4 and COLS = 4?

Miss rate = _________%

2. What is the cache miss rate if ROWS = 8 and COLS = 8?

Miss rate = _________%

3. What is the cache miss rate if ROWS = 8 and COLS = 12?

Miss rate = _________%

Page 9 of 18

Problem 6. (10 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

• The memory is byte addressable.

• Memory accesses are to 4-byte words.

• Virtual addresses are 20 bits wide.

• Physical addresses are 16 bits wide.

• The page size is 4096 bytes.

• The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table

for the first 32 pages are as follows:

TLB

Index Tag PPN Valid

0 03 B 1

07 6 0

28 3 1

01 F 0

1 31 0 1

12 3 0

07 E 1

20 4 1

2 2A A 0

11 1 0

1F 8 1

07 5 1

3 07 3 1

3F F 0

10 D 0

32 0 0

Page Table

VPN PPN Valid VPN PPN Valid

00 7 1 10 6 0

01 8 1 11 7 0

02 9 1 12 4 0

03 A 1 13 3 0

04 6 0 14 D 0

05 3 0 15 B 0

06 1 0 16 9 0

07 8 0 17 6 0

08 2 0 18 C 1

09 3 0 19 4 1

0A 1 1 1A F 0

0B 6 1 1B 2 1

0C A 1 1C 0 0

0D D 0 1D E 1

0E E 0 1E 5 1

0F D 1 1F 3 1

Page 10 of 18

A. Part 1

(a) The box below shows the format of a virtual address. Indicate (by labeling the diagram) the

fields (if they exist) that would be used to determine the following: (If a field doesn’t exist, don’t

draw it on the diagram.)

VPO The virtual page offset

VPN The virtual page number

TLBI The TLB index

TLBT The TLB tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) The box below shows the format of a physical address. Indicate (by labeling the diagram) the

fields that would be used to determine the following:

PPO The physical page offset

PPN The physical page number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 11 of 18

B. Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate

whether the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.

Virtual address: 0x07A50

(a) Virtual address format (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) Address translation

Parameter Value

VPN 0x

TLB Index 0x

TLB Tag 0x

TLB Hit? (Y/N)

Page Fault? (Y/N)

PPN 0x

(c) Physical address format (one bit per box)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 12 of 18

Problem 7. (10 points):
The following problem concerns dynamic storage allocation.

Consider an allocator that uses an implicit free list. The layout of each allocated and free memory block is

as follows:

31 2 1 0

Header | Block Size (bytes) | |

|____________________________|_____|

| |

| |

| |

| |

| |

|__________________________________|

Footer | Block Size (bytes) | |

|____________________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29

higher order bits in the header and footer are needed to record block size, which includes the header and

footer. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)

after a call to free(0x500b010) is executed. Your answers should be given as hex values. Note that the

address grows from bottom up. Assume that the allocator uses immediate coalescing, that is, adjacent free

blocks are merged immediately each time a block is freed.

Page 13 of 18

Address

0x500b028 0x00000013

0x500b024 0x500b1008

0x500b020 0x500b512c

0x500b01c 0x00000013

0x500b018 0x00000011

0x500b014 0x500b511c

0x500b010 0x500b601c

0x500b00c 0x00000011

0x500b008 0x00000012

0x500b004 0x500b601c

0x500b000 0x500b4024

0x500affc 0x00000012

Address

0x500b028

0x500b024 0x500b1008

0x500b020 0x500b512c

0x500b01c

0x500b018

0x500b014 0x500b511c

0x500b010

0x500b00c 0x00000011

0x500b008 0x00000012

0x500b004 0x500b601c

0x500b000 0x500b4024

0x500affc

Page 14 of 18

Problem 8. (10 points):
The following problem concerns memory-mapped I/O (mmio).

A disk file contains a key-value database. Keys are strings that identify persons and values are persons’

attributes (e.g., city, date-of-birth, highest education). You can assume keys have a fixed size of 32 bytes

(characters), including the null terminator. A key is followed by an integer (sizeof(int) == 4) that

represents the size of the value corresponding to the key. The size is followed by the value. See below for

the visual representation of the database file.

db.txt

+------+-------+--------+------+-------+--------+-------+--------+------+

| key1 | size1 | value1 | key2 | size2 | value2 | size3 | value3 | |

+------+-------+--------+------+-------+--------+-------+--------+------+

Your task is to write a C function called query database(char* db, char* key). The func-

tion takes two arguments (1) a string representing the pathname of the key-value database file and (2) a

string representing the (query) key. The function returns an integer that represents the size of the next key

(sequentially) stored in the database file.

You will need the following system-level and string comparison function descriptions.

• int open (const char *name, int flags);

• void *mmap(void addr, size_t length, int prot,

int flags, int fd, off_t offset);

• int strcmp (const char* str1, const char* str2);

We have already written the first few statements for the function implementation on the next page. Use

memory mapped file I/O to map the database file into the virtual address space. Then write the remaining

code for finding the (query) key and returning the proper integer value.

Write your code on the next page.

Page 15 of 18

int query_database(char *db, char* key) {

struct stat stat;

int fd, size;

fd = open(db, O_RDONLY);

if (fd < 0 || fstat(fd, &stat) < 0) {

fprintf(stderr, "open() or fstat() failed.\n");

return (1);

}

size = stat.st_size;

// write your code below this comment

}

Page 16 of 18

Problem 9. (10 points):
Consider the following code. The intended behaviour of this program is to create four threads that each

print out the value in vargp. Each thread should print out a distinct value, but the order in which threads

print out their value does not matter. For simplicity, you may assume all calls to pthread functions and

printf succeed.

#define N 4

pthread_mutex_t lock;

int array[N] = {0, 0, 0, 0};

void *foo(void *vargp) {

int id = *((int *) vargp); // f1

pthread_mutex_lock(&lock); // f2

printf("id: %d\n", id); // f3

pthread_mutex_unlock(&lock); // f4

return NULL; // f5

}

int main(void) {

pthread_t tids[N];

int i;

pthread_mutex_init(&lock, NULL);

for (i = 0; i < N; i++) // m1

pthread_create(&tids[i], NULL, foo, &i); // m2

for (i = 0; i < N; i++) // m3

pthread_join(tids[i], NULL); // m4

pthread_mutex_destroy(&lock);

return 0;

}

A. Briefly explain why this program will not behave correctly.

Page 17 of 18

B. Consider the following attempt at fixing the program by modifying the main function. Explain why

this correctly fixes the issue.

int main(void) {

pthread_t tids[N];

int i;

pthread_mutex_init(&lock, NULL);

for (i = 0; i < N; i++) {

pthread_create(&tids[i], NULL, foo, &i);

pthread_join(tids[i], NULL);

}

pthread_mutex_destroy(&lock);

return 0;

}

C. What is a drawback of the fix suggested in part B?

D. Suggest a better way to fix this program by only modifying the pthread_create loop that does

not have the same problem as you identified in part C.

END OF EXAMINATION

Page 18 of 18

