
Full Name:

COMP2310/COMP6310, 2022

Practice Exam
Semester 2, 2023

Instructions:

• The exam has a maximum score of 50 points.

• The problems vary in difficulty scale. The point value of each problem is indicated. Advice: Pile up
the easy points quickly and then come back to the harder problems.

Good luck!

1 (05):

2 (05):

3 (14):

4 (16):

5 (08):

6 (02):

TOTAL (50):

Page 1 of 11

Problem 1. (5 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

int copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
leal (%ecx,%ecx,8),%edx
sall $2,%edx
movl %ebx,%eax
sall $4,%eax
subl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%edx,%ebx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 2 of 11

Problem 2. (5 points):
The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 13 bits wide.

• The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 99 04 03 48
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 2F 81 FD 09 0B 0 8F E2 05 BD
3 06 0 3D 94 9B F7 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 B0 39 D3 F7
6 91 1 A0 B7 26 2D F0 0 0C 71 40 10
7 46 0 B1 0A 32 0F DE 1 12 C0 88 37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 3 of 11

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.
Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 0E34

A. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value
Byte offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 4 of 11

Problem 3. (14 points):
Consider a direct mapped cache of size 64K with block size of 16 bytes. Furthermore, the cache is write-
back and write-allocate. You will calculate the miss rate for the following code using this cache. Remember
that sizeof(int) == 4. Assume that the cache starts empty and that local variables and computations
take place completely within the registers and do not spill onto the stack.

A. Now consider the following code to copy one matrix to another. Assume that the src matrix starts at
address 0 and that the dest matrix follows immediately follows it.

void copy_matrix(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

3. What is the cache miss rate if ROWS = 128 and COLS = 256?
Miss rate = _________%

Page 5 of 11

B. Now consider the following two implementations of a horizontal flip and copy of the matrix. Again
assume that the src matrix starts at address 0 and that the dest matrix follows immediately follows it.

void copy_n_flip_matrix1(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (i=0; i<ROWS; i++) {
for (j=0; j<COLS; j++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 128 and COLS = 192?
Miss rate = _________%

void copy_n_flip_matrix2(int dest[ROWS][COLS], int src[ROWS][COLS])
{

int i, j;

for (j=0; j<COLS; j++) {
for (i=0; i<ROWS; i++) {

dest[i][COLS - 1 - j] = src[i][j];
}

}
}

1. What is the cache miss rate if ROWS = 128 and COLS = 128?
Miss rate = _________%

2. What is the cache miss rate if ROWS = 192 and COLS = 128?
Miss rate = _________%

Page 6 of 11

Problem 4. (16 points):
This problem tests your understanding of exceptional control flow in C programs. Assume we are running
code on a Unix machine. The following problems all concern the value of the variable counter.

Part I (6 points)

int counter = 0;

int main()
{

int i;

for (i = 0; i < 2; i ++){
fork();
counter ++;
printf("counter = %d\n", counter);

}

printf("counter = %d\n", counter);
return 0;

}

A. How many times would the value of counter be printed: ____________

B. What is the value of counter printed in the first line? ____________

C. What is the value of counter printed in the last line? ____________

Page 7 of 11

Part II (6 points)

pid_t pid;
int counter = 0;

void handler1(int sig)
{

counter ++;
printf("counter = %d\n", counter);
fflush(stdout); /* Flushes the printed string to stdout */
kill(pid, SIGUSR1);

}

void handler2(int sig)
{

counter += 3;
printf("counter = %d\n", counter);
exit(0);

}

main() {
signal(SIGUSR1, handler1);
if ((pid = fork()) == 0) {

signal(SIGUSR1, handler2);
kill(getppid(), SIGUSR1);
while(1) {};

}
else {

pid_t p; int status;
if ((p = wait(&status)) > 0) {

counter += 2;
printf("counter = %d\n", counter);

}
}

}

What is the output of this program?

Page 8 of 11

Part III (4 points)

int counter = 0;

void handler(int sig)
{

counter ++;
}

int main()
{

int i;

signal(SIGCHLD, handler);

for (i = 0; i < 5; i ++){
if (fork() == 0){

exit(0);
}

}

/* wait for all children to die */
while (wait(NULL) != -1);

printf("counter = %d\n", counter);
return 0;

}

A. Does the program output the same value of counter every time we run it? Yes No

B. If the answer to A is Yes, indicate the value of the counter variable. Otherwise, list all possible values
of the counter variable.

Answer: counter = __________________

Page 9 of 11

Dynamic storage allocation

The following problem concerns dynamic storage allocation.

Consider an allocator that uses an implicit free list. The layout of each allocated and free memory block is
as follows:

31 2 1 0

Header | Block Size (bytes) | |
|____________________________|_____|
| |
| |
| |
| |
| |
|__________________________________|

Footer | Block Size (bytes) | |
|____________________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus, only the 29
higher order bits in the header and footer are needed to record block size, which includes the header and
footer. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Page 10 of 11

Problem 5. (8 points):
Given the contents of the heap shown on the left, show the new contents of the heap (in the right table)
after a call to free(0x400b010) is executed. Your answers should be given as hex values. Note that the
address grows from bottom up. Assume that the allocator uses immediate coalescing, that is, adjacent free
blocks are merged immediately each time a block is freed.

Address

0x400b028 0x00000012

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c 0x00000012

0x400b018 0x00000013

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c 0x00000013

0x400b008 0x00000013

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc 0x00000013

Address

0x400b028

0x400b024 0x400b611c

0x400b020 0x400b512c

0x400b01c

0x400b018

0x400b014 0x400b511c

0x400b010 0x400b601c

0x400b00c

0x400b008

0x400b004 0x400b601c

0x400b000 0x400b511c

0x400affc

Page 11 of 11

Problem 6. (2 points):
Consider the following function func that it is run concurrently on two threads. There is a global array
state that each thread will update to indicate it is ready to continue. Both threads will wait until both
entries in state are 1 before continuing. You may assume that tid contains the id of the thread, and that
all locks and threads have been initialised correctly.

int state[2] = {0, 0};
pthread_mutex_t locks[2];

void func(int tid) {
int other_tid = (tid - 1) & 1;
int ready = 0;
pthread_mutex_lock(&locks[tid]);
state[id] = 1;
while (ready == 0) {

pthread_mutex_lock(&locks[other_tid]);
ready = state[other_id];
pthread_mutex_unlock(&locks[other_tid]);

}
pthread_mutex_unlock(&locks[tid]);
continue();

}

1. Briefly explain why this code will always result in a deadlock.

2. How could you re-order the statements in func to avoid this deadlock?

Page 12 of 11

