Full Name:

COMP2310/COMP6310, 2022

Final Exam

November 14, 2022
Instructions:

* The exam has a maximum score of 57 points.

* The problems vary in difficulty scale. The point value of each problem is indicated. Advice: Pile up
the easy points quickly and then come back to the harder problems.

¢ Good luck!

1 (08):

2 (05):

3(12):

4 (12):

5 (10):

6 (10):

TOTAL (57):

Page 1 of 12

Problem 1. (8 points):

Condider the following assembly code for a C for loop:

loop:
pushl %ebp
mov]l %esp, $ebp
movl 8 (%ebp), $ecx
movl 12 (%ebp), $edx
xorl %eax, %eax
cmpl %edx, $ecx
jle .L4

.L6:
decl %ecx
incl %edx
incl %eax
cmpl %$edx, $ecx
Jjg .L6

.L4:

incl %eax

mov]l %ebp, $esp
popl %ebp

ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variables x, y, and result in your expressions below — do not use register
names.)

Answer:

int loop(int x, int vy)

{

int result;

for (result = 0; x > y; result++) {

result++;

return result;

Page 2 of 12

Problem 2. (5 points):

The following problem concerns basic cache lookups.

* The memory is byte addressable.

* Memory accesses are to 1-byte words (not 4-byte words).

Physical addresses are 12 bits wide.

* The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache

Index|| Tag Valid[Byte 0 Byte I [| Tag Valid[Byte 0 Byte 1[| Tag Valid| Byte O Byte 1] Tag Valid|Byte 0 Byte

0 129 o0 | 34 29 [[87 O | 39 AE || 7D 1 68 F2 || 8B 1 64 38
1 || 1| oD S8 |[3D 1 | oC 3A ||[4A 1 | A4 DB | D9 1 | A5 3C
2 a7 1| E2 04 |[AB 1 | D2 04 ||[E3 0 | 3¢ A4 | o1 o | EE 05
3 3 0| AC IF | E0O o0 | BS 70 || 3B 1 66 95 || 37 1 49 F3
4 || 80 1 60 35 | 2B 0 19 57 || 49 1 SD OE |00 0 | 70 AB
s |EA 1 | B4 17 | cc 1 67 DB ||[8A O | DE AA || 18 1 | 2Cc D3
6 |l1C o | 3F A4 |01 0| 3A ClL ||Fo 0| 20 13 | 7F 1 | DF 05
7 | oF o | 00 FF || AF 1 | BI SF |99 o0 | AC 9 | 3A 1 22 79
Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

1r 1w 9 8 7 6 5 4 3 2 1 0
CT|CT|CT|CT|CT|CT | CT|CT|CI|CI|CI|CO

Page 3 of 12

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.
Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 3B6

A. Physical address format (one bit per box)
11 100 9 8 7 6 5 4 3 2 1 0

(0Joftrjrfof1fto]1[1]0]

B. Physical memory reference

] Parameter \ Value ‘

Cache Offset (CO) 0x0
Cache Index (CI) 0x03
Cache Tag (CT) 0x3B
Cache Hit? (Y/N) Y
Cache Byte returned | 0x66

Page 4 of 12

Problem 3. (12 points):

3M decides to make Post-Its by printing yellow squares on white pieces of paper. As part of the printing
process, they need to set the CMYK (cyan, magenta, yellow, black) value for every point in the square.
3M hires you to determine the efficiency of the following algorithms on a machine with a 2048-byte direct-
mapped data cache with 32 byte blocks.

You are given the following definitions:

struct point_color {
int c;
int m;
int vy;
int k;
bi

struct point_color square[l16][16];
register int i, 3J;

Assume:
e sizeof (int) = 4
* square begins at memory address 0
* The cache is initially empty.

* The only memory accesses are to the entries of the array square. Variables i and 7 are stored in
registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; 1i<16; 1i++){

for (3=0; 3j<16; Jj++) {
square([i] [j]l.c = 0;
square[i] [j].m 0;
square[i] [J].y = 1;
square[i][j].k = 0;

Miss rate for writes to square: 12.5%

Page 5 of 12

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; 1i<16; 1i++){

for (3=0; 3<16; j++) {
square[j][i]l.c = 0;
square[J][i].m 0;
square[Jj][i].y = 1;
square[j][i]l.k = 0;

Miss rate for writes to square: 25%

C. What percentage of the writes in the following code will miss in the cache?

for (i=0; 1i<16; 1i++){
for (3=0; j<16; Jj++) |
square[i] [J].y = 1;

}
for (i=0; i<16; i++) {

for (3=0; 3j<16; Jj++) {
square([i][j]l.c = 0;
square[i] [j].m = 0;
square([i] [j].k = 0;

Miss rate for writes to square: 25%

Page 6 of 12

Problem 4. (12 points):

This problem tests your understanding of cache conflict misses. Consider the following matrix transpose
routine

typedef int array[2][2];

void transpose(array dst, array src) {
int i, 7j;

for (1 = 0; 1 < 2; i++) {
for (3 = 0; 3 < 2; j++) {
dst[j]1[i] = srcl[i][]];

running on a hypothetical machine with the following properties:
e sizeof (int) == 4.
e The src array starts at address 0 and the dst array starts at address 16 (decimal).
* There is a single L1 cache that is direct mapped and write-allocate, with a block size of 8 bytes.

* Accesses to the src and dst arrays are the only sources of read and write misses, respectively.

A. Suppose the cache has a total size of 16 data bytes (i.e., the block size times the number of sets is
16 bytes) and that the cache is initially empty. Then for each row and col, indicate whether each
accessto src[row] [col] and dst [row] [col] is a hit (h) or a miss (m). For example, reading
src[0][0] is a miss and writing dst [0] [0] is also a miss.

dst array src array
col0 | coll col0 | coll
row 0 m m row 0 m m
row 1 m m row 1 m h

B. Repeat part A for a cache with a total size of 32 data bytes.

dst array src array
col0 | coll col0 | coll
row 0 m h row 0 m h
row 1 m h row 1 m h

Page 7 of 12

Problem 5. (10 points):

Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

int main () {
if (fork() == 0) {

if (fork() == 0) {
printf ("3");

}

else {
pid_t pid; int status;
if ((pid = wait (&status)) > 0) {

printf ("4");

}
}
else {
printf ("2");
exit (0);
}
printf ("0");
return O;

}

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.

A. 32040 Y

B. 34002

C. 30402 Y N
D. 23040 Y N
E. 40302 Y N

Page 8 of 12

Problem 6. (10 points):

The following problem concerns the way virtual addresses are translated into physical addresses.

* The memory is byte addressable.
* Memory accesses are to 1-byte words (not 4-byte words).

¢ Virtual addresses are 16 bits wide.

Physical addresses are 14 bits wide.

* The page size is 1024 bytes.

The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages are as follows:

TLB Page Table

Index | Tag PPN Valid VPN PPN Valid[VPN PPN Valid
0 8 7 1 00 2 o0 [10 1 1
F 6 1 00 5 1 |11 3 0

0 3 0 02 7 1 |12 9 0

1 F 1 3 9 o0 |13 7 1

1 1 E 1 04 F 1 |14 D 1
2 7 0 05 3 1 |15 5 0

7 3 0 06 B 0 |16 E I

B 1 1 07 D 1 |17 6 0

2 0 0 0 0 7 1 |18 1 0
C 1 0 9 Cc 0|19 0 1

F 8 1 0A 3 0 | 1A 8 1

7 6 1 OB 1 1 |1B C 0

3 8 4 0 oc 0 1 [1C 0 0
3 5 0 ob D 0 |ID 2 1

0 D 1 OE 0 O |1E 7 0

2 9 0 OF 1 0 |1F 3 0

Page 9 of 12

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on
the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index

TLBT The TLB tag

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN: [15-10] VPO: [9-0]

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:
PPO The physical page offset
PPN The physical page number

13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN: [13-10] PPO: [9-0]

Page 10 of 12

Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether
the TLB misses and whether a page fault occurs.

If there is a page fault, enter “-” for “PPN” and leave part C blank.
Virtual address: 2F09

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L rrrrrrrr

0010 1111 0000 1001

B. Address translation

Parameter Value
VPN 0x0B
TLB Index 0x3
TLB Tag 0x2

TLB Hit? (Y/N) N
Page Fault? (Y/N) | N
PPN 0x1

C. Physical address format (one bit per box)
13 12 11 10 9 8 7 6 5 4 3 2 1 0

rrrrrr]

00 0111 0000 1001

Virtual address: 0C53

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

. rrrrrrrr]

0000 1100 0101 0011

B. Address translation

Page 11 of 12

Parameter Value
VPN 0x3
TLB Index 0x3
TLB Tag 0x0
TLB Hit? (Y/N) Y
Page Fault? (Y/N) | N
PPN 0xD

C. Physical address format (one bit per box)

13 12 11 10

9

8

7

6

|

[1]

|

|

|

|

11 0100 0101 0011

Page 12 of 12

