Full Name:

COMP2310/COMP6310, 2022

Final Exam

Semester 2, 2023
Instructions:

* The exam has a maximum score of 49 points.

* The problems vary in difficulty scale. The point value of each problem is indicated. Advice: Pile up
the easy points quickly and then come back to the harder problems.

¢ Good luck!

1 (08):

2 (08):

3 (08):

4 (05):

5 (08):

6 (12):

TOTAL (49):

Page 1 of 14

Problem 1. (8 points):

This problem tests your understanding of how for loops in C relate to IA32 machine code
Consider the following IA32 assembly code for a procedure foo () :

foo:
pushl %ebp
movl %esp, sebp
movl 12 (%ebp), %ecx
xorl %eax, %eax
movl 8 (%ebp), $edx
cmpl %ecx, $edx
jle .L3
.align 4

.L5:
addl %edx, $eax
decl %edx
cmpl %ecx, $edx
jg .L5

.L3:
leave
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you

may only use symbolic variables z, y, ¢, and result, from the source code in your expressions below — do
not use register names.)
Answer:

int foo(int x, int vy)
{
int i, result=0;
for (i=x; i>y; 1--) {
result+=1i;
}

return result;

Page 2 of 14

Problem 2. (8 points):

You are writing a new 3D game that you hope will earn you fame and fortune. You are currently working
on a function to blank the screen buffer before drawing the next frame. The screen you are working with is
a 640x480 array of pixels. The machine you are working on has a 64 KB direct mapped cache with 4 byte
lines. The C structures you are using are:

struct pixel {
char r;
char g;
char b;
char a;

}i

struct pixel buffer[480][640];
register int i, 7J;

register char xcptr;

register int xiptr;

Assume:
e sizeof (char) =1
e sizeof (int) = 4
* buffer begins at memory address 0
* The cache is initially empty.

* The only memory accesses are to the entries of the array buf fer. Variables i, j, cptr, and iptr
are stored in registers.

Page 3 of 14

A. What percentage of the writes in the following code will miss in the cache?

for (3=0; j < 640; Jj++) {
for (i=0; i < 480; i++){

buffer[i][j]l.r = 0;
buffer[i]l[j]l.g = 0;
buffer[i]l[j].b = 0;
buffer([i][j]l.a = 0;

Miss rate for writes to buffer: 25%

B. What percentage of the writes in the following code will miss in the cache?

char *cptr;

cptr = (char) buffer;

for (; cptr < (((char =) buffer) + 640 x 480 * 4); cptr++)
*cptr = 0;

Miss rate for writes to buffer: 25%

C. What percentage of the writes in the following code will miss in the cache?

int xiptr;

iptr = (int *) buffer;

for (; iptr < (buffer + 640 % 480); iptr++)
*iptr = 0;

Miss rate for writes to buf fer: 100%

D. Which code (A, B, or C) should be the fastest? C

Page 4 of 14

Problem 3. (8 points):

This problem tests your understanding of conflict misses. Consider the following transpose routine

typedef int array[2][2];

void transpose (array dst, array src) {
int i, 3;

for (1 = 0; 1 < 2; i++) {
for (j = 0; J < 2; Jj++) |
dst[i][]J] = srcl[3jll[i];

running on a hypothetical machine with the following properties:
e sizeof (int) == 4.
* The src array starts at address 0 and the dst array starts at address 16 (decimal).
* There is a single L1 cache that is direct mapped and write-allocate, with a block size of 8 bytes.

* Accesses to the src and dst arrays are the only sources of read and write misses, respectively.

A. Suppose the cache has a total size of 16 data bytes (i.e., the block size times the number of sets is
16 bytes) and that the cache is initially empty. Then for each row and col, indicate whether each
accessto src[row] [col] and dst [row] [col] is a hit (h) or a miss (m). For example, reading
src[0][0] is amiss and writing dst [0] [0] is also a miss.

dst array src array
col0 | coll col0 | coll
row 0 m h row 0 m m
row 1 m m row 1 m m

B. Repeat part A for a cache with a total size of 32 data bytes.

dst array src array
col0 | coll col0 | coll
row 0 m h row 0 m h
row 1 m h row 1 m h

Page 5 of 14

Problem 4. (5 points):

Consider the following C program:
#include <sys/wait.h>

main () {
int status;

printf ("%$s\n", "Hello");
printf ("$d\n", !fork());

if (wait (&status) != -1)
printf ("$d\n", WEXITSTATUS (status));

printf ("$s\n", "Bye");

exit (2);
}

Recall the following:
* Function fork returns O to the child process and the child’s process Id to the parent.
* Function wait returns —1 when there is an error, e.g., when the executing process has no child.
* Macro WEXITSTATUS extracts the exit status of the terminating process.

What is a valid output of this program? Hint: there are several correct solutions.
One possible solution:

Hello
1

Bye

0

2

Bye

Page 6 of 14

Process control

The next problem concerns the following four versions of the t fgets routine, a timeout version of the
Unix fget s routine.

The t £get s routine waits for the user to type in a string and hit the return key. If the user enters the string
within 5 seconds, the t fget s returns normally with a pointer to the string. Otherwise, the routine “times
out” and returns a NULL string.

tfgets: Version A

void handler (int sig) {
siglongjmp (env, 1);
}

char *tfgets(char s, int size, FILE xstream) ({
pid_t pid;
signal (SIGCHLD, handler);

if (!sigsetjmp(env, 1)) {
pid = fork();
if (pid == 0) {

return fgets (s, size, stream);
}
else {

sleep(5);

kill (pid, SIGKILL);

wait (NULL) ;

return NULL;

}

else {
wait (NULL) ;
exit (0);

Page 7 of 14

tfgets: Version B
void handler (int sig) {

wait (NULL) ;
siglongjmp (env, 1) ;

char *tfgets(char *s, int size, FILE xstream)
pid_t pid;

signal (SIGUSR2, handler);

if (sigsetjmp(env, 1) != 0)
return NULL;

if ((pid = fork()) == 0) {
sleep (5);
kill (getppid (), SIGUSR2);
exit (0);

}

fgets (s, size, stream);
kill (pid, SIGKILL);
wait (NULL) ;

return s;

tfgets: Version C

void handler (int sig) {
wait (NULL) ;
siglongjmp (env, 1);

char =

tfgets (char *s, int size, FILE *stream) {
pid_t pid;
str = NULL;
signal (SIGCHLD, handler);

if ((pid fork()) == 0) {
sleep (5);
exit (0);
}
else {
if (sigsetjmp(env, 1) == 0) {
str = fgets (s, size, stream);
kill (pid, SIGKILL);
pause () ;

}

return str;

Page 8 of 14

tfgets: Version D

void handler (int sig) {
wait (NULL) ;
siglongjmp (env, 1);

char =

tfgets(char *s, int size, FILE *stream) {
pid_t pid;
str = NULL;
signal (SIGCHLD, handler);

if ((pid = fork()) == 0) {
sleep (5);
return NULL;

}

else {
if (sigsetjmp(env, 1) == 0) {
str = fgets (s, size, stream);
kill (pid, SIGKILL);
pause () ;

}

return str;

Page 9 of 14

Problem 5. (8 points):

This problem concerns the four versions of t fgets from the previous pages. Some of them are correct,
and others are flawed because the author didn’t understand basic concepts of concurrency and signaling.
Circle the versions that are correct, in the sense that they return the input string if typed within 5 seconds,
timeout after 5 seconds by returning NULL, and correctly reap their terminated children.

Version A Version B Version C Version D

Note: The pause function sleeps until a signal is received and then returns.
Version B

Version C

A gets the parent and child confused.

D returns from the child instead of exiting.

Page 10 of 14

Problem 6. (12 points):

The following problem concerns the way virtual addresses are translated into physical addresses.

* The memory is byte addressable.

* Memory accesses are to 1-byte words (not 4-byte words).
* Virtual addresses are 16 bits wide.

* Physical addresses are 13 bits wide.

* The page size is 512 bytes.

* The TLB is 8-way set associative with 16 total entries.

* The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB, the page table
for the first 32 pages, and the cache are as follows:

TLB Page Table

Index | Tag PPN Valid VPN PPN Valid[VPN PPN Valid
0 || 09 4 1 00 6 1 [10 0 1
12 2 1 00 5 0 |11 5 0

10 0 1 02 3 1 |12 2 1

08 5 1 03 4 1 |13 4 0

05 7 1 04 2 0|14 6 0

13 1 0 05 7 1 |15 2 0

10 3 0 06 1 0|16 4 0

18 3 0 07 3 0|17 6 0

1 04 1 0 0 5 1 |18 1 1
oc 1 0 W 4 0|19 2 0

2 0 0 0OA 3 0 |[1A 5 0

08 1 0 OB 2 0 |1B 7 0

06 7 0 oc 5 0 |1IC 6 0

03 1 0 ob 6 0 |[1ID 2 0

07 5 0 OE 1 1 |1E 3 0

02 2 0 OF 0 O |1F 1 0

Page 11 of 14

2-way Set Associative Cache

IndexH Tag Valid|Byte O Byte 1 Byte 2 Byte 3H Tag Valid|Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 Al B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 Co OF 00

Page 12 of 14

Part 1

A. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on

the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index

TLBT The TLB tag

5 14 13 12 11 10 9

VPN: [15-9] VPO: [8-0]
TLBT: [15-10] TLBI: [9]

B. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields

that would be used to determine the following:

PPO The physical page offset

PPN The physical page number

CO The block offset within the cache line

CI The cache index
CT The cache tag

12 11 10 9 8 7 6

4 3

PPN: [12-9] PPO: [8-0]
CT: [12-5] CI: [4-2] CO: [1-0]

Page 13 of 14

Part 2

For the given virtual address, indicate the TLB entry accessed, the physical address, and the cache byte
value returned in hex. Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”. If there is a page fault, enter “-” for “PPN” and
leave parts C and D blank.

Virtual address: 1DDE

A. Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.t rrrre ol

0001 1101 1101 1110

B. Address translation

Parameter \ Value ‘
VPN 0x0E
TLB Index 0x0
TLB Tag 0x07

TLB Hit? (Y/N) N
Page Fault? (Y/N) | N
PPN 0x1

C. Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

. rrrrrrr

0001111011110

D. Physical memory reference

Parameter Value
Byte offset 0x2
Cache Index 0x7
Cache Tag 0x1E

Cache Hit? (Y/N) Y
Cache Byte returned | OxF

Page 14 of 14

