
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update
Ø Assignment 1 – Marking now

Ø Checkpoint 2 (7.5%) – This week
Ø Attend the lab as per Checkpoint 1

Ø Quiz 2 (5%) – Next week
Ø Cover all material in lectures and labs weeks 6-10
Ø Bring one double-sided A4 sheet of notes

Ø Final Exam – Closed Book
Ø Wednesday 12/11/2025 2-5:15pm
Ø Melville Hall

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Linking
¢ Case study: Library interpositioning

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static Linking
¢ Programs are translated and linked using a compiler driver:

§ linux> gcc -Og -o prog main.c sum.c
§ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers?
¢ Reason 1: Modularity

§ Program can be written as a collection of smaller source files,
rather than one monolithic mass.

§ Can build libraries of common functions (more on this later)
§ e.g., Math library, standard C library

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers? (cont)
¢ Reason 2: Efficiency

§ Time: Separate compilation
§ Change one source file, compile, and then relink.
§ No need to recompile other source files.

§ Space: Libraries
§ Common functions can be aggregated into a single file...
§ Yet executable files and running memory images contain only

code for the functions they actually use.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do?

¢ Step 1: Symbol resolution

§ Programs define and reference symbols (global variables and functions):
§ void swap() {…} /* define symbol swap */
§ swap(); /* reference symbol swap */
§ int *xp = &x; /* define symbol xp, reference x */

§ Symbol definitions are stored in object file (by assembler) in symbol table.
§ Symbol table is an array of structs
§ Each entry includes name, size, and location of symbol.

§ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do? (cont)
¢ Step 2: Relocation

§ Merges separate code and data sections into single sections

§ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

§ Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail….

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Kinds of Object Files (Modules)
¢ Relocatable object file (.o file)

§ Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.
§ Each .o file is produced from exactly one source (.c) file

¢ Executable object file (a.out file)
§ Contains code and data in a form that can be copied directly into

memory and then executed.

¢ Shared object file (.so file)
§ Special type of relocatable object file that can be loaded into

memory and linked dynamically, at either load time or run-time.
§ Called Dynamic Link Libraries (DLLs) by Windows

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Executable and Linkable Format (ELF)
¢ Standard binary format for object files

¢ One unified format for
§ Relocatable object files (.o),
§ Executable object files (a.out)
§ Shared object files (.so)

¢ Generic name: ELF binaries

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format
¢ Elf header

§ Word size, byte ordering, file type (.o, exec,
.so), machine type, etc.

¢ Segment header table
§ Page size, virtual addresses memory segments

(sections), segment sizes.

¢ .text section
§ Code

¢ .rodata section
§ Read only data: jump tables, ...

¢ .data section
§ Initialized global variables

¢ .bss section
§ Uninitialized global variables
§ “Block Started by Symbol”
§ “Better Save Space”
§ Has section header but occupies no space

0
ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

.data section

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format (cont.)
¢ .symtab section

§ Symbol table
§ Procedure and static variable names
§ Section names and locations

¢ .rel.text section
§ Relocation info for .text section
§ Addresses of instructions that will need to be

modified in the executable
§ Instructions for modifying.

¢ .rel.data section
§ Relocation info for .data section
§ Addresses of pointer data that will need to be

modified in the merged executable

¢ .debug section
§ Info for symbolic debugging (gcc -g)

¢ Section header table
§ Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Symbols

¢ Global symbols
§ Symbols defined by module m that can be referenced by other modules.
§ E.g.: non-static C functions and non-static global variables.

¢ External symbols
§ Global symbols that are referenced by module m but defined by some

other module.

¢ Local symbols
§ Symbols that are defined and referenced exclusively by module m.
§ E.g.: C functions and global variables defined with the static

attribute.
§ Local linker symbols are not local program variables

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 1: Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Local Symbols
¢ Local non-static C variables vs. local static C variables

§ local non-static C variables: stored on the stack
§ local static C variables: stored in either .bss, or .data

int f()
{
 static int x = 0;

return x;
}

int g()
{
 static int x = 1;

return x;
}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x.1
and x.2.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Linker Resolves Duplicate Symbol
Definitions

¢ Program symbols are either strong or weak
§ Strong: procedures and initialized globals
§ Weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker’s Symbol Rules
¢ Rule 1: Multiple strong symbols are not allowed

§ Each item can be defined only once
§ Otherwise: Linker error

¢ Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
§ References to the weak symbol resolve to the strong symbol

¢ Rule 3: If there are multiple weak symbols, pick an arbitrary
one
§ Can override this with gcc –fno-common

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

References to x will refer to the same initialized
variable.

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global Variables
¢ Avoid if you can

¢ Otherwise
§ Use static if you can
§ Initialize if you define a global variable
§ Use extern if you reference an external global variable

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

swap()

0

More system code

Executable Object File

.text

.symtab
.debug

.data

System code

System data

int array[2]={1,2}

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:
0: 48 83 ec 08 sub $0x8,%rsp

 4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

 a: R_X86_64_32 array # Relocation entry

 e: e8 00 00 00 00 callq 13 <main+0x13> # sum()
 f: R_X86_64_PC32 sum-0x4 # Relocation entry
 13: 48 83 c4 08 add $0x8,%rsp
 17: c3 retq

main.o

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocated .text section
00000000004004d0 <main>:
4004d0: 48 83 ec 08 sub $0x8,%rsp

 4004d4: be 02 00 00 00 mov $0x2,%esi
4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array

 4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()
 4004e3: 48 83 c4 08 add $0x8,%rsp
 4004e7: c3 retq

00000000004004e8 <sum>:
4004e8: b8 00 00 00 00 mov $0x0,%eax
4004ed: ba 00 00 00 00 mov $0x0,%edx
4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslq %edx,%rcx

 4004f7: 03 04 8f add (%rdi,%rcx,4),%eax
 4004fa: 83 c2 01 add $0x1,%edx
4004fd: 39 f2 cmp %esi,%edx
4004ff: 7c f3 jl 4004f4 <sum+0xc>
400501: f3 c3 repz retq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5

Source: objdump -dx prog

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Packaging Commonly Used Functions
¢ How to package functions commonly used by programmers?

§ Math, I/O, memory management, string manipulation, etc.

¢ Awkward, given the linker framework so far:
§ Option 1: Put all functions into a single source file

§ Programmers link big object file into their programs
§ Space and time inefficient

§ Option 2: Put each function in a separate source file
§ Programmers explicitly link appropriate binaries into their

programs
§ More efficient, but burdensome on the programmer

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Old-fashioned Solution: Static Libraries

¢ Static libraries (.a archive files)
§ Concatenate related relocatable object files into a single file with an

index (called an archive).

§ Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

§ If an archive member file resolves reference, link it into the executable.

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

C standard library

¢ Archiver allows incremental updates
¢ Recompile function that changes and replace .o file in archive.

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commonly Used Libraries
libc.a (the C standard library)

§ 4.6 MB archive of 1496 object files.
§ I/O, memory allocation, signal handling, string handling, data and time,

random numbers, integer math

libm.a (the C math library)
§ 2 MB archive of 444 object files.
§ floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar –t libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar –t libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{
 addvec(x, y, z, 2);

printf("z = [%d %d]\n”,
z[0], z[1]);

return 0;
} main2.c

void addvec(int *x, int *y,
int *z, int n) {

int i;

 for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,
int *z, int n)

{
int i;

for (i = 0; i < n; i++)
z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Static Libraries

¢ Linker’s algorithm for resolving external references:
§ Scan .o files and .a files in the command line order.
§ During the scan, keep a list of the current unresolved references.
§ As each new .o or .a file, obj, is encountered, try to resolve each

unresolved reference in the list against the symbols defined in obj.
§ If any entries in the unresolved list at end of scan, then error.

¢ Problem:
§ Command line order matters!
§ Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern Solution: Shared Libraries

¢ Static libraries have the following disadvantages:
§ Duplication in the stored executables (every function needs libc)
§ Duplication in the running executables
§ Minor bug fixes of system libraries require each application to explicitly

relink

¢ Modern solution: Shared Libraries
§ Object files that contain code and data that are loaded and linked into

an application dynamically, at either load-time or run-time
§ Also called: dynamic link libraries, DLLs, .so files

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Libraries (cont.)
¢ Dynamic linking can occur when executable is first loaded

and run (load-time linking).
§ Common case for Linux, handled automatically by the dynamic linker

(ld-linux.so).
§ Standard C library (libc.so) usually dynamically linked.

¢ Dynamic linking can also occur after program has begun
(run-time linking).
§ In Linux, this is done by calls to the dlopen() interface.

§ Distributing software.
§ High-performance web servers.
§ Runtime library interpositioning.

¢ Shared library routines can be shared by multiple processes.
§ Take advantage of virtual memory

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Load-time

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Run-time
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{

void *handle;
void (*addvec)(int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);

 if (!handle) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

} dll.c

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Run-time
...

 /* Get a pointer to the addvec() function we just loaded */
 addvec = dlsym(handle, "addvec");
 if ((error = dlerror()) != NULL) {
 fprintf(stderr, "%s\n", error);
 exit(1);
 }

 /* Now we can call addvec() just like any other function */
 addvec(x, y, z, 2);

printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */
 if (dlclose(handle) < 0) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

}
return 0;

} dll.c

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking Summary
¢ Linking is a technique that allows programs to be

constructed from multiple object files.

¢ Linking can happen at different times in a program’s
lifetime:
§ Compile time (when a program is compiled)
§ Load time (when a program is loaded into memory)
§ Run time (while a program is executing)

¢ Understanding linking can help you avoid nasty errors and
make you a better programmer.

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Linking
¢ Case study: Library interpositioning

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Case Study: Library Interpositioning
¢ Library interpositioning : powerful linking technique that

allows programmers to intercept calls to arbitrary
functions

¢ Interpositioning can occur at:
§ Compile time: When the source code is compiled
§ Link time: When the relocatable object files are statically linked to

form an executable object file
§ Load/run time: When an executable object file is loaded into

memory, dynamically linked, and then executed.

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Interpositioning Applications
¢ Security

§ Confinement (sandboxing)
§ Behind the scenes encryption

¢ Debugging
§ In 2014, two Facebook engineers debugged a treacherous 1-year

old bug in their iPhone app using interpositioning
§ Code in the SPDY networking stack was writing to the wrong

location
§ Solved by intercepting calls to Posix write functions (write, writev,

pwrite)

Source: Facebook engineering blog post at
https://code.facebook.com/posts/313033472212144/debugging-
file-corruption-on-ios/

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Interpositioning Applications
¢ Monitoring and Profiling

§ Count number of calls to functions
§ Characterize call sites and arguments to functions
§ Malloc tracing

§ Detecting memory leaks
§ Generating address traces

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example program

¢ Goal: trace the addresses
and sizes of the allocated
and freed blocks, without
breaking the program, and
without modifying the
source code.

¢ Three solutions: interpose
on the lib malloc and
free functions at compile
time, link time, and
load/run time.

#include <stdio.h>
#include <malloc.h>

int main()
{
 int *p = malloc(32);
 free(p);

return(0);
} int.c

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compile-time Interpositioning
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{
 void *ptr = malloc(size);
 printf("malloc(%d)=%p\n",

(int)size, ptr);
return ptr;

}

/* free wrapper function */
void myfree(void *ptr)
{
 free(ptr);
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compile-time Interpositioning

#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);

malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc
malloc(32)=0x1edc010
free(0x1edc010)
linux>

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Link-time Interpositioning
#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)
{
 void *ptr = __real_malloc(size); /* Call libc malloc */
 printf("malloc(%d) = %p\n", (int)size, ptr);
 return ptr;
}

/* free wrapper function */
void __wrap_free(void *ptr)
{
 __real_free(ptr); /* Call libc free */
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Link-time Interpositioning

¢ The “-Wl” flag passes argument to linker, replacing each
comma with a space.

¢ The “--wrap,malloc ” arg instructs linker to resolve
references in a special way:
§ Refs to malloc should be resolved as __wrap_malloc
§ Refs to __real_malloc should be resolved as malloc

linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl
int.o mymalloc.o
linux> make runl
./intl
malloc(32) = 0x1aa0010
free(0x1aa0010)
linux>

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

#ifdef RUNTIME
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */
void *malloc(size_t size)
{
 void *(*mallocp)(size_t size);
 char *error;

 mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc
*/
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 char *ptr = mallocp(size); /* Call libc malloc */
 printf("malloc(%d) = %p\n", (int)size, ptr);
 return ptr;
}

Load/Run-time
Interpositioning

mymalloc.c

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load/Run-time Interpositioning

/* free wrapper function */
void free(void *ptr)
{

void (*freep)(void *) = NULL;
char *error;

 if (!ptr)
return;

 freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 freep(ptr); /* Call libc free */
 printf("free(%p)\n", ptr);
}
#endif

mymalloc.c

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load/Run-time Interpositioning

¢ The LD_PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc)by looking
in mymalloc.so first.

linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr)
malloc(32) = 0xe60010
free(0xe60010)
linux>

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpositioning Recap
¢ Compile Time

§ Apparent calls to malloc/free get macro-expanded into calls to
mymalloc/myfree

¢ Link Time
§ Use linker trick to have special name resolutions

§ malloc à __wrap_malloc
§ __real_malloc à malloc

¢ Load/Run Time
§ Implement custom version of malloc/free that use dynamic linking

to load library malloc/free under different names

