Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

-
Course Update

> Assignment 1 — Marking now

> Checkpoint 2 (7.5%) — This week
» Attend the lab as per Checkpoint 1

> Quiz 2 (5%) — Next week
» Cover all material in lectures and labs weeks 6-10
» Bring one double-sided A4 sheet of notes

> Final Exam — Closed Book
» Wednesday 12/11/2025 2-5:15pm
> Melville Hall

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Linking

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

m Linking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Example C Program

int sum(int *a, int n);
int arrayl2] = {1, 2};

int main()

{
int val = sum(array, 2);
return val;

main.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int sum(int *a, int n)

{

int i, s = 0;

for (i =0; i < n;
s += alil;

}

return s;

i++) {

sum.cC

Static Linking

m Programs are translated and linked using a compiler driver:
" linux> gcc -Og -0 prog main.c sum.cC

" linux> ./prog

Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
main.o sum. o Separately compiled
relocatable object files
A 4 A 4
Linker (Id)

l Fully linked executable object file
prog (contains code and data for all functions
defined in main.c and sum. c)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

-
Why Linkers?

m Reason 1: Modularity

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

e
Why Linkers? (cont)

m Reason 2: Efficiency

" Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

What Do Linkers Do?

m Step 1: Symbol resolution

= Programs define and reference symbols (global variables and functions):
= void swap() {..} /* define symbol swap */
= swap () ; /* reference symbol swap */
= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of structs

= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

e
What Do Linkers Do? (cont)

m Step 2: Relocation

= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail....

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

= Each .o fileis produced from exactly one source (. c) file

m Executable object file (a . out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Executable and Linkable Format (ELF)

m Standard binary format for object files

m One unified format for
= Relocatable object files (. 0),

= Executable object files (a.out)
= Shared object files (. so)

m Generic name: ELF binaries

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

-
ELF Object File Format

m ElIf header

= Word size, byte ordering, file type (.0, exec,

.50), machine type, etc. 0
ELF header

m Segment header table

® Page size, virtual addresses memory segments
(sections), segment sizes.

Segment header table
(required for executables)

. text section

m .text section

= Code . rodata section

. .data section
m .rodata section

.bss section

= Read only data: jump tables, ...

. .symtab section
m .data section

= |nitialized global variables

.rel.txt section

. .rel .data section
B .Dbss section

= Uninitialized global variables .debug section

= “Block Started by Symbol”
= “Better Save Space”

Section header table

" Has section header but occupies no space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

e
ELF Object File Format (cont.)

m .symtab section
" Symbol table ELF header
" Procedure and static variable names
= Section names and locations

Segment header table
(required for executables)

B .rel.text section
= Relocation info for . text section

= Addresses of instructions that will need to be
modified in the executable .data section

= |nstructions for modifying.

. text section

.rodata section

.bss section

m .rel.data section
= Relocation info for .data section

= Addresses of pointer data that will need to be .rel.txt section
modified in the merged executable

.symtab section

.rel.data section

m .debugsection

.debug section
= |nfo for symbolic debugging (gcc -g)

m Section header table Section header table

= Offsets and sizes of each section

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Linker Symbols

m Global symbols
= Symbols defined by module m that can be referenced by other modules.
= E.g.:non-static Cfunctions and non-static global variables.

m External symbols

= Global symbols that are referenced by module m but defined by some
other module.

m Local symbols

= Symbols that are defined and referenced exclusively by module m.

= E.g.: Cfunctions and global variables defined with the static
attribute.

" Local linker symbols are not local program variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Step 1: Symbol Resolution

Referencing

a global...
that s defined here /
int sum(ing xa, 1nt n); int sum(int *a, int n)
{
int arrayl[2] = {1, 2}; int i, s = 0;
int main() for (i = i< n; i++) {
{ s +=
t val = sum(array, 2); }
eturn val; return s;
} main.c } sum.cC
/
Defining \ \
a global Referencing Linker knows

Linker knows
nothing of val

a global...
...that’s defined here

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

nothingof i or s

16

Local Symbols

m Local non-static C variables vs. local static C variables

= |ocal non-static C variables: stored on the stack
® |ocal static C variables: stored in either .bss, or .data

int f()

{
SN TS L= U Compiler allocates space in .data for
return Xx; -

} each definition of x

int g() Creates local symbols in the symbol

{ table with unique names, e.g., x.1
static int x = 1; and x. 2.
return Xx;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

-
How Linker Resolves Duplicate Symbol

Definitions

m Program symbols are either strong or weak
= Strong: procedures and initialized globals
= Weak: uninitialized globals

pl.c p2.c
strong > int foo=5; int foo; |« weak
strong » PL() { P2 () { : strong
} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Linker’s Symbol Rules

m Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once

= QOtherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbols,

choose the strong symbol
= References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary

one
= Can override this with gcec —fno-common

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

I
Linker Puzzles

int x;) .

p1() {} p1() {} Link time error: two strong symbols (p1)
int x; int x; References to x will refer to the same

p1() {} p2() {} uninitialized int. Is this what you really want?
int x; double x;)) ioh) |

int y: p2() {} ertes to x in p2 might overwrite y!

pl() {} Evil!

int x=7; double x; Writes to x in p2 will overwrite y!

int y=5; p2() {} Nastv!

p1() {} Y

int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {} variable.

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

T
Global Variables

m Avoid if you can

m Otherwise
= Use static if youcan

= |nitialize if you define a global variable
= Use extern if you reference an external global variable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Step 2: Relocation

Relocatable Object Files Executable Object File
System code -text 0
4 Headers
System data -data System code)
\ main ()
] . text
main.o >
fext swap ()
main () - tex
q
int array[2]={1,2}| - data More system code
cum. o System data data
/ int array[2]={1,2}
sum () .text
.symtab
.debug

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Relocation Entries

int arrayl2] = {1, 2};

int main()

{
int val = sum(array, 2);
return val;

} main.c

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

a: R_X86_64_32 array # Relocation entry
e: €8 00 00 00 00 callg 13 <main+@x13> # sum()

f: R_X86_64_PC32 sum-0x4 # Relocation entry
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq

main.o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Source: Obj dump -r —d main.o 23

Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec
4004d4: be 02 00
4004d9: bf 18 10
4004de: e8
4004e3: 48 83 c4
4004e7: c3
00000000004004e8 <sum>:
4004e8: b8 00 00
4004ed: ba 00 00
400412: eb 09
400414 : 48 63 ca
400417 : 03 04 8f
4004fa: 83 c2 01
4004fd: 39 f2
4004ff: 7c 3
400501: f3 c3

08
00
60

08

00
00

00
00

00
00

sub
mov
mov
callqg
add
retq

$0x8,%rsp

$0x2,%esi

$0x601018,%edi # %edi = &array
4004e8 <sum> # sum()
$0x8,%rsp

$0x0,%eax
mov $0x0,%edx
jmp 4004fd <sum+0x15>
movslg %edx,%rcx

mov

add (%srdi,%srcx,4),%eax
add $0x1,%edx

cmp %esi,%sedx

jl 400414 <sum+@xc>
repz retgq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 +

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Source: objdump -dx prog

24

-
Loading Executable Object Files

Executable Object File

ELF header

Program header table
(required for executables)

.init section

text section

.rodata section

.data section

.bss section

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

0x400000

User stack
(created at runtime)

;

Memory-mapped region for
shared libraries

T

Memory
invisible to
I user code

+«—3rsp
(stack
pointer)

<«— brk

Run-time heap
(created bymalloc)

Read/write data segment
(.data, .bss)

Loaded
from

Read-only code segment
(.init, .text, .rodata)

y the
executable
file

Unused

25

Packaging Commonly Used Functions

m How to package functions commonly used by programmers?

= Math, I/0, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:

= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient

= Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

= More efficient, but burdensome on the programmer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Old-fashioned Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

" Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Creating Static Libraries

atoi.c printf.c random.c
Translator Translator Translator
atoi.o printf.o random. o

Archiver (ar)

l

libc.a C standard library

unix> ar rs libc.a \
atoi.o printf.o .. random.o

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-
Commonly Used Libraries

libc. a (the C standard library)
= 4.6 MB archive of 1496 object files.

= |/O, memory allocation, signal handling, string handling, data and time,
random numbers, integer math

libm. a (the C math library)
= 2 MB archive of 444 object files.

= floating point math (sin, cos, tan, log, exp, sqrt, ...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

% ar -t libc.a | sort % ar -t libm.a | sort
fork.o e acos.o

" e acosf.o

fprintf.o e acosh.o

fpu control.o e acoshf.o

fputc.o e acoshl.o

freopen.o e acosl.o

fscanf.o e asin.o

fseek.o e asinf.o

fstab.o e asinl.o

29

Linking with
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

{

addvec(x, y, z, 2);
printf("z = [%d %d]\n”,

z[0], zI[1]);
return 0;

¥ main2.c

libvector.a
e
-~ N
void addvec(int *x, int x*y,
int %z, int n) {
int 1ij;
for (i = 0; i < n; i++)
z[i] = x[i] + yl[i];
} addvec. c
void multvec(int *x, int %y,
int %z, int n)
{
int 1ij;
for (i = 0; i < n; i++)
z[i] = x[i] * yl[il;
} multvec.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

30

Linking with Static Libraries

addvec.o multvec.o

|

main2.c vector.h Archiver

| o

Translators

(cpp, ccl, as) libvector.a libc.a Static libraries
Rtejl.oc;v;‘f;ble main? . o addvec. o pch'.’n /tf . o” a:[a)l any ?th:;'
object files modules called by printf.o

\ |
Linker (1d)
prog2c Fully linked

executable object file

“c” for “compile-time”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Static Libraries

m Linker’s algorithm for resolving external references:
= Scan .o filesand . a files in the command line order.
= During the scan, keep a list of the current unresolved references.

= Aseachnew .oor .afile, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

= |f any entries in the unresolved list at end of scan, then error.

m Problem:
"= Command line order matters!
= Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function "main':

libtest.o(.text+0x4) : undefined reference to "libfun'

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Modern Solution: Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function needs libc)
= Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

m Modern solution: Shared Libraries

= QObject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, . so files

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Shared Libraries (cont.)

m Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-linux.so).

= Standard C library (Libc. so) usually dynamically linked.

m Dynamic linking can also occur after program has begun
(run-time linking).
= |n Linux, this is done by calls to the dlopen () interface.
= Distributing software.
= High-performance web servers.

= Runtime library interpositioning.

m Shared library routines can be shared by multiple processes.
= Take advantage of virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Dynamic Linking at Load-time

main2.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c

Translators /
(cpp, ccl, as) libec. so

i libvector.so
Relo€atab.le main? .o Relocation and symbol
object file i table info
Linker (1d)
PartiaII)f Iink(::d prog2l
executable object file l
Loader libec. so
(execve) libvector. so
Code and data
Fully linked Y
executable Dynamic linker (1d-1inux. so)

in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Dynamic Linking at Run-time

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()

{

void xkhandle;
void (*addvec)(int %, int *, int *, int);
char xerror;

~

/* Dynamically load the shared library that contains addvec() s,
handle = dlopen("./libvector.so"™, RTLD_LAZY);
if ('handle) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

¥ dll.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Dynamic Linking at Run-time

-

/* Get a pointer to the addvec() function we just loaded %/

addvec = dlsym(handle, "addvec");

if ((error = dlerror()) != NULL) {
fprintf(stderr, "%s\n", error);
exit(1);

}

-

/* Now we can call addvec() just like any other function %/
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0]l, zI[1]);

/* Unload the shared library x/

if (dlclose(handle) < 0) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

}

return 0;
} dll.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Linking Summary

m Linking is a technique that allows programs to be
constructed from multiple object files.

m Linking can happen at different times in a program’s
lifetime:

= Compile time (when a program is compiled)
" Load time (when a program is loaded into memory)

= Run time (while a program is executing)

m Understanding linking can help you avoid nasty errors and
make you a better programmer.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Today

m Case study: Library interpositioning

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

e
Case Study: Library Interpositioning

m Library interpositioning : powerful linking technique that
allows programmers to intercept calls to arbitrary

functions

m Interpositioning can occur at:

= Compile time: When the source code is compiled

= Link time: When the relocatable object files are statically linked to
form an executable object file

= [oad/run time: When an executable object file is loaded into
memory, dynamically linked, and then executed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

-
Some Interpositioning Applications

m Security
= Confinement (sandboxing)
= Behind the scenes encryption

m Debugging

" |n 2014, two Facebook engineers debugged a treacherous 1-year
old bug in their iPhone app using interpositioning

= Code in the SPDY networking stack was writing to the wrong
location

= Solved by intercepting calls to Posix write functions (write, writey,
pwrite)

Source: Facebook engineering blog post at
https://code.facebook.com/posts/313033472212144/debugging-

file-corruption-on-ios/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Some Interpositioning Applications

m Monitoring and Profiling
= Count number of calls to functions
" Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating address traces

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Example program

m Goal: trace the addresses
and sizes of the allocated

#include <stdio.h> and freed blocks, without
#include <malloc.h> breaking the program, and
S mesm without modifying the
{ source code.

int *p = malloc(32);

free(p);

return(0); m Three solutions: interpose
} int.c

on the l1ibmalloc and
free functions at compile

time, link time, and
load/run time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Compile-time Interpositioning

#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function x/
void xmymalloc(size_t size)

{
void x*ptr = malloc(size);
printf("malloc(%d)=%p\n",
(int)size, ptr);
return ptr;
}

/* free wrapper function x/
void myfree(void *xptr)

{
free(ptr);
printf("free(%sp)\n", ptr);
}

#endif mymalloc.c L,

Bryar

Compile-time Interpositioning

#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void xmymalloc(size_t size);
void myfree(void *ptr);
malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c

gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc

malloc (32)=0x1edc010
free (0x1ledc010)
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

e
Link-time Interpositioning

#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function x/
void *__wrap_malloc(size_t size)

{
void xptr = __real_malloc(size); /% Call libc malloc x/
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr;

}

/* free wrapper function x/
void __wrap_free(void xptr)

{
__real_free(ptr); /% Call libc free x/
printf("“free(%sp)\n", ptr);

}

#endif mymalloc.c

Brya e T O T T ey S T TS PO T T e TS P TS e C TV T T OTeTOT 146

Link-time Interpositioning

linux> make intl

gcc —-Wall -DLINKTIME -c mymalloc.c

gcc —-Wall -c int.c

gcc -Wall -Wl,--wrap,malloc -Wl,--wrap, free -o 1ntl
int.o mymalloc.o

linux> make runl

./intl

malloc (32) = 0x1aa0010
free(0x1aa0010)

linux>

m The “-W1” flag passes argument to linker, replacing each
comma with a space.

m The “--wrap,malloc” arg instructs linker to resolve
references in a special way:
= Refstomalloc should beresolvedas wrap malloc

" Refsto @ real malloc should beresolved asmalloc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

#ifdef RUNTIME Load/Run-time
o cre .
Finclude <stdio.h> Interpositioning

#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function *x/
void *malloc(size_t size)

{

void *(*mallocp)(size_t size);

char xerror;

mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc
*/

if ((error = dlerror()) != NULL) {
fputs(error, stderr);
exit(1);
}
char *ptr = mallocp(size); /* Call libc malloc *x/
printf("malloc(%d) = %p\n", (int)size, ptr);
return ptr; mymalloc.c

L o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Load/Run-time Interpositioning

/* free wrapper function x/

void free(void xptr)

{
void (xfreep)(void *) = NULL;
char xerror;

if (!ptr)
return;

freep = dlsym(RTLD_NEXT, "free"); /% Get address of libc free x/
if ((error = dlerror()) !'= NULL) {
fputs(error, stderr);
exit(1);
}
freep(ptr); /% Call libc free x/
printf("free(%sp)\n", ptr);
}
#endif

mymalloc.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Load/Run-time Interpositioning

linux> make intr

gcc -Wall -DRUNTIME -shared —-fpic -o mymalloc.so mymalloc.c -1dl
gcc -Wall -o 1ntr int.c

linux> make runr

(LD PRELOAD="./mymalloc.so" ./intr)

malloc (32) = 0xeo00010

free (0Oxeoc0010)

linux>

m The LD PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., tomalloc) by looking
inmymalloc. so first.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Interpositioning Recap

m Compile Time

= Apparent calls to malloc/free get macro-expanded into calls to
mymalloc/myfree

m Link Time
= Use linker trick to have special name resolutions
= malloc 2> __ wrap_malloc
= real_malloc 2 malloc
m Load/Run Time

" |Implement custom version of malloc/free that use dynamic linking
to load library malloc/free under different names

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

