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Course Update
Ø Assignment 1 – Marking now

Ø Checkpoint 2 (7.5%) – This week
Ø Attend the lab as per Checkpoint 1

Ø Quiz 2 (5%) – Next week
Ø Cover all material in lectures and labs weeks 6-10
Ø Bring one double-sided A4 sheet of notes

Ø Final Exam – Closed Book
Ø Wednesday 12/11/2025 2-5:15pm
Ø Melville Hall
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“for foundational discoveries and 
inventions that enable machine 
learning with artificial neural 
networks”
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Ø One half of the prize goes to Demis Hassabis and John Jumper, who have 
utilised artificial intelligence to successfully solve a problem that chemists 
wrestled with for over 50 years: predicting the three-dimensional structure 
of a protein from a sequence of amino acids. This has allowed them to 
predict the structure of almost all 200 million known proteins. 

Ø The other half of the prize is awarded to David Baker. He has developed 
computerised methods for achieving what many people believed was 
impossible: creating proteins that did not previously exist and which, in 
many cases, have entirely new functions.
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Program Optimization

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from 
Carnegie Mellon University:  https://www.cs.cmu.edu/~213/
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Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example
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Back in the Good Old Days, when the term "software" 
sounded funny and Real Computers were made out of drums
and vacuum tubes, Real Programmers wrote in machine code.
Not FORTRAN.  Not RATFOR.  Not, even, assembly language.
Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers. Directly.

  — “The Story of Mel, a Real Programmer”
       Ed Nather, 1983
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Rear Admiral Grace Hopper
§ First person to find an 

actual bug (a moth)
§ Invented first compiler in 

1951 (precursor to COBOL)
§ “I decided data processors 

ought to be able to write 
their programs in English, 
and the computers would 
translate them into 
machine code”
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John Backus
§ Developed FORTRAN in 

1957 for the IBM 704
§ Oldest machine-

independent programming 
language still in use today

§ “Much of my work has 
come from being lazy. I 
didn't like writing 
programs, and so, when I 
was working on the IBM 
701, I started work on a 
programming system to 
make it easier to write 
programs”
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Fran Allen
§ Pioneer of many optimizing 

compilation techniques
§ Wrote a paper in 1966 that 

introduced the concept of 
the control flow graph, 
which is still central to 
compiler theory today

§ First woman to win the 
ACM Turing Award
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Goals of compiler optimization
¢ Minimize number of instructions

§ Don’t do calculations more than once
§ Don’t do unnecessary calculations at all
§ Avoid slow instructions (multiplication, division)

¢ Avoid waiting for memory
§ Keep everything in registers whenever possible
§ Access memory in cache-friendly patterns
§ Load data from memory early, and only once

¢ Avoid branching
§ Don’t make unnecessary decisions at all
§ Make it easier for the CPU to predict branch destinations
§ “Unroll” loops to spread cost of branches over more instructions



12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory 
     Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.
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Limits to compiler optimization
¢ Generally cannot improve algorithmic complexity

§ Only constant factors, but those can be worth 10x or more…

¢ Must not cause any change in program behavior
§ Programmer may not care about “edge case” behavior,

but compiler does not know that
§ Exception: language may declare some changes acceptable

¢ Often only analyze one function at a time
§ Whole-program analysis (“LTO”) expensive but gaining popularity
§ Exception: inlining merges many functions into one

¢ Tricky to anticipate run-time inputs
§ Profile-guided optimization can help with common case, but…
§ “Worst case” performance can be just as important as “normal”
§ Especially for code exposed to malicious input

(e.g. network servers)
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Two kinds of optimizations

¢ Local optimizations 
work inside a single 
basic block 
§ Constant folding, 

strength reduction, dead 
code elimination, (local) 
CSE, …

¢ Global optimizations 
process the entire 
control flow graph of a 
function
§ Loop transformations, 

code motion, (global) 
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit
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Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example
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Next several slides can be done live…
¢ https://godbolt.org/z/Es5s8qsvj

¢ Go to Godbolt (the compiler explorer) to play around with 
C and the resulting assembly generated under different 
compiler optimizations (change the flag from –O3 to –Og, 
etc. to see more or less aggressive optimization).

https://godbolt.org/z/Es5s8qsvj
https://godbolt.org/z/Es5s8qsvj
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Constant folding
¢ Do arithmetic in the compiler

long mask = 0xFF << 8;    →
long mask = 0xFF00;

¢ Any expression with constant inputs can be folded
¢ Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik");   →
size_t namelen = 11;
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Dead code elimination
¢ Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

¢ Don’t emit code whose result is overwritten

x = 23;
x = 42;

¢ These may look silly, but...
§ Can be produced by other optimizations
§ Assignments to x might be far apart
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Common subexpression elimination
¢ Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
  →  
elt = &v[i];
x = elt->x;
y = elt->y;
norm[i] = x*x + y*y;
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Code motion
¢ Move calculations out of a loop
¢ Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
    a[n*i+j] = b[j];
 →
long j;
int ni = n*i;
for (j = 0; j < n; j++)
    a[ni+j] = b[j];
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Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 

int func(int y) {
  int tmp;
  if (y == 0) tmp = 0; else tmp = y - 1;
  if (0 == 0) tmp += 0; else tmp += 0 - 1;
  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
  return tmp;
} 
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Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 

int func(int y) {
  int tmp;
  if (y == 0) tmp = 0; else tmp = y - 1;
  if (0 == 0) tmp += 0; else tmp += 0 - 1;
  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
  return tmp;
} 

Always true Does nothing Can constant fold
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Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int func(int y) {
  int tmp;
  if (y == 0) tmp = 0; else tmp = y - 1;
  if (0 == 0) tmp += 0; else tmp += 0 - 1;
  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
  return tmp;
} 

int func(int y) {
  int tmp = 0;
  if (y != 0) tmp = y - 1;

  if (y != -1) tmp += y;
  return tmp;
} 
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Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Why couldn’t compiler optimize this away?

movq    $0, (%rsi)
        pxor    %xmm0, %xmm0
.L4:
        addsd   (%rdi), %xmm0
        movsd   %xmm0, (%rsi)
        addq    $8, %rdi
        cmpq    %rcx, %rdi
        jne     .L4
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Must consider possibility that these updates will affect program behavior

double A[9] = 
  { 0,   1,   2,
    4,   8,  16},
   32,  64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] = 
  { 0,   1,   2,
    0,   8,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    0,   8,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    1,   8,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,   8,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,   0,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,   3,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,   6,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,  22,  16},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,  22,   0},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,  22,  32},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,  22, 96},
   32,  64, 128};

double A[9] = 
  { 0,   1,   2,
    3,  22, 224},
   32,  64, 128};
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§ Use a local variable for intermediate results
§ Use restrict keyword

§ Tells compiler that this is the “only” pointer to that memory location 

pxor    %xmm0, %xmm0
.L4:
        addsd   (%rdi), %xmm0
        addq    $8, %rdi
        cmpq    %rax, %rdi
        jne     .L4
        movsd   %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
    }
}

Avoiding Aliasing Penalties
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Move function calls out of loops
void lower_quadratic(char *s) {
  size_t i;
  for (i = 0; i < strlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
  size_t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z') {
      s[i] += 'a' - 'A';
      n = strlen(s);
    }
}

void lower_linear(char *s) {
  size_t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] += 'a' - 'A';
} Lots more examples of this kind of bug: 

accidentallyquadratic.tumblr.com
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Can’t move function calls out of loops
void lower_quadratic(char *s) {
  size_t i;
  for (i = 0; i < strlen(s); i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
  size_t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z') {
      s[i] += 'a' - 'A’;
      n = strlen(s);
    }
}

void lower_linear(char *s) {
  size_t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] += 'a' - 'A';
}

after 
each 
change

every 
iteration
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Strength Reduction
¢ x = y * 4 à x = y << 2
¢ Replace expensive operations with cheaper ones
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Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example
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Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates
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¢ Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing 
to fetch instructions, may waste tens of cycles doing nothing!

404663:  mov $0x0,%eax
404668:  cmp (%rdi),%rsi
40466b:  jge 404685
40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …
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¢ Guess which way branch will go
§ Begin executing instructions at predicted position
§ But don’t actually modify register or memory data

404663:  mov $0x0,%eax
404668:  cmp (%rdi),%rsi
40466b:  jge 404685
40466d:  mov 0x8(%rdi),%rax

. . .

404685:  repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here
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401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

Branch Prediction Through Loop
401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
array length = 100

Read 
invalid 
location

Executed

Fetched
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401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add    $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029

401029:  mulsd  (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume 
array length = 100

Branch Misprediction Invalidation

Invalidate
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Branch Misprediction Recovery

¢ Performance Cost
§ Multiple clock cycles on modern processor
§ Can be a major performance limiter

401029:  mulsd (%rdx),%xmm0,%xmm0
40102d:  add $0x8,%rdx
401031:  cmp %rax,%rdx
401034:  jne 401029
401036:  jmp 401040
. . .
401040:  movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline
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Branch Prediction Numbers
¢ A simple heuristic:

§ Backwards branches are often loops, so predict taken 
§ Forwards branches are often ifs, so predict not taken
§ >95% prediction accuracy just with this!

¢ Fancier algorithms track behavior of each branch
§ Subject of ongoing research
§ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-

program.htm): 34.1 mispredictions per 1000 instructions
§ Current research focuses on the remaining handful of

“impossible to predict” branches (strongly data-dependent,
no correlation with history)
§ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

¢ Deep Learning https://arxiv.org/abs/2112.14911

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf
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Optimizing for Branch Prediction

¢ Reduce # of branches
§ Transform loops
§ Unroll loops
§ Use conditional moves

§ Not always a good idea

¢ Make branches 
predictable
§ Sort data 

https://stackoverflow.com/questions/11227809

§ Avoid indirect branches
§ function pointers
§ virtual methods

.Loop:
    movzbl 0(%rbp,%rbx), %edx
    leal   -65(%rdx), %ecx
    cmpb   $25, %cl
    ja     .Lskip
    addl   $32, %edx
    movb   %dl, 0(%rbp,%rbx)
.Lskip:
    addl   $1, %rbx
    cmpq   %rax, %rbx
    jb     .Loop

.Loop:
    movzbl 0(%rbp,%rbx), %edx

movl %edx, %esi
    leal   -65(%rdx), %ecx
    addl   $32, %edx
    cmpb   $25, %cl

cmova %esi, %edx
    movb   %dl, 0(%rbp,%rbx)
    addl   $1, %rbx
    cmpq   %rax, %rbx
    jb     .Loop

Memory write 
now 

unconditional!

https://stackoverflow.com/questions/11227809
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Loop Unrolling
¢ Amortize cost of loop condition by duplicating body
¢ Creates opportunities for CSE, code motion, scheduling
¢ Prepares code for vectorization
¢ Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
    A[i] = B[i]*k + C[i];
}

for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i  ] = B[i  ]*k + C[i  ];

A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?
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Scheduling
¢ Rearrange instructions to make it easier for the CPU

to keep all functional units busy
¢ For instance, move all the loads to the top of an

unrolled loop
§ Now maybe it’s more obvious why we need lots of registers

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];

    A[i  ] = B0*k + C0;
    A[i+1] = B1*k + C1;
    A[i+2] = B2*k + C2;
    A[i+3] = B3*k + C3;
}

for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i  ] = B[i  ]*k + C[i  ];
    A[i+1] = B[i+1]*k + C[i+1];
    A[i+2] = B[i+2]*k + C[i+2];
    A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?
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Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example
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Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{
 size_t len;
 data_t *data;
} vec;

/* retrieve vector element
   and store at val */
int get_vec_element
  (*vec v, size_t idx, data_t *val)
{
 if (idx >= v->len)
  return 0;
 *val = v->data[idx];
 return 1;
}

len
data

0 1 len-1

¢ Data Types
§ Use different declarations 

for data_t
§ int
§ long
§ float
§ double
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Benchmark Computation

¢ Data Types
§ Use different declarations 

for data_t
§ int
§ long
§ float
§ double

¢ Operations
§ Use different definitions of 

OP and IDENT
§  + / 0
§  * / 1

void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
    }
}

Compute sum or 
product of vector 
elements
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Cycles Per Element (CPE)
¢ Convenient way to express performance of program that operates on 

vectors or lists
¢ Length = n
¢ In our case: CPE = cycles per OP
¢ Cycles = CPE*n + Overhead

§ CPE is slope of line
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Benchmark Performance
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
    }
}

Compute sum or 
product of vector 
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Results in CPE (cycles per element)
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Basic Optimizations

¢ Move vec_length out of loop
¢ Avoid bounds check on each cycle
¢ Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)
{
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}
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Effect of Basic Optimizations
void combine4(vec_ptr v, data_t *dest)
{
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01
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Loop Unrolling

void unroll2a_combine(vec_ptr v, data_t *dest)
{
    long length = vec_length(v);
    long limit = length-1;
    data_t *d = get_vec_start(v);
    data_t x0 = IDENT;
    data_t x1 = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x0 = x0 OP d[i];
       x1 = x1 OP d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
 x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}
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Loop Unrolled Assembly
¢ Remember modern CPU designs

§ Multiple functional units

¢ So how many cycles should this loop take to execute?

.L3:
        imulq   (%rdx), %rcx
        addq    $16, %rdx
        imulq   -8(%rdx), %rdi
        cmpq    %r8, %rdx
        jne     .L3
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Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Unroll 0.81 1.51 1.51 2.51
Multiple 

instructions 
every cycle!
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Going Further
¢ Compiler optimizations are an easy gain

§ 20 CPE down to 3-5 CPE

¢ With careful hand tuning and computer architecture 
knowledge
§ 4-16 elements per cycle
§ Newest compilers are closing this gap

¢ Use gprof
Ø gcc –Og –pg prog.c –o prog // -pg enables profiling

Ø ./prog file.txt  // generates gmon.out
Ø gprof prog. // analysis of gmon.out data
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Summary: Getting High Performance
¢ Good compiler and flags
¢ Don’t do anything sub-optimal

§ Watch out for hidden algorithmic inefficiencies
§ Write compiler-friendly code

§ Watch out for optimization blockers: 
procedure calls & memory references

§ Look carefully at innermost loops (where most work is done)

¢ Tune code for machine
§ Exploit instruction-level parallelism
§ Avoid unpredictable branches
§ Make code cache friendly


