
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update
Ø Assignment 1 – Marking now

Ø Checkpoint 2 (7.5%) – This week
Ø Attend the lab as per Checkpoint 1

Ø Quiz 2 (5%) – Next week
Ø Cover all material in lectures and labs weeks 6-10
Ø Bring one double-sided A4 sheet of notes

Ø Final Exam – Closed Book
Ø Wednesday 12/11/2025 2-5:15pm
Ø Melville Hall

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“for foundational discoveries and
inventions that enable machine
learning with artificial neural
networks”

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Ø One half of the prize goes to Demis Hassabis and John Jumper, who have
utilised artificial intelligence to successfully solve a problem that chemists
wrestled with for over 50 years: predicting the three-dimensional structure
of a protein from a sequence of amino acids. This has allowed them to
predict the structure of almost all 200 million known proteins.

Ø The other half of the prize is awarded to David Baker. He has developed
computerised methods for achieving what many people believed was
impossible: creating proteins that did not previously exist and which, in
many cases, have entirely new functions.

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Program Optimization

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Back in the Good Old Days, when the term "software"
sounded funny and Real Computers were made out of drums
and vacuum tubes, Real Programmers wrote in machine code.
Not FORTRAN. Not RATFOR. Not, even, assembly language.
Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers. Directly.

 — “The Story of Mel, a Real Programmer”
 Ed Nather, 1983

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rear Admiral Grace Hopper
§ First person to find an

actual bug (a moth)
§ Invented first compiler in

1951 (precursor to COBOL)
§ “I decided data processors

ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

John Backus
§ Developed FORTRAN in

1957 for the IBM 704
§ Oldest machine-

independent programming
language still in use today

§ “Much of my work has
come from being lazy. I
didn't like writing
programs, and so, when I
was working on the IBM
701, I started work on a
programming system to
make it easier to write
programs”

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fran Allen
§ Pioneer of many optimizing

compilation techniques
§ Wrote a paper in 1966 that

introduced the concept of
the control flow graph,
which is still central to
compiler theory today

§ First woman to win the
ACM Turing Award

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization
¢ Minimize number of instructions

§ Don’t do calculations more than once
§ Don’t do unnecessary calculations at all
§ Avoid slow instructions (multiplication, division)

¢ Avoid waiting for memory
§ Keep everything in registers whenever possible
§ Access memory in cache-friendly patterns
§ Load data from memory early, and only once

¢ Avoid branching
§ Don’t make unnecessary decisions at all
§ Make it easier for the CPU to predict branch destinations
§ “Unroll” loops to spread cost of branches over more instructions

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization
¢ Generally cannot improve algorithmic complexity

§ Only constant factors, but those can be worth 10x or more…

¢ Must not cause any change in program behavior
§ Programmer may not care about “edge case” behavior,

but compiler does not know that
§ Exception: language may declare some changes acceptable

¢ Often only analyze one function at a time
§ Whole-program analysis (“LTO”) expensive but gaining popularity
§ Exception: inlining merges many functions into one

¢ Tricky to anticipate run-time inputs
§ Profile-guided optimization can help with common case, but…
§ “Worst case” performance can be just as important as “normal”
§ Especially for code exposed to malicious input

(e.g. network servers)

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

¢ Local optimizations
work inside a single
basic block
§ Constant folding,

strength reduction, dead
code elimination, (local)
CSE, …

¢ Global optimizations
process the entire
control flow graph of a
function
§ Loop transformations,

code motion, (global)
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next several slides can be done live…
¢ https://godbolt.org/z/Es5s8qsvj

¢ Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from –O3 to –Og,
etc. to see more or less aggressive optimization).

https://godbolt.org/z/Es5s8qsvj
https://godbolt.org/z/Es5s8qsvj

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant folding
¢ Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

¢ Any expression with constant inputs can be folded
¢ Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination
¢ Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

¢ Don’t emit code whose result is overwritten

x = 23;
x = 42;

¢ These may look silly, but...
§ Can be produced by other optimizations
§ Assignments to x might be far apart

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common subexpression elimination
¢ Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
 →
elt = &v[i];
x = elt->x;
y = elt->y;
norm[i] = x*x + y*y;

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code motion
¢ Move calculations out of a loop
¢ Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
 →
long j;
int ni = n*i;
for (j = 0; j < n; j++)
 a[ni+j] = b[j];

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;
 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;
 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

Always true Does nothing Can constant fold

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;
 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

int func(int y) {
 int tmp = 0;
 if (y != 0) tmp = y - 1;

 if (y != -1) tmp += y;
 return tmp;
}

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Why couldn’t compiler optimize this away?

movq $0, (%rsi)
 pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 movsd %xmm0, (%rsi)
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Must consider possibility that these updates will affect program behavior

double A[9] =
 { 0, 1, 2,
 4, 8, 16},
 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] =
 { 0, 1, 2,
 0, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 0, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 1, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 0, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 3, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 6, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 0},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 32},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 96},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 224},
 32, 64, 128};

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

§ Use a local variable for intermediate results
§ Use restrict keyword

§ Tells compiler that this is the “only” pointer to that memory location

pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L4
 movsd %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
 }
}

Avoiding Aliasing Penalties

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Move function calls out of loops
void lower_quadratic(char *s) {
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] += 'a' - 'A';
 n = strlen(s);
 }
}

void lower_linear(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
} Lots more examples of this kind of bug:

accidentallyquadratic.tumblr.com

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops
void lower_quadratic(char *s) {
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] += 'a' - 'A’;
 n = strlen(s);
 }
}

void lower_linear(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

after
each
change

every
iteration

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strength Reduction
¢ x = y * 4 à x = y << 2
¢ Replace expensive operations with cheaper ones

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

404663: mov $0x0,%eax
404668: cmp (%rdi),%rsi
40466b: jge 404685
40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Guess which way branch will go
§ Begin executing instructions at predicted position
§ But don’t actually modify register or memory data

404663: mov $0x0,%eax
404668: cmp (%rdi),%rsi
40466b: jge 404685
40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

Branch Prediction Through Loop
401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Read
invalid
location

Executed

Fetched

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Branch Misprediction Invalidation

Invalidate

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Recovery

¢ Performance Cost
§ Multiple clock cycles on modern processor
§ Can be a major performance limiter

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029
401036: jmp 401040
. . .
401040: movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Numbers
¢ A simple heuristic:

§ Backwards branches are often loops, so predict taken
§ Forwards branches are often ifs, so predict not taken
§ >95% prediction accuracy just with this!

¢ Fancier algorithms track behavior of each branch
§ Subject of ongoing research
§ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-

program.htm): 34.1 mispredictions per 1000 instructions
§ Current research focuses on the remaining handful of

“impossible to predict” branches (strongly data-dependent,
no correlation with history)
§ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

¢ Deep Learning https://arxiv.org/abs/2112.14911

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Branch Prediction

¢ Reduce # of branches
§ Transform loops
§ Unroll loops
§ Use conditional moves

§ Not always a good idea

¢ Make branches
predictable
§ Sort data

https://stackoverflow.com/questions/11227809

§ Avoid indirect branches
§ function pointers
§ virtual methods

.Loop:
 movzbl 0(%rbp,%rbx), %edx
 leal -65(%rdx), %ecx
 cmpb $25, %cl
 ja .Lskip
 addl $32, %edx
 movb %dl, 0(%rbp,%rbx)
.Lskip:
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

.Loop:
 movzbl 0(%rbp,%rbx), %edx

movl %edx, %esi
 leal -65(%rdx), %ecx
 addl $32, %edx
 cmpb $25, %cl

cmova %esi, %edx
 movb %dl, 0(%rbp,%rbx)
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

Memory write
now

unconditional!

https://stackoverflow.com/questions/11227809

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling
¢ Amortize cost of loop condition by duplicating body
¢ Creates opportunities for CSE, code motion, scheduling
¢ Prepares code for vectorization
¢ Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
 A[i] = B[i]*k + C[i];
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];

A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scheduling
¢ Rearrange instructions to make it easier for the CPU

to keep all functional units busy
¢ For instance, move all the loads to the top of an

unrolled loop
§ Now maybe it’s more obvious why we need lots of registers

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];

 A[i] = B0*k + C0;
 A[i+1] = B1*k + C1;
 A[i+2] = B2*k + C2;
 A[i+3] = B3*k + C3;
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];
 A[i+1] = B[i+1]*k + C[i+1];
 A[i+2] = B[i+2]*k + C[i+2];
 A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{
 size_t len;
 data_t *data;
} vec;

/* retrieve vector element
 and store at val */
int get_vec_element
 (*vec v, size_t idx, data_t *val)
{
 if (idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

len
data

0 1 len-1

¢ Data Types
§ Use different declarations

for data_t
§ int
§ long
§ float
§ double

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Computation

¢ Data Types
§ Use different declarations

for data_t
§ int
§ long
§ float
§ double

¢ Operations
§ Use different definitions of

OP and IDENT
§ + / 0
§ * / 1

void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cycles Per Element (CPE)
¢ Convenient way to express performance of program that operates on

vectors or lists
¢ Length = n
¢ In our case: CPE = cycles per OP
¢ Cycles = CPE*n + Overhead

§ CPE is slope of line

0

500

1000

1500

2000

2500

0 50 100 150 200

C
yc
le
s

Elements

psum1
Slope = 9.0

psum2
Slope = 6.0

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Performance
void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Results in CPE (cycles per element)

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Optimizations

¢ Move vec_length out of loop
¢ Avoid bounds check on each cycle
¢ Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Basic Optimizations
void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

void unroll2a_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolled Assembly
¢ Remember modern CPU designs

§ Multiple functional units

¢ So how many cycles should this loop take to execute?

.L3:
 imulq (%rdx), %rcx
 addq $16, %rdx
 imulq -8(%rdx), %rdi
 cmpq %r8, %rdx
 jne .L3

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Unroll 0.81 1.51 1.51 2.51
Multiple

instructions
every cycle!

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Going Further
¢ Compiler optimizations are an easy gain

§ 20 CPE down to 3-5 CPE

¢ With careful hand tuning and computer architecture
knowledge
§ 4-16 elements per cycle
§ Newest compilers are closing this gap

¢ Use gprof
Ø gcc –Og –pg prog.c –o prog // -pg enables profiling

Ø ./prog file.txt // generates gmon.out
Ø gprof prog. // analysis of gmon.out data

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Getting High Performance
¢ Good compiler and flags
¢ Don’t do anything sub-optimal

§ Watch out for hidden algorithmic inefficiencies
§ Write compiler-friendly code

§ Watch out for optimization blockers:
procedure calls & memory references

§ Look carefully at innermost loops (where most work is done)

¢ Tune code for machine
§ Exploit instruction-level parallelism
§ Avoid unpredictable branches
§ Make code cache friendly

