Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

-
Course Update

> Assignment 1 — Marking now

> Checkpoint 2 (7.5%) — This week
» Attend the lab as per Checkpoint 1

> Quiz 2 (5%) — Next week
» Cover all material in lectures and labs weeks 6-10
» Bring one double-sided A4 sheet of notes

> Final Exam — Closed Book
» Wednesday 12/11/2025 2-5:15pm
> Melville Hall

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

They used physics to find
patterns in information

This year’s laureates used tools from physics to construct
methods that helped lay the foundation for today’s
powerful machine learning. John Hopfield created a
structure that can store and reconstruct information.
Geoffrey Hinton invented a method that can
independently discover properties in data and which has
become important for the large artificial neural networks
now in use. © Johan Jarnestad/The Royal Swedish Academy of Sciences

“for foundational discoveries and
inventions that enable machine
learning with artificial neural
networks”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

They cracked the code
for proteins' amazing
structures

The Nobel Prize in Chemistry 2024 is about proteins,
life’s ingenious chemical tools. David Baker has
succeeded with the almost impossible feat of building
entirely new kinds of proteins. Demis Hassabis and John
Jumper have developed an Al model to solve a 50-year-
old problem: predicting proteins’ complex structures. © Johan Jarnestad/The Royal Swedish Academy of Sciences
These discoveries hold enormous potential.

» One half of the prize goes to Demis Hassabis and John Jumper, who have
utilised artificial intelligence to successfully solve a problem that chemists
wrestled with for over 50 years: predicting the three-dimensional structure
of a protein from a sequence of amino acids. This has allowed them to
predict the structure of almost all 200 million known proteins.

» The other half of the prize is awarded to David Baker. He has developed
computerised methods for achieving what many people believed was
impossible: creating proteins that did not previously exist and which, in
many cases, have entirely new functions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Program Optimization

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

Principles and goals of compiler optimization
Examples of optimizations

Obstacles to optimization
Machine-dependent optimization

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Back in the Good Old Days, when the term "software”
sounded funny and Real Computers were made out of drums
and vacuum tubes, Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even, assembly language.
Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— “The Story of Mel, a Real Programmer”
Ed Nather, 1983

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Rear Admiral Grace Hopper

" First person to find an
actual bug (a moth)

" |nvented first compiler in
1951 (precursor to COBOL)

= “| decided data processors
ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

Qze\c’w*?o ?Af\ c.‘
\Mo'lk) n (2 \qu\ J

5 ' o
LIl o8 ;_v ~ ;‘.“ .
FO‘TJT Ak+\a‘ “(.'..-’;Lc. é‘f bq' L¢‘r\ {O\Anl.
fg"‘” l\}a—-\'f,} }.4»&\’ 1 ‘
Qe :4"',1 W .

John Backus

= Developed FORTRAN in
1957 for the IBM 704

" Oldest machine-
independent programming
language still in use today

= “Much of my work has
come from being lazy. |
didn't like writing
programs, and so, when |
was working on the IBM
701, | started work on a
programming system to
make it easier to write
programs”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fran Allen

" Pioneer of many optimizing
compilation techniques

" Wrote a paperin 1966 that
introduced the concept of
the control flow graph,
which is still central to
compiler theory today

" First woman to win the
ACM Turing Award

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10

Goals of compiler optimization

m Minimize number of instructions
= Don’t do calculations more than once
" Don’t do unnecessary calculations at all
= Avoid slow instructions (multiplication, division)

m Avoid waiting for memory

= Keep everything in registers whenever possible
= Access memory in cache-friendly patterns

" Load data from memory early, and only once

m Avoid branching

= Don’t make unnecessary decisions at all
= Make it easier for the CPU to predict branch destinations
= “Unroll” loops to spread cost of branches over more instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Example Memory
, Hierarchy "%/ .,

CPU registers hold words

Smaller, retrieved from the L1 cache.
faster, L1:/ L1 cache\
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2 L2 cache

(SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache

L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds
cheaper disk blocks retrieved
(per byte) from local disks.
storage | 5. Local secondary storage
devices (local disks)
Local disks hold files

v retrieved from disks
on remote servers

L6: Remote secondary storage
(e.g., Web servers)

Bryant anfl O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Fdition 12

Limits to compiler optimization

m Generally cannot improve algorithmic complexity
® Only constant factors, but those can be worth 10x or more...

m Must not cause any change in program behavior

" Programmer may not care about “edge case” behavior,
but compiler does not know that

= Exception: language may declare some changes acceptable

m Often only analyze one function at a time
= Whole-program analysis (“LTO”) expensive but gaining popularity
= Exception: inlining merges many functions into one

m Tricky to anticipate run-time inputs

= Profile-guided optimization can help with common case, but...
= “Worst case” performance can be just as important as “normal”

= Especially for code exposed to malicious input
(e.g. network servers)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

-
Two kinds of optimizations

entry
m Local optimizations |
work inside a single setup
basic block |
= Constant folding, Easy?
strength reduction, dead [
code elimination, (local) —

CSE, ... easy complex

m Global optimizations |
process the entire 1
control flow graph of a 1o0p
function l

" Loop transformations, Done? —
code motion, (global) .
CSE, ... '

exit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Examples of optimizations

N

N

m Obstacles to optimization

m Machine-dependent optimization
N

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Next several slides can be done live...

m https://godbolt.org/z/Es5s8qsvij

m Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from —03 to —Og,
etc. to see more or less aggressive optimization).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

https://godbolt.org/z/Es5s8qsvj
https://godbolt.org/z/Es5s8qsvj

Constant folding
m Do arithmetic in the compiler

long mask = OxFF << 8; -
long mask = OxFFOO;

m Any expression with constant inputs can be folded
m Might even be able to remove library calls...

size_t namelen = strlen("Harry Bovik"); >
size t namelen 11;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Dead code elimination

m Don’t emit code that will never be executed

" . n o
J

if (1){ puts("Only bozos on this bus"); %

m Don’t emit code whose result is overwritten

X—')QO

X

|
NS
N

m These may look silly, but...
= Can be produced by other optimizations
= Assignments to X might be far apart

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Common subexpression elimination

m Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
9

elt = &v[i];

X = elt->x;

y = elt->y;

norm[i] = Xx*x + y*y;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Code motion

m Move calculations out of a loop
m Only valid if every iteration would produce same result

long J;

for (j = 0; j < n; j++)
a[n*i+j] = b[J];

9

long 7j;

int ni = n*1i;

for (j = 0; j < n; Jj++)
a[ni+j] = b[3];

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

]
Inlining
m Copy body of a function into its caller(s)

= Can create opportunities for many other optimizations

= Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) { int func(int y) {
if (x == 0) int tmp;
return 9; .] _ .
olse if (y == 0) tmp = 0; else tmp =y - 1;
return x - 1; if (0 == 0) tmp += 0O; else tmp += 0 - 1;
} if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

int func(int y) { return tmp;

return pred(y) by
+ pred(0)
+ pred(y+1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

-
Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int pred(int x) { int func(int y) {
if (x == 0) int tmp;
elsereturn o if (y == 0) tmp = 0; else tmp =y - 1;
return x - 1; if (0 == 9) tmp += @; else tmp += @ - 1;
} if (y+1 == 0) tmp += @; else tmp += (y + 1) - 1;
int func(int y) { return tmp;
return pred(y) ¥
+ pred(0)
+ pred(y+1); Always true Does nothing Can constant fold

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

-
Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations

= Can make code much bigger and therefore slower

int func(int y) { int func(int y) {
int tmp; int tmp = 9;
if (y == @) tmp = 0; else tmp =y - 1; if (y '=90) tmp =y - 1;
if (y+1 == @) tmp += 0; else tmp += (y + 1) - 1; if (y !'= -1) tmp += y;
return tmp; return tmp;

} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

N

N

m Obstacles to optimization

m Machine-dependent optimization
N

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

-
Memory Aliasing

/*¥ Sum rows of n X n matrix a and store in vector b. */
void sum_rowsl(double *a, double *b, long n) {

long i, J;
for (1 =0; 1 < n; i++) {
b[i] = ©;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

movq $0, (%rsi)

pxor %Xmmo, %xmme
.L4:

addsd (%rdi), %xmmo

movsd %xmm@, (%rsi)

addq $8, %rdi

cmpq %rcx, %rdi

jne .L4

" Code updates b[1] on every iteration
= Why couldn’t compiler optimize this away?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

-
Memory Aliasing

/*¥ Sum rows of n X n matrix a and store in vector b. */
void sum_rowsl(double *a, double *b, long n) {

long i, j;
for (1 =0; 1 < n; i++) {
b[i] = ©;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

}
}
Value of B:
double A[9] = double A[9] = init: [4, 8, 16]
{o, 1, 2, {o, 1, 2, T
4, 8, 16}, 3, 22, 224}, o
32, 64, 128}; 32, 64, 128}; 42w Sy Ey el

double B[3] = A+3; i=1: [3, 22, 16]

sum rowsl (A, B, 3); i=2: [3, 22, 224]

"= Code updates b[1] on every iteration
= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

-
Avoiding Aliasing Penalties

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
long i, J;
for (1 =0; 1 < n; i++) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

pxor %Xmmo, %xmme
.L4:

addsd (%rdi), %xmmo

addq $8, %rdi

cmpq %rax, %rdi

jne .L4

movsd %xmm@, (%rsi)

= Use a local variable for intermediate results
= Use restrict keyword
= Tells compiler that this is the “only” pointer to that memory location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Move function calls out of loops

void lower_quadratic(char *s) {
size t 1i;

for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' 8& s[i] <= 'Z") “every feration
s[i] += "a' - 'A’; 75M 1
}
void lower_still quadratic(char *s) {
size t i, n = strlen(s); é
for (i = @; 1 < n; i++) §SMk
if (s[i] >= 'A' && s[i] <= 'Z') { g
S[i] += Ial - IAI’. g
n = strlen(s); £
} 25M ~ strlen called
after each change
}
void lower_linear(char *s) {
. . strlen called once
size t i, n = strlen(s); 0-
for (i = 0; i < n; i++) 0kB 8 kB 16 kB 24'kB 32 kB
if (S[i] >s= '"A' && S[i] <= 'Z') String size (characters)
s[i] += 'a' - 'A"; . .
} Lots more examples of this kind of bug:

accidentallyquadratic.tumblr.com

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Can’t move function calls out of loops

void lower_quadratic(char *s) {
size t 1i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] += 'a' - 'A’;

}

void lower_still quadratic(char *s) {
size t i, n = strlen(s);
for (1 =0; i < n; i++)
if (s[i] >= 'A" && s[i] <= 'Z') {
s[i] += 'a' - 'A’;
n = strlen(s);

}

void lower_linear(char *s) {
size t i, n = strlen(s);
for (1 =0; i < n; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] += 'a' - 'A’;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instructions executed

1M+

750K A

500K A

250K A

every

iteration

after
each
change

0 kB 8 kB 16 kB 24 kB 32 kB

String size (characters)

29

Strength Reduction

mX=y*¥4>x=y<<2
m Replace expensive operations with cheaper ones

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

N
m Machine-dependent optimization

m Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

31

Modern CPU Design

Instruction Control

: Retirement
E. Unit

File

Fetch Address
Control

Register [igi i Instructions

Decode

Operations

Instruction

Cache

Register Updates Prediction OK?

Functional
Units

Operation Results

Execution

Addr. Addr.

Data

Data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32

Branches Are A Challenge

m Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov $0x0,%eax } :
404668: cmp %rdi) ,%rsi Executing

40466d: mov 0x8 (%$rdi) ,%rax .
() which way to

branch ...

404685: repz retq

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Branch Prediction

m Guess which way branch will go

= Begin executing instructions at predicted position

= But don’t actually modify register or memory data

404663:
404668:
40466b:
40466d:

404685:

mov $0x0, $eax

cmp rdi) ,%rsi
jge 404685

mov 0x8 (%$rdi) ,%rax

repz retq

) Predict Taken

Continue
Fetching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Here

34

Branch Prediction Through Loop

401029: mulsd (%rdx),%$xmmO,$xmmO Assume
40102d: add $0x8, $rdx array length = 100
401031: cmp %$rax, srdx .
401034: jne 401029 i=9
Predict Taken (OK)
401029: mulsd $rdx) , $xmmO0 , $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx
401034: jne 401029 i =99
— 7 Predict Taken

401029: mulsd (3rdx),%xmm0,$xmm0 (Oops) T
40102d: add $0x8,%rdx T
401031: cmp $rax, srdx Read Executed
401034: jne 401029 i=100 invalid

7 location
401029: mulsd $rdx) , $xmmO0 , $xmmO
40102d: add $0x8,%rdx Fetched
401031: cmp $rax, $rdx _L
401034: jne 401029 i =101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

35

-
Branch Misprediction Invalidation

401029: mulsd (%rdx),%$xmmO,$xmmO Assume

40102d: add $S0x8, $rdx array length = 100
401031: cmp $rax, srdx .

401034: jne 401029 i =98

Predict Taken (OK)

401029: mulsd $rdx) , $xmmO0 , $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx

401034: Jne 401029 i=99
— Predict Taken

: . . . 7 (Oops)

. 7 7 \
40102d: add —$0x8,3rdx
401034: 3ne 401029 i=100

% > Invalidate

201034 jne 401029 i=101 J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Branch Misprediction Recovery

401029: mulsd (%rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx .= 99

401031: cmp %rax,%rdx I'= Definitely not taken
401034: jne 401029

401036: Jmp 401040 — Reload

401040: movsd %$xmm0, ($rl2) } Pipeline

m Performance Cost
= Multiple clock cycles on modern processor

= Can be a major performance limiter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Branch Prediction Numbers

m A simple heuristic:
= Backwards branches are often loops, so predict taken

= Forwards branches are often ifs, so predict not taken
= >95% prediction accuracy just with this!

m Fancier algorithms track behavior of each branch
= Subject of ongoing research

= 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-
program.htm): 34.1 mispredictions per 1000 instructions

= Current research focuses on the remaining handful of
“impossible to predict” branches (strongly data-dependent,
no correlation with history)

= e.g. https://hps.ece.utexas.edu/pub/PruettPatt BranchRunahead.pdf
m Deep Learning https://arxiv.org/abs/2112.14911

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

Optimizing for Branch Prediction

m Reduce # of branches
" Transform loops
= Unroll loops
= Use conditional moves
= Not always a good idea
m Make branches
predictable
= Sort data

https://stackoverflow.com/questions/11227809

" Avoid indirect branches
= function pointers
= virtual methods

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.Loop:
movzbl O(%rbp,%rbx), %edx
leal -65(%rdx), %ecx
cmpb $25, %cl
33 —skip
addl $32, %edx
movb %dl, @(%rbp,%rbx)
add $1, %rbx
cmpq %rax, %rbx
jb .Loop

.Loop:
movzbl O(%rbp,%rbx), %edx
movl %edx, %esi
leal -65(%rdx), %ecx
addl $32, %edx
cmpb $25, %cl
cmova %esi, %edx
movb %dl, @(%rbp,%rbx)
addl $1, %rbx
cmpq %rax, %rbx Memory write
jb .Loop now

unconditional!

39

https://stackoverflow.com/questions/11227809

Loop Unrolling

m Amortize cost of loop condition by duplicating body
m Creates opportunities for CSE, code motion, scheduling
m Prepares code for vectorization
m Can hurt performance by increasing code size
for (size t i = 0; i < nelts; i++) { for (size t i =0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i]; A[i] =B[1i J]*k + C[i];
} A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

When would this change be incorrect?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Scheduling

m Rearrange instructions to make it easier for the CPU
to keep all functional units busy

m Forinstance, move all the loads to the top of an
unrolled loop

= Now maybe it’s more obvious why we need lots of registers

for (size_t i =0; i < nelts - 4; i +=4) { for (size_t i =0; i < nelts - 4; i +=4) {
A[i] =B[i J]*k + C[i]; BO = B[i]; Bl = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
A[i+1] = B[i+1]*k + C[i+1]; €O = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
A[i+2] = B[i+2]*k + C[i+2]; A[i] = Bo*k + Co;
A[i+3] = B[i+3]*k + C[i+3]; A[i+1] = Bl*k + C1;
} A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;
}

When would this change be incorrect?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Today

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

42

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size t len;

data t *data;
} vec;

m Data Types

= Use different declarations
fordata_t

" int

" long

" float

" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

len 0 1
data >

len-1

/* retrieve vector element
and store at val */
int get vec element
(*vec v, size t idx, data t *val)
{
if (idx >= v->len)
return O;
*val v->data[idx];
return 1;

43

-
Benchmark Computation

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
m Data Types m Operations
= Use different declarations = Use different definitions of
fordata_t OP and IDENT
" int = + /0
" long = % /]
"= float

" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m Inour case: CPE = cycles per OP
m Cycles = CPE*n + Overhead

= CPE is slope of line

2500
2000
psuml
Slope =9.0
1500
(73]
(V]
)
>
© 1000
/ psum2
500 = Slope = 6.0
O I I I
0 50 100 150 200
Elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Performance

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8

Results in CPE (cycles per element)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Basic Optimizations

void combine4 (vec _ptr v, data t *dest)
{

long 1i;

long length = vec length(v) ;

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)
t =t OP d[i];

*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle

m Accumulate in temporary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Effect of Basic Optimizations

void combine4 (vec _ptr v, data t *dest)
{

long 1i;

long length = vec length(v) ;

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[1i];

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8
Combine4 1.27 3.01 3.01 5.01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

- ______0_00_000__]
Loop Unrolling

void unroll2a combine(vec ptr v, data t *dest)

{
long length = vec length(v);

long limit = length-1;
data t *d = get vec start(v);

data t x0 = IDENT;
data t x1 = IDENT;
long i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 x0 OP d[i];

x1l = x1 OP d[i+l];

}

/* Finish any remaining elements */
for (; i < length; i++) ({
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

-
Loop Unrolled Assembly

m Remember modern CPU designs
= Multiple functional units

m So how many cycles should this loop take to execute?

.L3:
imulqg (%rdx) , %rcx
addg $16, %rdx
imulg -8 (%rdx), %rdi
cmpg %r8, %rdx
jne .L3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Effect of Loop Unrolling

Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8
Combine4 1.27 3.01 3.01 5.01
Unroll 0.81 1.51 1.51 2.51
Multiple
instructions
every cycle!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Going Further

m Compiler optimizations are an easy gain
= 20 CPE down to 3-5 CPE

m With careful hand tuning and computer architecture
knowledge
= 4-16 elements per cycle
= Newest compilers are closing this gap

m Usegprof
» gcc -0g -pg prog.c —-o prog // -pg enables profiling
» ./prog file.txt // generates gmon.out
» gprof prog. // analysis of gmon.out data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Summary: Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= Look carefully at innermost loops (where most work is done)

m Tune code for machine

= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

