Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

After this lecture

m You will be able to:
= Describe the steps to debug complex code failures
= |dentify ways to manage the complexity when programming
= State guidelines for communicating the intention of the code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
" Naming
"= Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atlas-Centaur

m Centaur second stage failed after entering an
uncontrolled spin

" |nvestigation - turbopumps relied on gas expansion and clogged
from plastic remnants of scouring pads

= Proposed Solution - Bake off plastic

m Next launch — second stage failed after entering an ...
= Further investigation — a valve had been leaking for years

= Increased need for engine efficiency pushed this leak into
failure range

m What happened?

" The second time they reproduced the failure

https://www.thespacereview.com/article/1321/1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Defects, Errors, & Failures

1. The programmer creates a defect (or a fault)
2. The defect (maybe) causes an error
wrong results in data values or control signals
3. The error propagates
4. The error causes a failure

a component or system does not produce the
intended result at an interface

Why is an error not necessarily a failure? Because errors can
be masked or detected. Example: ECC memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Curse of Debugging

m Not every defect causes a failure!
= A defect can be latent or active
= A defectin code that doesn’t get executed most of the time...

m Testing can only show the presence of [defects] — not
their absence. (Dijkstra 1972)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Defects to Failures

m Code with defects will introduce erroneous state or

control
Variable and input values
= Correct code may valid
: 7Tv |
propagate this state 1 —" state
t
= Eventually an erroneous Program ‘rroneous code
. y S!;illt‘s @ . ‘ ’
state is observed P L } Error in
: ‘ [L1 state
é]
m Some executions will not ¢ 2CO,
= |
trigger the defect 4 T T Tx
. £ T
= QOthers will not propagate '
erroneous state
£ 7
Observer sees failure

m Debugging sifts through |
the code to find the defect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

-
Explicit Debugging

m Stating the problem
= Describe the problem aloud or in writing
= A.k.a. “Rubber duck” or “teddy bear” method

= Often a comprehensive problem description is sufficient to solve
the failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Scientific Debugging

m Before debugging, you need to construct a hypothesis as
to what is the defect
" Propose a possible defect and why it explains the failure conditions
= Don’t have an idea? What experiments would give you useful info?

m Occam’s Razor — given several hypotheses, pick the
simplest / closest to current work

Failing

Code RUNS
Problem Other
Description Runs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Scientific Debugging

= Make predictions based on your hypothesis
= What do you expect to happen under new conditions

[Prediction]
= What experiments?
= \What collection mechanism? [vaothesis] [Experiment]

/

= What data could confirm or refute your hypothesis

= How can | collect that data? /

= Does the data refute the hypothesis? \
= Refine the hypothesis based on the new inputs [Obsewation]

& Conclusion

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

-
Scientific Debugging

m A set of experiments has confirmed the hypothesis
= This is the diagnosis of the defect

m Develop a fix for the defect

m Run experiments to confirm the fix
= QOtherwise, how do you know that it is fixed?
" |nthe real world, you often add a test here

Diagnosis Fix Confirm

\. J \. J \. J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Code with a Bug

int fib(int n) $ gcc -o fib fib.c

{ £fib (9) =55
int £, £f0 =1, £f1 = 1; fib (8) =34
while (n > 1) {

n=n-1;

£ib (2)=2

£f = £0 + £1; _
£0 = £1: fib(1)=134513905
fl1 = £; 4

}

return f£;

}
A defect has caused a failure.
int main(..) {

for (1 =19; 1 >0, 1=7) How do we know it’s a failure?
printf (“fib (%d)=%d\n”, iol h
i £ib(i)); It violates the spec.

First, know what SHOULD happen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))
= We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
int f; F is uninitialized

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Brute Force Approach

m First, compilation flags
= MUST include “-Wall”
= Should include “~-Werror”

Prompt> gcc -Wall -Werror -03 -o badfib badfib.c

badfib.c: In function ‘fib’:
badfib.c:12:5: error: ‘f’ may be used uninitialized in this

function [-Werror=maybe-uninitialized]

return f£;
A

ccl: all warnings being treated as errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

] . .
03 badfib badfib.c

prompt>gcc - -0
prompt>. /badfib

Brute Force Approac :::

fib (2)=2

fib (1) =0

m First, compilation flags: “-W £ib (0) =0
= MUST include “-Wall” prompt>gcc -02 -o badfib badfib.c

prompt>. /badfib
= Should include “~-Werror”

m Second, other optimization £ib(2)=2
fib (1) =0
" Try atleast—-03 and -00 £ib (0) =0
prompt>gcc -01 -o badfib badfib.c
prompt>. /badfib

fib (2)=2

fib(1)=9

fib (0)=9

prompt>gcc -00 -o badfib badfib.c
prompt>. /badfib

£i£(2)=2
fib (1) =2
fib (0)=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edit

Brute Force Approach

m First, compilation flags: “-Wall -Werror”
= MUST include “~-Wall”
= Should include “-Werror”

m Second, other optimization levels
" Try at least -03 and —0O0

m Valgrind (even if your program appears to be working!)
®= Run on both-03 and -00

® Only run after all warnings are gone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

prompt> gcc -g -03 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1462== Command: badfib

==1462==

£fib (9)=55

fib (8) =34

fib (7)=21

fib (6)=13

fib (5)=8

fib(4)=5

£ib Valgrind is not perfect. On —03 it finds no errors!

fib (2) =2

fib(1)=0

£fib (0)=0

Bryant aid._ﬂ’lalarﬂ,gaﬁger Systems: A Programmer’s Perspective, Third Edition 17

prompt> gcc -g -00 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julia
==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h
==1561== Command: badfib

==1561==

fib (9) =55

fib (8) =34

fib (7)=21

fib (6)=13

fib (5)=8

fib(4)=5

£ib Valgrind is not perfect, but pretty good.

fib (2)=2

==1561== Conditional jump or move depends on uninitialise

==1561== at O0x4E988DA: vfprintf (vfprintf.c:1642)
Bryant aadQjalgr@®) Tomputer Systems Py pera R AR BA P D Hitiogypri ntf (Drintf o 33) 18

LLM Gives Hypotheses Also

€ Common Causes of Incorrect Fibonacci Output

1. Uninitialized or incorrectly assigned base cases

Make sure your function handles the base cases correctly:

) return
) return

2. Integer overflow

If you're using int instead of long long , values beyond fib(u46) will overflow a 32-
bit integer. But fib(1) shouldn't be affected unless memory is being corrupted.

3. Incorrect recursion or memoization

If you're using an array to store computed values, make sure it's properly initialized and
indexed. A bug in memoization could cause fib(1) to be overwritten.

4. Global/static variable reuse

If you're using global or static variables, they might retain values from previous calls or
iterations.

5. Buffer overrun or memory corruption

If you're using an array and accessing out-of-bounds indices, it could corrupt memory and
lead to bizarre outputs.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Constructing a Hypothesis

m Specification defined the first Fibonacci number as 1
= We have observed working runs (e.g., fib(2))
= We have observed a failing run
= We then read the code

m fib(1) failed // Hypothesis
Code Hypothesis
for(i=9;..) Result depends on order of calls
while (n > 1) { Loop check is incorrect
int f; F is uninitialized

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Prediction

m Propose a new condition or conditions
= What will logically happen if your hypothesis is correct?
= What data can be

m fib(1) failed // Hypothesis
= // Result depends on order of calls
= |f fib(1) is called first, it will return correctly.
= // Loop check is incorrect
= Change to n>=1 and run again.
= //fis uninitialized
= Changetointf=1;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Experiment

m ldentical to the conditions of a prior run
= Except with one condition changed
m Conditions

" Program input, using a debugger, altering the code

m fib(1) failed // Hypothesis
= |f fib(1) is called first, it will return correctly.
= Fails.
" Changeton>=1
= fib(1)=2
= fib(0)=...
" Changetointf=1;

= Works. Sometimes a prediction can be a fix.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Observation

m What is the observed result?
= Factual observation, such as “Calling fib(1) will return 1.”
" The conclusion will interpret the observation(s)

m Don’t interfere.

= printf() can interfere for some kinds of bugs!

= Like quantum physics, sometimes observations are part of the
experiment

m Proceed systematically.

= Update the conditions incrementally so each observation relates to
a specific change

m Do NOT ever proceed past first bug.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Debugging Tools

m Observing program state can require a variety of tools
= Debugger (e.g., gdb)
= What state is in local / global variables (if known)
= What path through the program was taken

= Valgrind
= Does execution depend on uninitialized variables

= Are memory accesses ever out-of-bounds

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

]
Diagnosis
m A scientific hypothesis that explains the current

observations and makes future predictions becomes a
theory

= We’'ll call this a diagnosis

m Use the diagnosis to develop a fix for the defect
= Avoid post hoc, ergo propter hoc fallacy
= QOr correlation does not imply causation

m Understand why the defect and fix relate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Fix and Confirm

m Confirm that the fix resolves the failure

m If you fix multiple perceived defects, which fix was for the
failure?

" Be systematic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Learn

m Common failures and insights
= Why did the code fail?

= What are my common defects?

m Assertions and invariants

= Add checks for expected behavior
= N.b., Assertions must not have side effects
= Extend checks to detect the fixed failure

m Testing

= Every successful set of conditions is added to the test suite

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Quick and Dirty

m Not every problem needs scientific debugging
= Set a time limit: (for example)

= 0 minutes —-Wall, valgrind

= 1-10 minutes — Informal Debugging

= 10 - 60 minutes — Scientific Debugging

= > 60 minutes — Take a break / Ask for help

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Common Bugs...

Use of uninitialized variables
Unused values

Unreachable code

Memory leaks

Interface misuse

Null pointers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Outline

m Debugging
= Defects and Failures
= Scientific Debugging
= Tools

m Design
= Managing complexity
= Communication
= Naming
= Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

R
Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
= Cost to build, cost to operate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

R
Design

m A good design needs to achieve many things:
= Performance
= Availability
= Modifiability, portability
= Scalability
= Security
= Testability
= Usability
= Cost to build, cost to operate

But above all else: it must be readable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

R
Design

Good Design does:
Complexity Management &
Communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

-
Complexity

m There are well known limits to how much complexity a
human can manage easily.

VoL. 63, No. 2 MarcH, 1956

THE PSYCHOLOGICAL REVIEW

THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO:
SOME LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION *

GEORGE A. MILLER

Harvard University

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Complexity Management

m However, patterns can be very helpful...

COGNITIVE PSYCHOLOGY 4, 55-81 (1973)

Perception in Chess’

WiLiaM G. CHASE AND HERBERT A. SiMON
Carnegie-Mellon University

This paper develops a technique for isolating and studying the per-
ceptual structures that chess players perceive. Three chess players of varying
strength — from master to novice — were confronted with two tasks: (1)
A perception task, where the player reproduces a chess position in plain
view, and (2) de Groot’s (1965) short-term recall task, where the player
reproduces a chess position after viewing it for 5 sec. The successive glances
at the position in the perceptual task and long pauses in the memory task
were used to segment the structures in the reconstruction protocol. The size
and nature of these structures were then analyzed as a function of chess skill.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Complexity Management

Many techniques have been developed to help manage
complexity:

Separation of concerns
Modularity

Reusability

Extensibility

Don’t repeat yourself - DRY
Abstraction

Information Hiding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

-
Managing Complexity
m Given the many ways to manage complexity

= Design code to be testable
= Try to reuse testable chunks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Complexity Example

m Split a wordle tool access into three+ testable
components

= State all of the steps that the tool requires

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Complexity Example

m Split a wordle tool access into three+ testable
components
= State all of the steps that the tool requires

Read in dictionary file
Create struct to hold each word
Is that struct appropriate for complexity / input?

Read in guess + green / yellow from stdin
Search for other words that would fit
Sort words based on maximum information gained

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Designs need to be testable

m Testable design
= Testing versus Contracts
" These are complementary techniques

m Testing and Contracts are

= Acts of design more than verification
= Acts of documentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Designs need to be testable

m Testable design
= Testing versus Contracts
" These are complementary techniques

m Testing and Contracts are

= Acts of design more than verification
= Acts of documentation: executable documentation!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Testable design is modular

m Modular code has: separation of concerns, encapsulation,
abstraction

= Leads to: reusability, extensibility, readability, testability

m Separation of concerns

= Create helper functions so each function does “one thing”
= Functions should neither do too much nor too little

= Avoid duplicated code

m Encapsulation, abstraction, and respecting the interface

= Each module is responsible for its own internals
" No outside code “intrudes” on the inner workings of another module

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

The compiler can be helpful!

m Use plenty of temporary variables
m Use plenty of functions
m Let compiler do the math

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Communication

When writing code, the author is communicating with:
m The machine

m Other developers of the system
m Code reviewers
N

Their future self

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Communication

There are many techniques that have been developed
around code communication:

Tests

Naming
Comments
Commit Messages
Code Review
Design Patterns

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Naming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

46

Avoid deliberately meaningless names:

Pull requests Issues Marketplace Explore

Repositories Showing 8,937,025 available code results ® Sort: Best match +

| Code +

alexef/gobject-introspection

Commits + ,
tests/scanner/foo.h

Issues #ifndef __FOO_OBIECT_H__
#define _ FOO_OBIECT_H__
Packages
#include <glib-object.h>
Marketplace #include <gio/gio.h> /* GAsyncReadyCallback */

#include "utility.h"

80-0860800

Topics
" #define FOO_SUCCESS_INT 9x1138
Wikis
U #define FOO_DEFINE_SHOULD_BE_EXPOSED "should be exposed"
sers
@ C Showing the top three matches Last indexed on Jun 25, 2018

Languages

PHP 26,699 388 alexef/gobject-introspection

tests/scanner/foo.c

JavaScript 8,942,989

E #include "girepository.h"

Python 7,892,881

HTML 4228224 * A hidden type not exposed publicly, similar to GUPNP's XML wrapper

o object *
Ces 4,093,394 typedef struct _FooHidden FooHidden;
Ruby 4,021,592
int foo_init_argv (int argc, char **argv);

Java 2,891,173

et p— @ C Showing the top four matches Last indexed on Jun 25, 2018

ex 012,

XML 2,599,848

2% 47

Bryant an

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Better naming practices

1. Start with meaning and intention

Use words with precise meanings (avoid “data”, “info”,
“perform”)

Prefer fewer words in names
Avoid abbreviations in names
Use code review to improve names

Read the code out loud to check that it sounds okay

N o U ReWw

Actually rename things

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Describe Meaning

m Use descriptive names.

m Avoid names with no meaning: a, foo, blah, tmp, etc

m There are reasonable exceptions:
vold swap (int* a, int* b) {

int tmp = *a;
*a = *by;
*b = tmp;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Use a large vocabulary

m Be more specific when possible:
= Person -> Employee

m What s size in this binaryTree?

struct binaryTree {

int size;
height
numChildren
subTreeNumNodes
keyLength

Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Use opposites precisely

m Consistently use opposites in standard pairs
= first/end -> first/last

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

53

Don’t Comments

= Don’t restate what the code does
= because the code already says that

= Don’t explain awkward logic

= improve the code to make it clear

= Don’t add too many comments

= jt’s messy, and they get out of date

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

T
Awkward Code

m Imagine someone (TA, employer, etc) has to read your
code

= Would you rather rewrite or comment the following?

(* (void **) ((* (void **) (bp)) + DSIZE)) = (*(void **) (bp + DSIZE));

= How about?
bp->prev->next = bp->next;

= Both lines update program state in the same way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Do Comments

m Answer the question: why the code exists

m When should | use this code?
m When shouldn’t | use it?

m What are the alternatives to this code?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

How to write good comments

1. Code by commenting!
Write short comment
1. Helps you think about design & overcome blank-page problem
2. Single line comments
3. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot wvalue

// Reorder array around the pivot
// Recurse

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and revised comments

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Commit Messages

m Committing code to a source repository is a vital part of
development
" Protects against system failures and typos:
= cat foo.c versus cat > foo.c
" The commit messages are your record of your work
= Communicating to your future self
= Describe in one line what you did
“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is ...”

m Use branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Summary

m Programs have defects
= Be systematic about finding them

m Programs are more complex than humans can manage

= Write code to be manageable

m Programming is not solitary, even if you are
communicating with a grader or a future self

= Be understandable in your communication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Acknowledgements

m Some debugging content derived from:
" http://www.whyprogramsfail.com/slides.php

m Some code examples for design are based on:
= “The Art of Readable Code”. Boswell and Foucher. 2011.

m Lecture originally written by

= Michael Hilton and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

http://www.whyprogramsfail.com/slides.php
http://www.whyprogramsfail.com/slides.php

