
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

After this lecture
¢ You will be able to:

§ Describe the steps to debug complex code failures
§ Identify ways to manage the complexity when programming
§ State guidelines for communicating the intention of the code

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline
¢ Debugging

§ Defects and Failures
§ Scientific Debugging
§ Tools

¢ Design
§ Managing complexity
§ Communication
§ Naming
§ Comments

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atlas-Centaur
¢ Centaur second stage failed after entering an

uncontrolled spin
§ Investigation - turbopumps relied on gas expansion and clogged

from plastic remnants of scouring pads
§ Proposed Solution - Bake off plastic

¢ Next launch – second stage failed after entering an …
§ Further investigation – a valve had been leaking for years

§ Increased need for engine efficiency pushed this leak into
failure range

¢ What happened?
§ The second time they reproduced the failure

https://www.thespacereview.com/article/1321/1

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects, Errors, & Failures
1. The programmer creates a defect (or a fault)
2. The defect (maybe) causes an error
 wrong results in data values or control signals
3. The error propagates
4. The error causes a failure
 a component or system does not produce the
intended result at an interface

Why is an error not necessarily a failure? Because errors can
be masked or detected. Example: ECC memory.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Curse of Debugging
¢ Not every defect causes a failure!

§ A defect can be latent or active
§ A defect in code that doesn’t get executed most of the time…

¢ Testing can only show the presence of [defects] – not
their absence. (Dijkstra 1972)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects to Failures
¢ Code with defects will introduce erroneous state or

control
§ Correct code may

propagate this state
§ Eventually an erroneous

state is observed

¢ Some executions will not
trigger the defect
§ Others will not propagate

erroneous state

¢ Debugging sifts through
the code to find the defect

Error in
state

valid
state

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Debugging
¢ Stating the problem

§ Describe the problem aloud or in writing
§ A.k.a. “Rubber duck” or “teddy bear” method

§ Often a comprehensive problem description is sufficient to solve
the failure

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Hypothesis

Problem
Description

Code Failing
Runs

Other
Runs

¢ Before debugging, you need to construct a hypothesis as
to what is the defect
§ Propose a possible defect and why it explains the failure conditions
§ Don’t have an idea? What experiments would give you useful info?

¢ Occam’s Razor – given several hypotheses, pick the
simplest / closest to current work

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Prediction

Experiment

Observation
& Conclusion

Hypothesis

§ Make predictions based on your hypothesis
§ What do you expect to happen under new conditions
§ What data could confirm or refute your hypothesis

§ How can I collect that data?
§ What experiments?
§ What collection mechanism?

§ Does the data refute the hypothesis?
§ Refine the hypothesis based on the new inputs

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Diagnosis Fix Confirm

¢ A set of experiments has confirmed the hypothesis
§ This is the diagnosis of the defect

¢ Develop a fix for the defect

¢ Run experiments to confirm the fix
§ Otherwise, how do you know that it is fixed?
§ In the real world, you often add a test here

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code with a Bug
int fib(int n)
{
 int f, f0 = 1, f1 = 1;
 while (n > 1) {
 n = n - 1;
 f = f0 + f1;
 f0 = f1;
 f1 = f;
 }
 return f;
}

int main(..) {
..
 for (i = 9; i > 0; i--)
 printf(“fib(%d)=%d\n”,
 i, fib(i));

$ gcc -o fib fib.c
fib(9)=55
fib(8)=34
...
fib(2)=2
fib(1)=134513905

A defect has caused a failure.

How do we know it’s a failure?
It violates the spec.
First, know what SHOULD happen.

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis
¢ Specification defined the first Fibonacci number as 1

§ We have observed working runs (e.g., fib(2))
§ We have observed a failing run
§ We then read the code

¢ fib(1) failed // Hypothesis

Code Hypothesis
for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
¢ First, compilation flags

§ MUST include “-Wall”
§ Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c
badfib.c: In function ‘fib’:
badfib.c:12:5: error: ‘f’ may be used uninitialized in this
function [-Werror=maybe-uninitialized]
 return f;
 ^
cc1: all warnings being treated as errors

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
¢ First, compilation flags: “-Wall –Werror”

§ MUST include “-Wall”
§ Should include “-Werror”

¢ Second, other optimization levels
§ Try at least –O3 and –O0

prompt>gcc -O3 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=0
fib(0)=0
prompt>gcc -O2 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=0
fib(0)=0
prompt>gcc -O1 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=9
fib(0)=9
prompt>gcc -O0 -o badfib badfib.c
prompt>./badfib
...
fib(2)=2
fib(1)=2
fib(0)=2

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach
¢ First, compilation flags: “-Wall –Werror”

§ MUST include “-Wall”
§ Should include “-Werror”

¢ Second, other optimization levels
§ Try at least –O3 and –O0

¢ Valgrind (even if your program appears to be working!)
§ Run on both –O3 and –O0
§ Only run after all warnings are gone!

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O3 -o badfib badfib.c
prompt> valgrind badfib
==1462== Memcheck, a memory error detector
==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==1462== Command: badfib
==1462==
fib(9)=55

fib(8)=34
fib(7)=21
fib(6)=13
fib(5)=8
fib(4)=5
fib(3)=3
fib(2)=2

fib(1)=0
fib(0)=0
==1462==

Valgrind is not perfect. On –O3 it finds no errors!

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O0 -o badfib badfib.c
prompt> valgrind badfib
==1561== Memcheck, a memory error detector
==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==1561== Command: badfib
==1561==
fib(9)=55

fib(8)=34
fib(7)=21
fib(6)=13
fib(5)=8
fib(4)=5
fib(3)=3
fib(2)=2

==1561== Conditional jump or move depends on uninitialised value(s)
==1561== at 0x4E988DA: vfprintf (vfprintf.c:1642)
==1561== by 0x4EA0F25: printf (printf.c:33)

Valgrind is not perfect, but pretty good.

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LLM Gives Hypotheses Also

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis
¢ Specification defined the first Fibonacci number as 1

§ We have observed working runs (e.g., fib(2))
§ We have observed a failing run
§ We then read the code

¢ fib(1) failed // Hypothesis

Code Hypothesis
for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prediction
¢ Propose a new condition or conditions

§ What will logically happen if your hypothesis is correct?
§ What data can be

¢ fib(1) failed // Hypothesis
§ // Result depends on order of calls

§ If fib(1) is called first, it will return correctly.
§ // Loop check is incorrect

§ Change to n >= 1 and run again.
§ // f is uninitialized

§ Change to int f = 1;

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experiment
¢ Identical to the conditions of a prior run

§ Except with one condition changed

¢ Conditions
§ Program input, using a debugger, altering the code

¢ fib(1) failed // Hypothesis
§ If fib(1) is called first, it will return correctly.

§ Fails.
§ Change to n >= 1

§ fib(1)=2
§ fib(0)=...

§ Change to int f = 1;
§ Works. Sometimes a prediction can be a fix.

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Observation
¢ What is the observed result?

§ Factual observation, such as “Calling fib(1) will return 1.”
§ The conclusion will interpret the observation(s)

¢ Don’t interfere.
§ printf() can interfere for some kinds of bugs!
§ Like quantum physics, sometimes observations are part of the

experiment

¢ Proceed systematically.
§ Update the conditions incrementally so each observation relates to

a specific change

¢ Do NOT ever proceed past first bug.

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Tools
¢ Observing program state can require a variety of tools

§ Debugger (e.g., gdb)
§ What state is in local / global variables (if known)
§ What path through the program was taken

§ Valgrind
§ Does execution depend on uninitialized variables
§ Are memory accesses ever out-of-bounds

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Diagnosis
¢ A scientific hypothesis that explains the current

observations and makes future predictions becomes a
theory
§ We’ll call this a diagnosis

¢ Use the diagnosis to develop a fix for the defect
§ Avoid post hoc, ergo propter hoc fallacy
§ Or correlation does not imply causation

¢ Understand why the defect and fix relate

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fix and Confirm
¢ Confirm that the fix resolves the failure

¢ If you fix multiple perceived defects, which fix was for the
failure?
§ Be systematic

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learn
¢ Common failures and insights

§ Why did the code fail?
§ What are my common defects?

¢ Assertions and invariants
§ Add checks for expected behavior

§ N.b., Assertions must not have side effects
§ Extend checks to detect the fixed failure

¢ Testing
§ Every successful set of conditions is added to the test suite

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quick and Dirty
¢ Not every problem needs scientific debugging

§ Set a time limit: (for example)
§ 0 minutes – -Wall, valgrind
§ 1 – 10 minutes – Informal Debugging
§ 10 – 60 minutes – Scientific Debugging
§ > 60 minutes – Take a break / Ask for help

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Bugs…
¢ Use of uninitialized variables
¢ Unused values
¢ Unreachable code
¢ Memory leaks
¢ Interface misuse
¢ Null pointers

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline
¢ Debugging

§ Defects and Failures
§ Scientific Debugging
§ Tools

¢ Design
§ Managing complexity
§ Communication
§ Naming
§ Comments

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design
¢ A good design needs to achieve many things:

§ Performance
§ Availability
§ Modifiability, portability
§ Scalability
§ Security
§ Testability
§ Usability
§ Cost to build, cost to operate

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design
¢ A good design needs to achieve many things:

§ Performance
§ Availability
§ Modifiability, portability
§ Scalability
§ Security
§ Testability
§ Usability
§ Cost to build, cost to operate

But above all else: it must be readable

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

Good Design does:
 Complexity Management &
 Communication

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity
¢ There are well known limits to how much complexity a

human can manage easily.

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management
¢ However, patterns can be very helpful...

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management
Many techniques have been developed to help manage
complexity:
¢ Separation of concerns
¢ Modularity
¢ Reusability
¢ Extensibility
¢ Don’t repeat yourself - DRY
¢ Abstraction
¢ Information Hiding
¢ ...

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Complexity
¢ Given the many ways to manage complexity

§ Design code to be testable
§ Try to reuse testable chunks

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example
¢ Split a wordle tool access into three+ testable

components
§ State all of the steps that the tool requires
 Convert address into tag, set index, block offset
 Look up the set using the set index
 Check if the tag matches any line in the set
 If so, hit
 If not a match, miss, then
 Find the LRU block
 Evict the LRU block
 Read in the new line from memory
 Update LRU
 Update dirty if the access was a store

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example
¢ Split a wordle tool access into three+ testable

components
§ State all of the steps that the tool requires
 Read in dictionary file
 Create struct to hold each word
 Is that struct appropriate for complexity / input?
 Read in guess + green / yellow from stdin
 Search for other words that would fit
 Sort words based on maximum information gained

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable
¢ Testable design

§ Testing versus Contracts
§ These are complementary techniques

¢ Testing and Contracts are
§ Acts of design more than verification
§ Acts of documentation

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable
¢ Testable design

§ Testing versus Contracts
§ These are complementary techniques

¢ Testing and Contracts are
§ Acts of design more than verification
§ Acts of documentation: executable documentation!

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testable design is modular
¢ Modular code has: separation of concerns, encapsulation,

abstraction
§ Leads to: reusability, extensibility, readability, testability

¢ Separation of concerns
§ Create helper functions so each function does “one thing”
§ Functions should neither do too much nor too little
§ Avoid duplicated code

¢ Encapsulation, abstraction, and respecting the interface
§ Each module is responsible for its own internals
§ No outside code “intrudes” on the inner workings of another module

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The compiler can be helpful!
¢ Use plenty of temporary variables
¢ Use plenty of functions
¢ Let compiler do the math

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication
When writing code, the author is communicating with:
¢ The machine
¢ Other developers of the system
¢ Code reviewers
¢ Their future self

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication
There are many techniques that have been developed
around code communication:
¢ Tests
¢ Naming
¢ Comments
¢ Commit Messages
¢ Code Review
¢ Design Patterns
¢ ...

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid deliberately meaningless names:

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.
If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Better naming practices
1. Start with meaning and intention
2. Use words with precise meanings (avoid “data”, “info”,

“perform”)
3. Prefer fewer words in names
4. Avoid abbreviations in names
5. Use code review to improve names
6. Read the code out loud to check that it sounds okay
7. Actually rename things

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning
¢ Use descriptive names.
¢ Avoid names with no meaning: a, foo, blah, tmp, etc

¢ There are reasonable exceptions:
void swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use a large vocabulary
¢ Be more specific when possible:

§ Person -> Employee

¢ What is size in this binaryTree?
struct binaryTree {
 int size;
 …
};

height
numChildren
subTreeNumNodes
keyLength

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use opposites precisely
¢ Consistently use opposites in standard pairs

§ first/end -> first/last

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comments

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Don’t Comments
§ Don’t restate what the code does

§ because the code already says that

§ Don’t explain awkward logic
§ improve the code to make it clear

§ Don’t add too many comments
§ it’s messy, and they get out of date

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Awkward Code
¢ Imagine someone (TA, employer, etc) has to read your

code
§ Would you rather rewrite or comment the following?

§ How about?

§ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Do Comments
¢ Answer the question: why the code exists

¢ When should I use this code?
¢ When shouldn’t I use it?
¢ What are the alternatives to this code?

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments
1. Code by commenting!

Write short comment
1. Helps you think about design & overcome blank-page problem
2. Single line comments
3. Example: Write four one-line comments for quick sort

// Initialize locals
// Pick a pivot value

// Reorder array around the pivot
// Recurse

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments
1. Write short comments of what the code will do.

1. Single line comments
2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex
2. Join / Split comments as needed

4. Maintain code and revised comments

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commit Messages
¢ Committing code to a source repository is a vital part of

development
§ Protects against system failures and typos:

§ cat foo.c versus cat > foo.c
§ The commit messages are your record of your work

§ Communicating to your future self
§ Describe in one line what you did

“Parses command line arguments”
“fix bug in unique tests, race condition not solved”
“seg list finished, performance is …”

¢ Use branches

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Programs have defects

§ Be systematic about finding them

¢ Programs are more complex than humans can manage
§ Write code to be manageable

¢ Programming is not solitary, even if you are
communicating with a grader or a future self
§ Be understandable in your communication

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Acknowledgements
¢ Some debugging content derived from:

§ http://www.whyprogramsfail.com/slides.php

¢ Some code examples for design are based on:
§ “The Art of Readable Code”. Boswell and Foucher. 2011.

¢ Lecture originally written by
§ Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php
http://www.whyprogramsfail.com/slides.php

