
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Level Parallelism

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Parallel Computing Hardware

§ Multicore
§ Multiple separate processors on single chip

§ Hyperthreading
§ Efficient execution of multiple threads on single core

¢ Thread-Level Parallelism
§ Splitting program into independent tasks

§ Example 1: Parallel summation
§ Divide-and conquer parallelism

§ Example 2: Parallel quicksort

¢ Consistency Models
§ What happens when multiple threads are reading & writing shared

state

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

¢ So far, we’ve used threads to deal with I/O delays
§ e.g., one thread per client to prevent one from delaying another

¢ Multi-core/Hyperthreaded CPUs offer another
opportunity
§ Spread work over threads executing in parallel
§ Happens automatically, if many independent tasks

§ e.g., running many applications or serving many clients
§ Can also write code to make one big task go faster

§ by organizing it as multiple parallel sub-tasks

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Multicore Processor

¢ Multiple processors operating with coherent view of
memory

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-Order Processor Structure

¢ Instruction control dynamically converts program into
stream of operations

¢ Operations mapped onto functional units to execute in
parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hyperthreading Implementation

¢ Replicate enough instruction control to process K
instruction streams

¢ K copies of all registers
¢ Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A PC B

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

¢ Get data about linux machine from /proc/cpuinfo
¢ Modern Machines

§ Intel 6960P Processor @ 2.7 GHz
§ Xeon 6, ca. 2024
§ 72 Cores
§ 144 threads, Each core can do 2x hyperthreading
§ 432MB L3 cache

Intel Xeon 6960 processor
https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-
6960p-processor-432m-cache-2-70-ghz/specifications.html

https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-6960p-processor-432m-cache-2-70-ghz/specifications.html

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 1: Parallel Summation
¢ Sum numbers 0, …, n-1

§ Should add up to ((n-1)*n)/2

¢ Partition values 1, …, n-1 into t ranges
§ n/t values in each range
§ Each of t threads processes 1 range
§ For simplicity, assume n is a multiple of t

¢ Let’s consider different ways that multiple threads might
work on their assigned ranges in parallel

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First attempt: psum-mutex

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */
long gsum = 0; /* Global sum */
long nelems_per_thread; /* Number of elements to sum */
sem_t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)
{
 long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];
 pthread_t tid[MAXTHREADS];

 /* Get input arguments */
 nthreads = atoi(argv[1]);
 log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);
 nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex (cont)

/* Create peer threads and wait for them to finish */
 for (i = 0; i < nthreads; i++) {

myid[i] = i;
 Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]);

}
 for (i = 0; i < nthreads; i++)
 Pthread_join(tid[i], NULL);

 /* Check final answer */
 if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum);

return 0;
} psum-mutex.c

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Thread Routine

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */
void *sum_mutex(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i;

 for (i = start; i < end; i++) {
P(&mutex);

 gsum += i;
V(&mutex);

 }
 return NULL;
} psum-mutex.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Performance

¢ For a test machine with 8 cores, n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

¢ Nasty surprise:
§ Single thread is very slow
§ Gets slower as we use more cores

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-array

¢ Peer thread i sums into global array element psum[i]
¢ Main waits for threads to finish, then sums elements of psum
¢ Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */
void *sum_array(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i;

 for (i = start; i < end; i++) {
 psum[myid] += i;
 }

return NULL;
} psum-array.c

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance

¢ Orders of magnitude faster than psum-mutex

5.36

4.24

2.54

1.64

0.94

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

se
co

nd
s

Threads (cores)

Parallel Summation

psum-array

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-local

¢ Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */
void *sum_local(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i, sum = 0;

 for (i = start; i < end; i++) {
 sum += i;
 }

psum[myid] = sum;
return NULL;

} psum-local.c

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-local Performance

¢ Significantly faster than psum-array

5.36

4.24

2.54

1.64

0.94

1.98

1.14

0.6
0.32 0.33

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

se
co

nd
s

Threads (cores)

Parallel Summation

psum-array

psum-local

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing Parallel Program Performance
¢ p processor cores, Tk is the running time using k cores

¢ Def. Speedup: Sp = T1 / Tp
§ Sp is relative speedup if T1 is running time of parallel version of the

code running on 1 core.
§ Sp is absolute speedup if T1 is running time of sequential version of

code running on 1 core.
§ Absolute speedup is a much truer measure of the benefits of

parallelism.

¢ Def. Efficiency: Ep = Sp /p = T1 /(pTp)
§ Reported as a percentage in the range (0, 100].
§ Measures the overhead due to parallelization

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance of psum-local
Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time
(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

¢ Efficiencies OK, not great
¢ Our example is easily parallelizable
¢ Real codes are often much harder to parallelize

§ e.g., parallel quicksort later in this lecture

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law
§ Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

¢ Captures the difficulty of using parallelism to speed things up.
¢ Overall problem

§ T Total sequential time required
§ p Fraction of total that can be sped up (0 £ p £ 1)
§ k Speedup factor

¢ Resulting Performance
§ Tk = pT/k + (1-p)T

§ Portion which can be sped up runs k times faster
§ Portion which cannot be sped up stays the same

§ Least possible running time:
§ k = ¥
§ T¥ = (1-p)T

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law Example
¢ Overall problem

§ T = 10 Total time required
§ p = 0.9 Fraction of total which can be sped up
§ k = 9 Speedup factor

¢ Resulting Performance
§ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
§ Least possible running time:

§ T¥ = 0.1 * 10.0 = 1.0

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A More Substantial Example: Sort
¢ Sort set of N random numbers
¢ Multiple possible algorithms

§ Use parallel version of quicksort

¢ Sequential quicksort of set of values X
§ Choose “pivot” p from X
§ Rearrange X into

§ L: Values £ p
§ R: Values ³ p

§ Recursively sort L to get L¢
§ Recursively sort R to get R¢
§ Return L¢ : p : R¢

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•
•
•

L¢

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L¢

•
•
•

R¢

pL¢ R¢

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

¢ Sort nele elements starting at base
§ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {
 if (nele <= 1)
 return;
 if (nele == 2) {
 if (base[0] > base[1])
 swap(base, base+1);
 return;
 }

 /* Partition returns index of pivot */
 size_t m = partition(base, nele);
 if (m > 1)
 qsort_serial(base, m);
 if (nele-1 > m+1)
 qsort_serial(base+m+1, nele-m-1);
}

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort
¢ Parallel quicksort of set of values X

§ If N £ Nthresh, do sequential quicksort
§ Else

§ Choose “pivot” p from X
§ Rearrange X into

– L: Values £ p
– R: Values ³ p

§ Recursively spawn separate threads
– Sort L to get L¢
– Sort R to get R¢

§ Return L¢ : p : R¢

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p
•
•
•

L¢

•
•
•

R¢p

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread Structure: Sorting Tasks

¢ Task: Sort subrange of data
§ Specify as:

§ base: Starting address
§ nele: Number of elements in subrange

¢ Run as separate thread

X

� � �

Task Threads

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Small Sort Task Operation

¢ Sort subrange using serial quicksort

X

� � �

Task Threads

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Large Sort Task Operation

X

� � �

pL R

X

� � �

pL R

Partition Subrange

Spawn 2 tasks

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Function (Simplified)

¢ Sets up data structures
¢ Calls recursive sort routine
¢ Keeps joining threads until none left
¢ Frees data structures

void tqsort(data_t *base, size_t nele) {
 init_task(nele);
 global_base = base;
 global_end = global_base + nele - 1;
 task_queue_ptr tq = new_task_queue();
 tqsort_helper(base, nele, tq);
 join_tasks(tq);
 free_task_queue(tq);
}

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive sort routine (Simplified)

¢ Small partition: Sort serially
¢ Large partition: Spawn new sort task

/* Multi-threaded quicksort */
static void tqsort_helper(data_t *base, size_t nele,
 task_queue_ptr tq) {
 if (nele <= nele_max_sort_serial) {
 /* Use sequential sort */
 qsort_serial(base, nele);
 return;
 }
 sort_task_t *t = new_task(base, nele, tq);
 spawn_task(tq, sort_thread, (void *) t);
}

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sort task thread (Simplified)

¢ Get task parameters
¢ Perform partitioning step
¢ Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
 sort_task_t *t = (sort_task_t *) vargp;
 data_t *base = t->base;
 size_t nele = t->nele;
 task_queue_ptr tq = t->tq;
 free(vargp);
 size_t m = partition(base, nele);
 if (m > 1)
 tqsort_helper(base, m, tq);
 if (nele-1 > m+1)
 tqsort_helper(base+m+1, nele-m-1, tq);
 return NULL;
}

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

¢ Serial fraction: Fraction of input at which to do serial sort
¢ Sort 227 (134,217,728) random values
¢ Best speedup = 6.84X

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

¢ Good performance over wide range of fraction values
§ F too small: Not enough parallelism
§ F too large: Thread overhead + run out of thread memory

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law & Parallel Quicksort
¢ Sequential bottleneck

§ Top-level partition: No speedup
§ Second level: £ 2X speedup
§ kth level: £ 2k-1X speedup

¢ Implications
§ Good performance for small-scale parallelism
§ Would need to parallelize partitioning step to get large-scale

parallelism
§ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experience with Parallel Partitioning
¢ Could not obtain speedup
¢ Speculate: Too much data copying

§ Could not do everything within source array
§ Set up temporary space for reassembling partition

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lessons Learned
¢ Must have parallelization strategy

§ Partition into K independent parts
§ Divide-and-conquer

¢ Inner loops must be synchronization free
§ Synchronization operations very expensive

¢ Beware of Amdahl’s Law
§ Serial code can become bottleneck

¢ You can do it!
§ Achieving modest levels of parallelism is not difficult
§ Set up experimental framework and test multiple strategies

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Consistency

¢ What are the possible values printed?
§ Depends on memory consistency model
§ Abstract model of how hardware handles concurrent accesses

¢ Sequential consistency
§ Overall effect consistent with each individual thread
§ Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Consistency Example

¢ Impossible outputs
§ 100, 1 and 1, 100
§ Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200
1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Coherent Cache Scenario
¢ Write-back caches, without

coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 1E

b:100E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Main Memory
a:1 b:100

Thread1 Cache Thread2 Cache

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

a: 2M

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 2E

b:200E
print 200

b:200S b:200S
print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

¢ When cache sees request for
one of its E-tagged blocks
¢ Supply value from cache
¢ Set tag to S

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Consistency
¢ Sequentially Consistent:

§ Each thread executes in proper order, any interleaving

¢ To ensure, requires
§ Proper cache/memory behavior
§ Proper intra-thread ordering constraints

¢ Thread ordering constraints
§ Use synchronization to ensure the program is free of data races

