Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

Thread-Level Parallelism

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
= Hyperthreading
= Efficient execution of multiple threads on single core

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example 1: Parallel summation
= Divide-and conquer parallelism

= Example 2: Parallel quicksort

m Consistency Models

= What happens when multiple threads are reading & writing shared
state

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/O delays

" e.g., one thread per client to prevent one from delaying another

m Multi-core/Hyperthreaded CPUs offer another
opportunity
= Spread work over threads executing in parallel

" Happens automatically, if many independent tasks

= e.g., running many applications or serving many clients
" Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Typical Multicore Processor

L3 unified cache
(shared by all cores)

i Core 0 Core n-1 :
' | | Regs Regs :
: L1 L1 L1 L1 |
i d-cache| | i-cache d-cache| | i-cache :
i L2 unified cache L2 unified cache i

Main memory

m Multiple processors operating with coherent view of
memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Out-of-Order Processor Structure

Instruction Control
Instruction
Cache
Registers Op. Queue
1 PC
I
Functional Units

m Instruction control dynamically converts program into
stream of operations

m Operations mapped onto functional units to execute in
parallel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hyperthreading Implementation

Instruction Control

Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
1 PCA PCB
\ 4 l Y V

Functional Units

m Replicate enough instruction control to process K
instruction streams

m K copies of all registers
m Share functional units 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

m Get data about linux machine from /proc/cpuinfo

m Modern Machines
" |ntel 6960P Processor @ 2.7 GHz
= Xeon 6, ca. 2024
= 72 Cores

= 144 threads, Each core can do 2x hyperthreading
= 432MB L3 cache

Intel Xeon 6960 processor

https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-
6960p-processor-432m-cache-2-70-ghz/specifications.html

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-6960p-processor-432m-cache-2-70-ghz/specifications.html

Example 1: Parallel Summation

m Sum numbers 0, ..., n-1
= Should add up to ((n-1)*n)/2

m Partition values 1, ..., n-1 into t ranges
" n/tvalues in each range

= Each of t threads processes 1 range
= For simplicity, assume nis a multiple of t

m Let’s consider different ways that multiple threads might
work on their assigned ranges in parallel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

First attempt: psum-mutex

m Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

void *sum mutex(void *vargp); /* Thread routine */

/* Global shared wvariables */

long gsum = 0; /* Global sum */
long nelems per thread; /* Number of elements to sum */
sem t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)
{

long i, nelems, log nelems, nthreads, myid[MAXTHREADS];
pthread t tid[MAXTHREADS] ;

/* Get input arguments */
nthreads = atoi (argv[1l]) ;
log nelems = atoi(argv([2]);
nelems = (1L << log nelems) ;
nelems per thread = nelems / nthreads;
sem init(&mutex, 0, 1); psum-mutex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

-
psum-mutex (cont)

m Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Create peer threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {

myid[i] = i;

Pthread create(&tid[i], NULL, sum mutex, &myid[i]);
}
for (i = 0; i < nthreads; i++)

Pthread join(tid[i], NULL);

/* Check final answer */
if (gsum '= (nelems * (nelems-1))/2)
printf ("Error: result=%1d\n", gsum);

return O;
} psum-mutex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

psum-mutex Thread Routine

m Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum mutex (void *vargp)

{
long myid = *((long *)vargp): /* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */
long end = start + nelems per thread; /* End element index */
long i;

for (1 = start; i < end; i++) {
P (&mutex) ;
gsum += i;
V (&mutex) ;

}
return NULL;

} psum-mutex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

psum-mutex Performance

m For a test machine with 8 cores, n=23!

Threads (Cores) 1(1) (2(2) 4(4) 8(8) |16(8)
psum-mutex (secs) | 51 456 790 536 681

m Nasty surprise:
= Single thread is very slow

= Gets slower as we use more cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Next Attempt: psum-array

m Peer thread i sums into global array element psum|[i]
m Main waits for threads to finish, then sums elements of psum

m Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum array(void *vargp)

{
long myid = *((long *)vargp) /* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */

long end = start + nelems per thread; /* End element index */
long i;

for (1 = start; i < end; i++) {
psum[myid] += 1i;
}
return NULL;
} psum-array.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

I
psum-array Performance

m Orders of magnitude faster than psum-mutex

Parallel Summation

5.36

I

w

=g=psum-array

N

Elapsed seconds

1(1) 2(2) 4(4) 8(8) 16(8)
Threads (cores)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Next Attempt: psum-local

m Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum local (void *vargp)

{
long myid = *((long *)vargp): /* Extract thread ID */
long start = myid * nelems per thread; /* Start element index */
long end = start + nelems per thread; /* End element index */
long i, sum = 0;

for (1 = start; i < end; i++) {
sum += i;
}
psum[myid] = sum;
return NULL;
} psum-local.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

I
psum-local Performance

m Significantly faster than psum-array

Parallel Summation

5.36

=0=pSUM-array
==psum-local

Elapsed seconds

1(1) 2(2) 4(4) 8(8) 16(8)
Threads (cores)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Characterizing Parallel Program Performance

m p processor cores, T, is the running time using k cores

m Def. Speedup: S,=T,/T,

" S,is relative speedup if T; is running time of parallel version of the
code running on 1 core.

" S, is absolute speedup if T, is running time of sequential version of
code running on 1 core.

= Absolute speedup is a much truer measure of the benefits of
parallelism.

m Def. Efficiency: E,=S, /p =T;/(pT,)
= Reported as a percentage in the range (0, 100].
= Measures the overhead due to parallelization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Performance of psum-local

T S N R R

Cores (p)

Running time 1.98 1.14 0.60 0.32 0.33
(7,)

Speedup (S,) 1 1.74 3.30 6.19 6.00
Efficiency (E,) 100% 87% 82% 77% 75%

m Efficiencies OK, not great
m Our example is easily parallelizable

m Real codes are often much harder to parallelize
= e.g., parallel quicksort later in this lecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Amdahl’s Law

= Gene Amdahl (Nov. 16, 1922 — Nov. 10, 2015)
m Captures the difficulty of using parallelism to speed things up.

m Overall problem
= T Total sequential time required
" p Fraction of total that can be sped up (0<p <1)
= k Speedup factor

m Resulting Performance
" Ty=pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= |Least possible running time:
= k=00

" Too = (1_p)T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Amdahl’s Law Example

m Overall problem
= T=10 Total time required
= p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09*10/9+0.1*10=1.0+1.0=2.0
= |Least possible running time:
= T,=0.1*10.0=1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

A More Substantial Example: Sort

m Sort set of N random numbers
m Multiple possible algorithms

= Use parallel version of quicksort

m Sequential quicksort of set of values X
" Choose “pivot” p from X
= Rearrange X into
= L:Values<p
= R:Values>p
= Recursively sort Lto get L'
= Recursively sort R to get R’
= Returnl':p:R’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Sequential Quicksort Visualized

X

L [[

Sequential Quicksort Visualized

"

"

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Sequential Quicksort Code

void gsort serial(data t *base, size t nele) ({
if (nele <= 1)
return;
if (nele == 2) {
if (base[0] > base[l])
swap (base, base+l) ;
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+l)
gsort serial (base+m+l, nele-m-1);

}

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange X into
— L: Values <p
— R:Values > p
= Recursively spawn separate threads
— Sort Lto get L'
— Sort Rto get R’
= Returnl':p: R’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Parallel Quicksort Visualized

27

Thread Structure: Sorting Tasks

X

A
1
1
1
1
1
1
1
1
1
1
1

Task Threads
m Task: Sort subrange of data

= Specify as:
= base: Starting address

= nele: Number of elements in subrange
m Run as separate thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

28

Small Sort Task Operation

X
0
Task Threads

m Sort subrange using serial quicksort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Large Sort Task Operation

’/
[J [J ”
Partition Subrange el
I”
/”
o o o
'
l' ;”
/, I”
Spawn 2 tasks / e
U4 s
4 Prg

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Top-Level Function (Simplified)

void tgsort(data t *base, size t nele) ({
init task(nele) ;
global base = base;
global end = global base + nele - 1;
task queue ptr tq = new_ task queue();
tgsort helper (base, nele, tq);
join tasks(tq);
free task queue(tq);

Sets up data structures

Calls recursive sort routine

Keeps joining threads until none left
Frees data structures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static void tgsort helper(data t *base, size t nele,
task queue ptr tq) {
if (nele <= nele max sort serial) {
/* Use sequential sort */
gsort serial (base, nele);
return;

}
sort task t *t = new task(base, nele, tq);
spawn_ task(tq, sort thread, (void *) t);

m Small partition: Sort serially
m Large partition: Spawn new sort task

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) ({
sort task t *t = (sort task t *) vargp;
data t *base = t->base;
size t nele = t->nele;
task queue ptr tq = t->tqg;
free (vargp) ;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m, tq);
if (nele-1 > m+l)
tgsort helper (base+m+l, nele-m-1, tq);
return NULL;

m Get task parameters
m Perform partitioning step

m Call recursive sort routine on each partition

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00 \\ Q
18.00
16.00 \
14.00 \\
12.00

\ —Elapsed seconds
10.00

\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\/

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Serial fraction: Fraction of input at which to do serial sort
m Sort 2?7 (134,217,728) random values
m Best speedup = 6.84X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Parallel Quicksort Performance

22.00

L~ Parallel Quicksort

18.00 \\
16.00 \
14.00 \
12.00

\ —Elapsed seconds
10.00

\ Multicore limit

8.00 \ = Hyperthread limit
6.00 \ /
4.00

\/

2.00

0.00
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Good performance over wide range of fraction values
"= Ftoo small: Not enough parallelism
" Ftoo large: Thread overhead + run out of thread memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Amdahl’s Law & Parallel Quicksort

m Sequential bottleneck
= Top-level partition: No speedup
= Second level: < 2X speedup
= kthlevel: <2k1X speedup

m Implications

" Good performance for small-scale parallelism

= Would need to parallelize partitioning step to get large-scale
parallelism

= Parallel Sorting by Regular Sampling

— H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Parallelizing Partitioning Step

X

X | 0% | x

Parallel partitioning based on global p

L [GO . [

Reassemble into partitions

S S B N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

37

Experience with Parallel Partitioning

m Could not obtain speedup
m Speculate: Too much data copying

= Could not do everything within source array
= Set up temporary space for reassembling partition

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Lessons Learned

m Must have parallelization strategy
= Partition into K independent parts
= Divide-and-conquer

m Inner loops must be synchronization free
= Synchronization operations very expensive

m Beware of Amdahl’s Law

= Serial code can become bottleneck

m Youcando it!
= Achieving modest levels of parallelism is not difficult

= Set up experimental framework and test multiple strategies

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Memory Consistency

inta=1;
int b = 100;

N

Thread1l:
Wa: a = 2;
Rb: print(b);

Thread?2:
Whb: b = 200;
Ra: print(a);

m What are the possible values printed?

= Depends on memory consistency model

Thread consistency
constraints

Wa——— Rb

Wb—— Ra

" Abstract model of how hardware handles concurrent accesses

m Sequential consistency

= Qverall effect consistent with each individual thread

= Otherwise, arbitrary interleaving

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

40

Sequential Consistency Example

inta=1;
int b =100;

N

Threadl:
Wa: a = 2;
Rb: print(b);

Thread?2:
Whb: b = 200;
Ra: print(a);

m Impossible outputs
= 100,1and 1, 100

= Would require reaching both Ra and Rb before Wa and Wb

w <

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread consistency

constraints

Wa Rb
Wb—— Ra
Rb Wb Ra
Rb Ra
Wb <
Ra —Rb
Ra Wa —Rb
Ra ———Rb
Wa <
Rb Ra

100, 2

200, 2

2,200
1,200

2,200

200, 2

4

Non-Coherent Cache Scenario

m Write-back caches, without
coordination between them

Threadl Cache

a:2

b:100

a:1l

inta=1;
int b =100;

N

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Thread2 Cache

b:200

E\'n

in Me

ry

b:100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

print 1

print 100

42

Snoopy Caches

m Tag each cache block with state

Invalid
Shared
Exclusive

Cannot use value

Readable copy

Writeable copy

E

a:1

Threadl Cache

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread2 Cache

E |b:100

Main Memory

a:1l

b:100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

43

Snoopy Caches

m Tag each cache block with state

inta=1;
int b=100;

N

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Whb: b = 200;
Ra: print(a);

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy
Thread1 Cache Thread2 Cache
M| a:2
M|b:200
Main Memory
a:1 b:100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches

inta=1;
int b = 100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Whb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Threadl Cache Thread2 Cache
S| a:2 S| a2 print 2
S b=>°°¥ :200

\I\NI'A'IH‘WI// P
emory

m When cache sees request for
2:1 b:100 one of its E-tagged blocks

m Supply value from cache
m SettagtoS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Memory Consistency

m Sequentially Consistent:

= Each thread executes in proper order, any interleaving
m To ensure, requires

" Proper cache/memory behavior
= Proper intra-thread ordering constraints

m Thread ordering constraints

= Use synchronization to ensure the program is free of data races

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

