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Today
¢ Parallel  Computing Hardware

§ Multicore
§ Multiple separate processors on single chip

§ Hyperthreading
§ Efficient execution of multiple threads on single core

¢ Thread-Level Parallelism
§ Splitting program into independent tasks

§ Example 1: Parallel summation
§ Divide-and conquer parallelism

§ Example 2: Parallel quicksort

¢ Consistency Models
§ What happens when multiple threads are reading & writing shared 

state
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Exploiting parallel execution

¢ So far, we’ve used threads to deal with I/O delays
§ e.g., one thread per client to prevent one from delaying another

¢ Multi-core/Hyperthreaded CPUs offer another 
opportunity
§ Spread work over threads executing in parallel
§ Happens automatically, if many independent tasks

§ e.g., running many applications or serving many clients
§ Can also write code to make one big task go faster

§ by organizing it as multiple parallel sub-tasks
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Typical Multicore Processor

¢ Multiple processors operating with coherent view of 
memory
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Out-of-Order Processor Structure

¢ Instruction control dynamically converts program into 
stream of operations

¢ Operations mapped onto functional units to execute in 
parallel
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Hyperthreading Implementation

¢ Replicate enough instruction control to process K 
instruction streams

¢ K copies of all registers
¢ Share functional units
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Benchmark Machine

¢ Get data about linux machine from /proc/cpuinfo
¢ Modern Machines

§ Intel 6960P Processor @ 2.7 GHz
§ Xeon 6, ca. 2024
§ 72 Cores
§ 144 threads, Each core can do 2x hyperthreading
§ 432MB L3 cache

Intel Xeon 6960 processor
https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-
6960p-processor-432m-cache-2-70-ghz/specifications.html

https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-6960p-processor-432m-cache-2-70-ghz/specifications.html
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Example 1: Parallel Summation
¢ Sum numbers 0, …, n-1

§ Should add up to ((n-1)*n)/2

¢ Partition values 1, …, n-1 into t ranges
§ n/t values in each range
§ Each of t threads processes 1 range 
§ For simplicity, assume n is a multiple of t 

¢ Let’s consider different ways that multiple threads might 
work on their assigned ranges in parallel
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First attempt: psum-mutex

¢ Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */
long gsum = 0;           /* Global sum */
long nelems_per_thread;  /* Number of elements to sum */
sem_t mutex;             /* Mutex to protect global sum */

int main(int argc, char **argv)
{
    long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];
    pthread_t tid[MAXTHREADS];

     /* Get input arguments */
    nthreads = atoi(argv[1]);
    log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);
    nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c
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psum-mutex (cont)

/* Create peer threads and wait for them to finish */
    for (i = 0; i < nthreads; i++) {                                    

myid[i] = i;                                  
        Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]); 

}
    for (i = 0; i < nthreads; i++)
 Pthread_join(tid[i], NULL);                   

    /* Check final answer */
    if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum); 

return 0;
} psum-mutex.c

¢ Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.



12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Thread Routine

¢ Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */
void *sum_mutex(void *vargp)
{
    long myid = *((long *)vargp);          /* Extract thread ID */
    long start = myid * nelems_per_thread; /* Start element index */
    long end = start + nelems_per_thread;  /* End element index */
    long i;

    for (i = start; i < end; i++) {        
P(&mutex);                     

        gsum += i;                     
V(&mutex);                     

    }
    return NULL;
} psum-mutex.c
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psum-mutex Performance

¢ For a test machine with 8 cores,  n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

¢ Nasty surprise:
§ Single thread is very slow
§ Gets slower as we use more cores
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Next Attempt: psum-array

¢ Peer thread i sums into global array element psum[i]
¢ Main waits for threads to finish, then sums elements of psum
¢ Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */                                                                                      
void *sum_array(void *vargp)                                                                                               
{                                                                                                                          
    long myid = *((long *)vargp);          /* Extract thread ID */
    long start = myid * nelems_per_thread; /* Start element index */
    long end = start + nelems_per_thread;  /* End element index */ 
    long i;                                                                                                                
                                                                                                                           
    for (i = start; i < end; i++) {        
        psum[myid] += i;                   
    }

return NULL;                                                                                                           
} psum-array.c



15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance

¢ Orders of magnitude faster than psum-mutex
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Next Attempt: psum-local

¢ Reduce memory references by having peer thread i sum 
into a local variable (register)

/* Thread routine for psum-local.c */
void *sum_local(void *vargp)
{
    long myid = *((long *)vargp);          /* Extract thread ID */
    long start = myid * nelems_per_thread; /* Start element index */
    long end = start + nelems_per_thread;  /* End element index */   
    long i, sum = 0;

    for (i = start; i < end; i++) {        
        sum += i;                          
    }

psum[myid] = sum;
return NULL;

} psum-local.c
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psum-local Performance

¢ Significantly faster than psum-array
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Characterizing Parallel Program Performance
¢ p processor cores, Tk is the running time using k cores

¢ Def. Speedup:  Sp = T1 / Tp 
§ Sp is  relative speedup if T1 is running time of parallel version of the 

code running on 1 core.
§ Sp is absolute speedup if T1 is running time of sequential version of 

code running on 1 core. 
§ Absolute speedup is a much truer measure of the benefits of 

parallelism. 

¢ Def.  Efficiency: Ep = Sp  /p = T1 /(pTp)
§ Reported as a percentage in the range (0, 100].
§ Measures the overhead due to parallelization
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Performance of psum-local
Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time 
(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

¢ Efficiencies OK, not great
¢ Our example is easily parallelizable
¢ Real codes are often much harder to parallelize

§ e.g., parallel quicksort later in this lecture
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Amdahl’s Law
§ Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

¢ Captures the difficulty of using parallelism to speed things up.
¢ Overall problem

§ T Total sequential time required
§ p Fraction of total that can be sped up (0 £ p  £ 1)
§ k Speedup factor

¢ Resulting Performance
§ Tk = pT/k + (1-p)T

§ Portion which can be sped up runs k times faster
§ Portion which cannot be sped up stays the same

§ Least possible running time:
§ k = ¥
§ T¥ = (1-p)T
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Amdahl’s Law Example
¢ Overall problem

§ T = 10 Total time required
§ p = 0.9 Fraction of total which can be sped up
§ k = 9 Speedup factor

¢ Resulting Performance
§ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
§ Least possible running time:

§ T¥ = 0.1 * 10.0 = 1.0
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A More Substantial Example: Sort
¢ Sort set of N random numbers
¢ Multiple possible algorithms

§ Use parallel version of quicksort

¢ Sequential quicksort of set of values X
§ Choose “pivot” p from X
§ Rearrange X into

§ L: Values £ p
§ R: Values ³ p

§ Recursively sort L to get L¢
§ Recursively sort R to get R¢
§ Return L¢ : p : R¢
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Sequential Quicksort Visualized
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Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L¢

•
•
•

R¢

pL¢ R¢



25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

¢ Sort nele elements starting at base
§ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {
  if (nele <= 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  }

  /* Partition returns index of pivot */
  size_t m = partition(base, nele);
  if (m > 1)
    qsort_serial(base, m);
  if (nele-1 > m+1)
    qsort_serial(base+m+1, nele-m-1);
}
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Parallel Quicksort
¢ Parallel quicksort of set of values X

§ If N £ Nthresh, do sequential quicksort
§ Else

§ Choose “pivot” p from X
§ Rearrange X into

– L: Values £ p
– R: Values ³ p

§ Recursively spawn separate threads
– Sort L to get L¢
– Sort R to get R¢

§ Return L¢ : p : R¢
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Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p
•
•
•

L¢

•
•
•

R¢p



28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread Structure: Sorting Tasks

¢ Task: Sort subrange of data
§ Specify as:

§ base: Starting address
§ nele: Number of elements in subrange

¢ Run as separate thread

X

� � �

Task Threads
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Small Sort Task Operation

¢ Sort subrange using serial quicksort

X

� � �

Task Threads
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Large Sort Task Operation

X
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pL R
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Partition Subrange

Spawn 2 tasks
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Top-Level Function (Simplified)

¢ Sets up data structures
¢ Calls recursive sort routine
¢ Keeps joining threads until none left
¢ Frees data structures

void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
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Recursive sort routine (Simplified)

¢ Small partition: Sort serially
¢ Large partition: Spawn new sort task

/* Multi-threaded quicksort */
static void tqsort_helper(data_t *base, size_t nele,
                          task_queue_ptr tq) {
    if (nele <= nele_max_sort_serial) {
        /* Use sequential sort */
        qsort_serial(base, nele);
        return;
    }
    sort_task_t *t = new_task(base, nele, tq);
    spawn_task(tq, sort_thread, (void *) t);
}
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Sort task thread (Simplified)

¢ Get task parameters
¢ Perform partitioning step
¢ Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
    sort_task_t *t = (sort_task_t *) vargp;
    data_t *base = t->base;
    size_t nele = t->nele;
    task_queue_ptr tq = t->tq;
    free(vargp);
    size_t m = partition(base, nele);
    if (m > 1)
        tqsort_helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort_helper(base+m+1, nele-m-1, tq);
    return NULL;
}
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Parallel Quicksort Performance

¢ Serial fraction: Fraction of input at which to do serial sort
¢ Sort 227 (134,217,728) random values
¢ Best speedup = 6.84X
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Parallel Quicksort Performance

¢ Good performance over wide range of fraction values
§ F too small: Not enough parallelism
§ F too large: Thread overhead + run out of thread memory
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Amdahl’s Law & Parallel Quicksort
¢ Sequential bottleneck

§ Top-level partition: No speedup
§ Second level: £ 2X speedup
§ kth level:  £ 2k-1X speedup

¢ Implications
§ Good performance for small-scale parallelism
§ Would need to parallelize partitioning step to get large-scale 

parallelism
§ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions
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Experience with Parallel Partitioning
¢ Could not obtain speedup
¢ Speculate: Too much data copying

§ Could not do everything within source array
§ Set up temporary space for reassembling partition
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Lessons Learned
¢ Must have parallelization strategy

§ Partition into K independent parts
§ Divide-and-conquer

¢ Inner loops must be synchronization free
§ Synchronization operations very expensive

¢ Beware of Amdahl’s Law
§ Serial code can become bottleneck

¢ You can do it!
§ Achieving modest levels of parallelism is not difficult
§ Set up experimental framework and test multiple strategies
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Memory Consistency

¢ What are the possible values printed?
§ Depends on memory consistency model
§ Abstract model of how hardware handles concurrent accesses 

¢ Sequential consistency
§ Overall effect consistent with each individual thread
§ Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Sequential Consistency Example

¢ Impossible outputs
§ 100, 1 and 1, 100
§ Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200
1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Non-Coherent Cache Scenario
¢ Write-back caches, without 

coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 1E

b:100E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Main Memory
a:1 b:100

Thread1 Cache Thread2 Cache

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

a: 2M
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Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 2E

b:200E
print 200

b:200S b:200S
print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

¢ When cache sees request for 
one of its E-tagged blocks
¢ Supply value from cache
¢ Set tag to S
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Memory Consistency
¢ Sequentially Consistent:

§ Each thread executes in proper order, any interleaving

¢ To ensure, requires
§ Proper cache/memory behavior
§ Proper intra-thread ordering constraints

¢ Thread ordering constraints
§ Use synchronization to ensure the program is free of data races


