
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

Ø Assignment 1 – Marking now

Ø Checkpoint 2 – Week 9 during labs

Ø Quiz 2 – Week 11 during labs

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon
University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

¢ The human mind tends to be sequential
§ “As humans, we have a very limited capacity for simultaneous thought -- we

can only hold a little bit of information in the mind at any single moment. You
don’t actually multitask, you task-switch. This wastes time, makes you error-
prone and decreases your ability to be creative.”

https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

¢ The notion of time is often misleading
§ In concurrent programs, the order in which threads or processes execute can vary

each time the program runs.

¢ Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible
§ Bugs in concurrent programs can be non-deterministic, meaning they don’t always

occur in the same way.

https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!
¢ Classical problem classes of concurrent programs:

§ Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
§ Example: who gets the last seat on the airplane?

§ Deadlock: improper resource allocation prevents forward progress
§ Example: traffic gridlock

§ Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
§ Example: people always jump in front of you in line

¢ Many aspects of concurrent programming are beyond the
scope of our course..
§ but, not all J
§ We’ll cover some of these aspects in the next few lectures.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

¢ Iterative servers process one request at a time

Client 1 Server Client 2
connect

accept connect

write read

call read

close

accept

write

read

close Wait for server
to finish with
Client 1

call read

write

ret read

writeret read
read

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Block?

¢ Second client attempts to
connect to iterative server

¢ Call to connect returns
§ Even though connection not

yet accepted
§ Server side TCP manager

queues request
§ Feature known as “TCP

listen backlog”

¢ Call to rio_writen returns
§ Server side TCP manager

buffers input data

¢ Call to rio_readlineb
blocks
§ Server hasn’t written

anything for it to read yet.

Client
socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

¢ Solution: use concurrent servers instead
§ Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read
from server

Server blocks
waiting for
data from
Client 1

Client 1 Server Client 2
connect

accept connect

write call read

call read
write

call read
writeret read

call read

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers
Ø Allow server to handle multiple clients concurrently

1. Process-based
§ Kernel automatically interleaves multiple logical flows
§ Each flow has its own private address space

2. Event-based
§ Programmer manually interleaves multiple logical flows
§ All flows share the same address space
§ Uses technique called I/O multiplexing.

3. Thread-based
§ Kernel automatically interleaves multiple logical flows
§ Each flow shares the same address space
§ Hybrid of process-based and event-based.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers
¢ Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes out
to lunch

Client 1 blocks
waiting for
user to type in
data

call accept
ret accept

call fgets

writefork

call
read

child 2

write

call read

ret read
close

close

...

Child blocks
waiting for
data from
Client 1

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(argv[1]);

 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!)
*/
 }
}

Process-Based Concurrent Echo Server

echoserverp.c

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server
(cont)

void sigchld_handler(int sig)
{
 while (waitpid(-1, 0, WNOHANG) > 0)
 ;

return;
}

§ Reap all zombie children !

echoserverp.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

Server
Child

connfd(4)

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

§ Each client handled by independent child process
§ No shared state between them
§ Both parent & child have copies of listenfd and connfd

§ Parent must close connfd
§ Child should close listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

¢ Listening server process must reap zombie children
§ to avoid fatal memory leak

¢ Parent process must close its copy of connfd
§ Kernel keeps reference count for each socket/open file
§ After fork, refcnt(connfd) = 2
§ Connection will not be closed until refcnt(connfd) = 0

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

¢ + Handle multiple connections concurrently
¢ + Clean sharing model

§ descriptors (no)
§ file tables (yes)
§ global variables (no)

¢ + Simple and straightforward
¢ – Additional overhead for process control
¢ – Nontrivial to share data between processes

§ Requires IPC (interprocess communication) mechanisms
§ FIFO’s (named pipes), System V shared memory and semaphores

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

¢ Server maintains set of active connections
§ Array of connfd’s

¢ Repeat:
§ Determine which descriptors (connfd’s or listenfd) have pending inputs

§ e.g., using select or epoll functions
§ arrival of pending input is an event

§ If listenfd has input, then accept connection
§ and add new connfd to array

§ Service all connfd’s with pending inputs

¢ Details for select-based server in Chapter 12.2

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

Active

Inactive

Active

Never Used

listenfd = 3

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

listenfd = 3
Active Descriptors Pending Inputs

Read and service

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

¢ + One logical control flow and address space.
¢ + Can single-step with a debugger.
¢ + No process or thread control overhead.

§ Design of choice for high-performance Web servers and search
engines. e.g., Node.js, nginx, Tornado

¢ – Significantly more complex to code than process- or thread-
based designs.

¢ – Hard to provide fine-grained concurrency
§ E.g., how to deal with partial HTTP request headers

¢ – Cannot take advantage of multi-core
§ Single thread of control

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

¢ Very similar to approach #1 (process-based)
§ …but using threads instead of processes

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

¢ Process = process context + code, data, and stack

Shared libraries

Run-time heap

0

Read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Read-only code/data

StackSP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

¢ Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

Read-only code/data

StackSP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
¢ Multiple threads can be associated with a process

§ Each thread has its own logical control flow
§ Each thread shares the same code, data, and kernel context
§ Each thread has its own stack for local variables

§ but not protected from other threads
§ Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

¢ Threads associated with process form a pool of peers
§ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

¢ Two threads are concurrent if their flows overlap in
time

¢ Otherwise, they are sequential

¢ Examples:
§ Concurrent: A & B, A&C
§ Sequential: B & C

Time

Thread A Thread B Thread C

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

¢ Single Core Processor
§ Simulate parallelism by

time slicing

¢ Multi-Core Processor
§ Can have true

parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes
¢ How threads and processes are similar

§ Each has its own logical control flow
§ Each can run concurrently with others (possibly on different cores)
§ Each is context switched

¢ How threads and processes are different
§ Threads share all code and data (except local stacks)

§ Processes (typically) do not
§ Threads are somewhat less expensive than processes

§ Process control (creating and reaping) twice as expensive as thread
control

§ Linux numbers:
– ~20K cycles to create and reap a process
– ~10K cycles (or less) to create and reap a thread

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
¢ Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
§ Creating and reaping threads

§ pthread_create()

§ pthread_join()

§ Determining your thread ID
§ pthread_self()

§ Terminating threads
§ pthread_cancel()

§ pthread_exit()

§ exit() [terminates all threads] , RET [terminates current thread]
§ Synchronizing access to shared variables

§ pthread_mutex_init

§ pthread_mutex_[un]lock

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");

return NULL;
}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);

exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”
Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server
int main(int argc, char **argv)
{
 int listenfd, *connfdp;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;
 pthread_t tid;

listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen=sizeof(struct sockaddr_storage);

connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd,

(SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, thread, connfdp);

}
} echoservert.c

§ malloc of connected descriptor necessary to avoid
deadly race (later)

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{

int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
}

§ Run thread in “detached” mode.
§ Runs independently of other threads
§ Reaped automatically (by kernel) when it terminates

§ Free storage allocated to hold connfd.
§ Close connfd (important!)

echoservert.c

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

§ Each client handled by individual peer thread
§ Threads share all process state except TID
§ Each thread has a separate stack for local variables

Client 1
server

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

¢ Must run “detached” to avoid memory leak
§ At any point in time, a thread is either joinable or detached
§ Joinable thread can be reaped and killed by other threads

§ must be reaped (with pthread_join) to free memory resources
§ Detached thread cannot be reaped or killed by other threads

§ resources are automatically reaped on termination
§ Default state is joinable

§ use pthread_detach(pthread_self()) to make detached

¢ Must be careful to avoid unintended sharing
§ For example, passing pointer to main thread’s stack

§ Pthread_create(&tid, NULL, thread, (void *)&connfd);

¢ All functions called by a thread must be thread-safe
§ (next lecture)

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

¢ + Easy to share data structures between threads
§ e.g., logging information, file cache

¢ + Threads are more efficient than processes

¢ – Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
§ The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads
§ Hard to know which data shared & which private
§ Hard to detect by testing

§ Probability of bad race outcome very low
§ But nonzero!

§ Future lectures

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency
¢ Process-based

§ Hard to share resources: Easy to avoid unintended sharing
§ High overhead in adding/removing clients

¢ Event-based
§ Tedious and low level
§ Total control over scheduling
§ Very low overhead
§ Cannot create as fine grained a level of concurrency
§ Does not make use of multi-core

¢ Thread-based
§ Easy to share resources: Perhaps too easy
§ Medium overhead
§ Not much control over scheduling policies
§ Difficult to debug

§ Event orderings not repeatable

