Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor



Course Update

> Assignment 1 — Marking now

> Checkpoint 2 — Week 9 during labs

> Quiz 2 -—Week 11 during labs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2



Concurrent Programming

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon
University: https://www.cs.cmu.edu/~213/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



-
Concurrent Programming is Hard!

m The human mind tends to be sequential

= “As humans, we have a very limited capacity for simultaneous thought -- we
can only hold a little bit of information in the mind at any single moment. You
don’t actually multitask, you task-switch. This wastes time, makes you error-

prone and decreases your ability to be creative.”
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

m The notion of time is often misleading

® |n concurrent programs, the order in which threads or processes execute can vary
each time the program runs.

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

= Bugs in concurrent programs can be non-deterministic, meaning they don’t always
occur in the same way.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4


https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

" Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= [jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of our course..
" hut, notall ©
= We’ll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5



Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
connect ........................................ >
accept| e connect
PRRSIPREITELL L
write ffif _________________ write
call read PRNSSPPREIITITLEL b
............................... e call read
ret read|[*” write ~
read
close (- ClOse Wait for server
T accept - to finish with
Client 1
read
write
................................ _/
| | I *| ret read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition




I
Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client ,
" = Server side TCP manager
SEELEE queues request
= Feature known as “TCP
listen backlog”
open_clientfd | m Call to rio_writen returns
Connection Server side TCP manager
request buffers input data
connect [T TTTTTooo- > . .
\ I m Call torio_readlineb
rio writen > bIOCkS
] = Server hasn’t written
A s T P anything for it to read yet.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



[
Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
connect ........................................ >
accept| e connect
write ca]_lread; R write
call read DRI L 1 3
................................ call rea
ret read PR L LA Write
User goes call read Client 2 blocks
out to lunch Server blocks waiting to read
waiting for from server
Client 1 blocks data from
waiting for user | Client 1 '

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Approaches for Writing Concurrent Servers

> Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based

" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing.

3. Thread-based

= Kernel automatically interleaves multiple logical flows
" Each flow shares the same address space
" Hybrid of process-based and event-based.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9



-
Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server client 2

11 t
call connect call accep

*| ret accept call connect

JTIRREEE
call fgets

J child 1 fork
User goes out call read call accept
to lunch ret accept
Child blocks call fgets

Client 1 blocks waiting for | _
user to type in Client 1 call read
data v call

-+ read

close ret read
v v v Close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10



Process-Based Concurrent Echo Server

int main(int argc, char *%argv)
{
int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(argvi[1]);
while (1) {
clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {
Close(listenfd); /x Child closes its listening socket x/
echo(connfd); /* Child services client */
Close(connfd); /% Child closes connection with client x/
exit(0); /* Child exits */
}
Close(connfd); /% Parent closes connected socket (important!)
*/
}
} echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"



I
Process-Based Concurrent Echo Server
(cont)

void sigchld_handler(int sig)

{
while (waitpid(-1, @, WNOHANG) > 0)
return;

} echoserverp.c

= Reap all zombie children |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12



Concurrent Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listenfd (3)
request R 2. Client makes connection
Client l T Server request by calling connect
clientfd
listenfd (3)
3. Server returns connfd from
T Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client L « . L child and connfd

clientfd connfd (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Process-based Server Execution Model

Connection requests>
Listening
server
process
Client 1 data | Client1 Client2 | cjient 2 data
4 »| server server >
process process

" Each client handled by independent child process
" No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1istenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Issues with Process-based Servers

m Listening server process must reap zombie children

" to avoid fatal memory leak

m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
" After fork, refcnt (connfd) = 2
" Connection will not be closed until refcnt (connfd) = 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



Pros and Cons of Process-based Servers

m + Handle multiple connections concurrently
m + Clean sharing model

= descriptors (no)

= file tables (yes)

= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes

= Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16



Approach #2: Event-based Servers

m Server maintains set of active connections
= Array of connfd’s

m Repeat:
= Determine which descriptors (connfd’s or listenfd) have pending inputs
= e.g., using select or epoll functions

= arrival of pending input is an event
= |f listenfd has input, then accept connection

= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in Chapter 12.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17



/O Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd=3 €]
connfd’s connfd’s
0 10 | ) 10
1 > Active 7 [«
2 4 < 4
3
> Inactive
4 1 1
<
5 12 12 “—
> Active
6 5 5 <
o’
7 1 1
8 1 1
9 1 Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



Pros and Cons of Event-based Servers

m + One logical control flow and address space.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search
engines. e.g., Node.js, nginx, Tornado

m - Significantly more complex to code than process- or thread-
based designs.

m — Hard to provide fine-grained concurrency
= E.g., how to deal with partial HTTP request headers

m — Cannot take advantage of multi-core
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19



-
Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= _.butusing threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20



[
Traditional View of a Process

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp — Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk — Run-time heap
Kernel context: Read/write data
VM structures PC — Read-only code/data
Descriptor table
brk pointer 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21



[
Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Program counter (PC) Kernel context:

VM structures
Descriptor table
brk pointer

! |

; |

| N Stack : R

: SP , brk Run-time heap
! Thread context: | Read/write data
| Data registers | PC — Read-only code/data
! . :

| Condition codes | 0

: Stack pointer (SP) !

| :

; |

|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22



-
A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time hean
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes 0
SP1 SP2 —
PC1 P 2 ernel context:
e VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23




Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® 7
' (P1)

OXOXO),
_____________________ | (o
®

“a| shared code, data
and kernel context

*
*
*
*
*
*
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24



Concurrent Threads

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
" Concurrent: A&B,A&C | |\
= Sequential: B& C I
Time | I """

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25



Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by " Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Threads vs. Processes

m How threads and processes are similar
" Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
" Each is context switched

m How threads and processes are different

" Threads share all code and data (except local stacks)
= Processes (typically) do not
" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



e
Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
® Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit ()
= exit () [terminates all threads], RET [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init

= pthread mutex [un]lock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



The Pthreads "hello, world" Program

VES
* hello.c — Pthreads "hello, world" program

#".‘/ Lude "csann. bt Thread ID Thread attributes
include Pp.
void xthread(void *vargp); _—"|_(usually NULL)

int main()

{ ___——{ Thread routine
pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pth read_j oin ( tid ’ NULL) ’ \\ Thread arguments
exit(0) ’ (VOid* )

} hello.c P

Return value

void *thread(void *vargp) /x thread routine */ (void **p)
{

printf("Hello, world!\n");

return NULL;
} hello.c

Bryant and O

Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29



Execution of Threaded “hello, world”

Main thread

call Pthread_create()

Pthread_create() returns ......................................... Peer thread
alPtread o) | T
printf ()
Main thread waits for ] return NULL;
peer thread toterminate | e beer thread
............................ terminates

Pthread_join() returns |«

exit ()

Terminates
main thread and
any peer threads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



I
Thread-Based Concurrent Echo Server

int main(int argc, char *xargv)
{
int listenfd, *connfdp;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
pthread_t tid;

listenfd = Open_listenfd(argvi[1]);
while (1) {
clientlen=sizeof(struct sockaddr_storage);
connfdp = Malloc(sizeof(int));
xconnfdp = Accept(listenfd,
(SA %) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, thread, connfdp);
}

} echoservert.c

" malloc of connected descriptor necessary to avoid
deadly race (later)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



e
Thread-Based Concurrent Server (cont)

/* Thread routine x/

void xthread(void s*vargp)

{
int connfd = *((int *)vargp);
Pthread_detach(pthread_self());
Free(vargp);
echo(connfd);
Close(connfd);
return NULL;

¥ echoservert.c

" Run thread in “detached” mode.
= Runs independently of other threads

= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd.

" Close connfd (important!)

32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Thread-based Server Execution Model

Connection requests {
Listening
server
in th
| Client1 | | Mamnthread | [ opent2 ||
Client 1 data server server Client 2 data
< > < >
peer peer
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID

" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



I
Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any point in time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread join)to free memory resources
" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» use pthread detach (pthread self ()) to make detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
" (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads

" e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

® Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



e
Summary: Approaches to Concurrency

m Process-based
" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy
" Medium overhead
®" Not much control over scheduling policies

= Difficult to debug
= Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36



