
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

➢ Assignment 1 – Marking now, due in about 2 weeks…

➢ Quiz 2 - Due today!

➢ Cover weeks 3-6 of lectures

➢ 30 questions in 30 mins

➢ Checkpoint 2 - Released Friday 27 September
➢ Due Thursday 10 October

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part II

Acknowledgement of material: With changes suited to ANU needs, the slides are
obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Socket Address Structures

 Generic socket address:
▪ For address arguments to connect, bind, and accept

▪ Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

▪ For casting convenience, we adopt the Stevens convention:

 typedef struct sockaddr SA;

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Socket Address Structures

 Internet-specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen

 By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding

connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
▪ If successful, then clientfd is now ready for reading and

writing.

▪ Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

▪ x is client address

▪ y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors

 Listening descriptor
▪ End point for client connection requests

▪ Created once and exists for lifetime of the server

 Connected descriptor
▪ End point of the connection between client and server

▪ A new descriptor is created each time the server accepts a
connection request from a client

▪ Exists only as long as it takes to service client

 Why the distinction?
▪ Allows for concurrent servers that can communicate over many

client connections simultaneously

▪ E.g., Each time we receive a new request, we fork a child to
handle the request

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {

 int clientfd;

 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Open a connection */

 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */

 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */

 Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd (cont)

/* Walk the list for one that we can successfully connect to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

 /* Connect to the server */

 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

 break; /* Success */

 Close(clientfd); /* Connect failed, try another */

 }

 /* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* All connects failed */

return -1;

 else /* The last connect succeeded */

 return clientfd;

} csapp.c

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd

int open_listenfd(char *port)

{

 struct addrinfo hints, *listp, *p;

 int listenfd, optval=1;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */

 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */

 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */

 Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

 break; /* Success */

 Close(listenfd); /* Bind failed, try the next */

 } csapp.c

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* No address worked */

return -1;

 /* Make it a listening socket ready to accept conn. requests */

 if (listen(listenfd, LISTENQ) < 0) {

 Close(listenfd);

return -1;

}

 return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)

{

 int clientfd;

 char *host, *port, buf[MAXLINE];

rio_t rio;

host = argv[1];

port = argv[2];

clientfd = Open_clientfd(host, port);

Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {

Rio_writen(clientfd, buf, strlen(buf));

Rio_readlineb(&rio, buf, MAXLINE);

Fputs(buf, stdout);

}

 Close(clientfd);

 exit(0);

} echoclient.c

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Echo Server: Main Routine
#include "csapp.h”

void echo(int connfd);

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr; /* Enough room for any addr */

 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage); /* Important! */

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 Getnameinfo((SA *) &clientaddr, clientlen,

 client_hostname, MAXLINE, client_port, MAXLINE, 0);

 printf("Connected to (%s, %s)\n", client_hostname, client_port);

 echo(connfd);

 Close(connfd);

 }

 exit(0);

} echoserveri.c

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server: echo function

void echo(int connfd)

{

size_t n;

char buf[MAXLINE];

rio_t rio;

Rio_readinitb(&rio, connfd);

 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

 printf("server received %d bytes\n", (int)n);

 Rio_writen(connfd, buf, n);

 }

}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
▪ EOF condition caused by client calling close(clientfd)

echo.c

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections

▪ Our simple echo server

▪ Web servers

▪ Mail servers

 Usage:
▪ linux> telnet <host> <portnumber>

▪ Creates a connection with a server running on <host> and
listening on port <portnumber>

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)

server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

makoshark>

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

▪ Client and server establish
TCP/QUIC connection

▪ Client requests content

▪ Server responds with requested
content

▪ Client and server close connection
(eventually)

 Current version is HTTP/3

▪ RFC 9114 in 2022. HTTP/3

▪ HTTP semantics are consistent
across versions

Web
client

(browser)

https://www.rfc-editor.org/rfc/rfc9114

Datagrams

Streams

Web content

https://en.wikipedia.org/wiki/HTTP/3

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Content

 Web servers return content to clients
▪ content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
▪ text/html HTML document

▪ text/plain Unformatted text

▪ image/gif Binary image encoded in GIF format

▪ image/png Binar image encoded in PNG format

▪ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static and Dynamic Content

 The content returned in HTTP responses can be either
static or dynamic
▪ Static content: content stored in files and retrieved in response to

an HTTP request

▪ Examples: HTML files, images, audio clips

▪ Request identifies which content file

▪ Dynamic content: content produced on-the-fly in response to an
HTTP request

▪ Example: content produced by a program executed by the
server on behalf of the client

▪ Request identifies file containing executable code

 Bottom line: Web content is associated with a file that is
managed by the server

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

URLs and how clients and servers use them

 Unique name for a file: URL (Universal Resource Locator)

 Example URL: https://www.anu.edu:443/index.html

 Clients use prefix (https://www.anu.edu:443) to infer:

▪ What kind (protocol) of server to contact (HTTPS)

▪ Where the server is (www.anu.edu)

▪ What port it is listening on (443)

 Servers use suffix (/index.html) to:

▪ Determine if request is for static or dynamic content.

▪ No hard and fast rules for this

▪ One convention: executables reside in cgi-bin directory

▪ Find file on file system

▪ Initial “/” in suffix denotes home directory for requested content.

▪ Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Requests

 HTTP request is a request line, followed by zero or more request
headers

 Request line: <method> <uri> <version>

▪ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

▪ <uri> is typically URL for proxies, URL suffix for servers

▪ A URL is a type of URI (Uniform Resource Identifier)

▪ See http://www.ietf.org/rfc/rfc2396.txt

▪ <version> is HTTP version of request (e.g HTTP/3.0 or HTTP/1.1)

 Request headers: <header name>: <header data>

▪ Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:

 <version> <status code> <status msg>

▪ <version> is HTTP version of the response

▪ <status code> is numeric status

▪ <status msg> is corresponding English text

▪ 200 OK Request was handled without error

▪ 301 Moved Provide alternate URL

▪ 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
▪ Provide additional information about response

▪ Content-Type: MIME type of content in response body

▪ Content-Length: Length of content in response body

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: empty line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: empty line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content
▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

 int srcfd;

 char *srcp, filetype[MAXLINE], buf[MAXBUF];

 /* Send response headers to client */

get_filetype(filename, filetype);

 sprintf(buf, "HTTP/1.0 200 OK\r\n");

 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

 sprintf(buf, "%sConnection: close\r\n", buf);

 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

 Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

 Close(srcfd);

 Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny

server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A CGI Program

Output page

host port CGI program

arguments

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING

▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

 if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* Child */

 /* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

/* Make the response body */

 sprintf(content, "Welcome to add.com: ");

 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

 content, n1, n2, n1 + n2);

 sprintf(content, "%sThanks for visiting!\r\n", content);

 /* Generate the HTTP response */

 printf("Content-length: %d\r\n", (int)strlen(content));

 printf("Content-type: text/html\r\n\r\n");

 printf("%s", content);

 fflush(stdout);

 exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'

cellspacing='1' id='cal'>

 . . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more

expensive

global network

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2017
▪ THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments.

	Slide 1
	Slide 2: Course Update
	Slide 3: Network Programming: Part II
	Slide 4: Sockets Interface
	Slide 5: Recall: Socket Address Structures
	Slide 6: Recall: Socket Address Structures
	Slide 7: Sockets Interface
	Slide 8: Sockets Interface: socket
	Slide 9: Sockets Interface
	Slide 10: Sockets Interface: bind
	Slide 11: Sockets Interface
	Slide 12: Sockets Interface: listen
	Slide 13: Sockets Interface
	Slide 14: Sockets Interface: accept
	Slide 15: Sockets Interface
	Slide 16: Sockets Interface: connect
	Slide 17: accept Illustrated
	Slide 18: Connected vs. Listening Descriptors
	Slide 19: Sockets Interface
	Slide 20: Sockets Interface
	Slide 21: Sockets Helper: open_clientfd
	Slide 22: Sockets Helper: open_clientfd (cont)
	Slide 23: Sockets Interface
	Slide 24: Sockets Helper: open_listenfd
	Slide 25: Sockets Helper: open_listenfd (cont)
	Slide 26: Sockets Helper: open_listenfd (cont)
	Slide 27: Echo Client: Main Routine
	Slide 28: Iterative Echo Server: Main Routine
	Slide 29: Echo Server: echo function
	Slide 30: Testing Servers Using telnet
	Slide 31: Testing the Echo Server With telnet
	Slide 32: Web Server Basics
	Slide 33: Web Content
	Slide 34: Static and Dynamic Content
	Slide 35: URLs and how clients and servers use them
	Slide 36: HTTP Requests
	Slide 37: HTTP Responses
	Slide 38: Example HTTP Transaction
	Slide 39: Example HTTP Transaction, Take 2
	Slide 40: Tiny Web Server
	Slide 41: Tiny Operation
	Slide 42: Tiny Serving Static Content
	Slide 43: Serving Dynamic Content
	Slide 44: Serving Dynamic Content (cont)
	Slide 45: Serving Dynamic Content (cont)
	Slide 46: Issues in Serving Dynamic Content
	Slide 47: CGI
	Slide 48: A CGI Program
	Slide 49: Serving Dynamic Content With GET
	Slide 50: Serving Dynamic Content With GET
	Slide 51: Serving Dynamic Content With GET
	Slide 52: Serving Dynamic Content with GET
	Slide 53: Serving Dynamic Content with GET
	Slide 54: Serving Dynamic Content With GET
	Slide 55: Data Transfer Mechanisms
	Slide 56: Chunked Encoding Example
	Slide 57: Proxies
	Slide 58: Why Proxies?
	Slide 59: For More Information

