
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Advanced

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Semaphores
¢ Semaphore: non-negative global integer synchronization

variable. Manipulated by P and V operations.
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately.
§ If s is zero, then suspend thread until s becomes nonzero and the thread

is restarted by a V operation.
§ After restarting, the P operation decrements s and returns control to the

caller.

¢ V(s):
§ Increment s by 1.
§ If there are any threads blocked in a P operation waiting for s to become

non-zero, then restart exactly one of those threads, which then
completes its P operation by decrementing s.

¢ Semaphore invariant: (s >= 0)

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Using semaphores to protect shared
resources via mutual exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

§ Surround each access to the shared variable(s) with P(mutex) and
 V(mutex) operations

mutex = 1

 P(mutex)
 cnt++
 V(mutex)

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores to Coordinate
Access to Shared Resources

¢ Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
§ Use counting semaphores to keep track of resource state and to

notify other threads
§ Use mutex to protect access to resource

¢ Two classic examples:
§ The Producer-Consumer Problem
§ The Readers-Writers Problem

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer Problem

¢ Common synchronization pattern:
§ Producer waits for empty slot, inserts item in buffer, and notifies consumer
§ Consumer waits for item, removes it from buffer, and notifies producer

¢ Examples
§ Multimedia processing:

§ Producer creates MPEG video frames, consumer renders them
§ Event-driven graphical user interfaces

§ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

§ Consumer retrieves events from buffer and paints the display

Producer
thread

Shared
buffer

Consumer
thread

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer
¢ Requires a mutex and two counting semaphores:

§ mutex: enforces mutually exclusive access to the the buffer
§ slots: counts the available slots in the buffer
§ items: counts the available items in the buffer

¢ Implemented using a shared buffer package called sbuf.

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Declarations

#include "csapp.h”

typedef struct {
 int *buf; /* Buffer array */
 int n; /* Maximum number of slots */
 int front; /* buf[(front+1)%n] is first item */
 int rear; /* buf[rear%n] is last item */
 sem_t mutex; /* Protects accesses to buf */
 sem_t slots; /* Counts available slots */
 sem_t items; /* Counts available items */
} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);
void sbuf_deinit(sbuf_t *sp);
void sbuf_insert(sbuf_t *sp, int item);
int sbuf_remove(sbuf_t *sp); sbuf.h

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t *sp, int n)
{
 sp->buf = Calloc(n, sizeof(int));
 sp->n = n; /* Buffer holds max of n items */
 sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
 Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
 Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
 Sem_init(&sp->items, 0, 0); /* Initially, buf has 0 items */
}

/* Clean up buffer sp */
void sbuf_deinit(sbuf_t *sp)
{

Free(sp->buf);
} sbuf.c

Initializing and deinitializing a shared buffer:

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t *sp, int item)
{
 P(&sp->slots); /* Wait for available slot
*/
 P(&sp->mutex); /* Lock the buffer */
 sp->buf[(++sp->rear)%(sp->n)] = item; /* Insert the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->items); /* Announce available item
*/
} sbuf.c

Inserting an item into a shared buffer:

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{
 int item;
 P(&sp->items); /* Wait for available item */
 P(&sp->mutex); /* Lock the buffer */
 item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->slots); /* Announce available slot */
 return item;
}

sbuf.c

Removing an item from a shared buffer:

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers-Writers Problem
¢ Generalization of the mutual exclusion problem

¢ Problem statement:
§ Reader threads only read the object
§ Writer threads modify the object
§ Writers must have exclusive access to the object
§ Unlimited number of readers can access the object

¢ Occurs frequently in real systems, e.g.,
§ Online airline reservation system
§ Multithreaded caching Web proxy

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variants of Readers-Writers
¢ First readers-writers problem (favors readers)

§ No reader should be kept waiting unless a writer has already been
granted permission to use the object

§ A reader that arrives after a waiting writer gets priority over the writer

¢ Second readers-writers problem (favors writers)
§ Once a writer is ready to write, it performs its write as soon as possible
§ A reader that arrives after a writer must wait, even if the writer is also

waiting

¢ Starvation (where a thread waits indefinitely) is possible in
both cases

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially = 0 */
sem_t mutex, w; /* Initially = 1 */

void reader(void)
{
 while (1) {

P(&mutex);
readcnt++;

 if (readcnt == 1) /* First in */
P(&w);

V(&mutex);

/* Critical section */
/* Reading happens */

P(&mutex);
readcnt--;

 if (readcnt == 0) /* Last out */
V(&w);

V(&mutex);
}

}

void writer(void)
{
 while (1) {

P(&w);

 /* Critical section */
/* Writing happens */

V(&w);
}

}

Readers: Writers:

rw1.c

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: Prethreaded
Concurrent Server

Master
thread Buffer ...Accept

connections

Insert
descriptors Remove

descriptors

Worker
thread

Worker
thread

Client

Client

...

Service client

Service client

Pool of
worker
 threads

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server
sbuf_t sbuf; /* Shared buffer of connected descriptors */

int main(int argc, char **argv)
{
 int i, listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;
 pthread_t tid;

 listenfd = Open_listenfd(argv[1]);

sbuf_init(&sbuf, SBUFSIZE);
 for (i = 0; i < NTHREADS; i++) /* Create worker threads */

Pthread_create(&tid, NULL, thread, NULL);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr,
&clientlen);
 sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */
 }
} echoservert_pre.c

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void *thread(void *vargp)
{
 Pthread_detach(pthread_self());
 while (1) {
 int connfd = sbuf_remove(&sbuf); /* Remove connfd from buf
*/

echo_cnt(connfd); /* Service client */
Close(connfd);

}
} echoservert_pre.c

Worker thread routine:

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

static int byte_cnt; /* Byte counter */
static sem_t mutex; /* and the mutex that protects it */

static void init_echo_cnt(void)
{

Sem_init(&mutex, 0, 1);
byte_cnt = 0;

}
echo_cnt.c

echo_cnt initialization routine:

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void echo_cnt(int connfd)
{

int n;
char buf[MAXLINE];
rio_t rio;
static pthread_once_t once = PTHREAD_ONCE_INIT;

 Pthread_once(&once, init_echo_cnt);
 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

P(&mutex);
 byte_cnt += n;
 printf("thread %d received %d (%d total) bytes on fd
%d\n",
 (int) pthread_self(), n, byte_cnt, connfd);

V(&mutex);
Rio_writen(connfd, buf, n);

}
}

Worker thread service routine:

echo_cnt.c

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crucial concept: Thread Safety
¢ Functions called from a thread must be thread-safe

¢ Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads

¢ Classes of thread-unsafe functions:
§ Class 1: Functions that do not protect shared variables
§ Class 2: Functions that keep state across multiple invocations
§ Class 3: Functions that return a pointer to a static variable
§ Class 4: Functions that call thread-unsafe functions J

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 1)

¢ Failing to protect shared variables
§ Fix: Use P and V semaphore operations
§ Example: goodcnt.c
§ Issue: Synchronization operations will slow down code

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 2)
¢ Relying on persistent state across multiple function invocations

§ Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767
*/
int rand(void)
{
 next = next*1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{
 next = seed;
}

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Random Number Generator

¢ Pass state as part of argument
§ and, thereby, eliminate global state

¢ Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{
 *nextp = *nextp * 1103515245 + 12345;
 return (unsigned int)(*nextp/65536) % 32768;
}

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 3)
¢ Returning a pointer to a

static variable
¢ Fix 1. Rewrite function so

caller passes address of
variable to store result
§ Requires changes in caller and

callee

¢ Fix 2. Lock-and-copy
§ Requires simple changes in

caller (and none in callee)
§ However, caller must free

memory.

/* lock-and-copy version */
char *ctime_ts(const time_t *timep,

char *privatep)
{

char *sharedp;

P(&mutex);
sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);
return privatep;

}

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 4)
¢ Calling thread-unsafe functions

§ Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

§ Fix: Modify the function so it calls only thread-safe functions J

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reentrant Functions
¢ Def: A function is reentrant iff it accesses no shared

variables when called by multiple threads.
§ Important subset of thread-safe functions

§ Require no synchronization operations
§ Only way to make a Class 2 function thread-safe is to make it

reetnrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Library Functions
¢ All functions in the Standard C Library (at the back of the

K&R C text) are thread-safe
§ Examples: malloc, free, printf, scanf

¢ Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

One worry: Races
¢ A race occurs when correctness of the program depends on one

thread reaching point x before another thread reaches point y
/* A threaded program with a race */
int main()
{
 pthread_t tid[N];

int i;

for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)
Pthread_join(tid[i], NULL);

exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 int myid = *((int *)vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
} race.c

N threads are sharing i

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race Illustration

Main thread

Peer thread 0

for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);

i = 0

myid = *((int *)vargp)i = 1 Race!

¢ Race between increment of i in main thread and deref of
vargp in peer thread:
§ If deref happens while i = 0, then OK
§ Otherwise, peer thread gets wrong id value

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Could this race really occur?

int i;
for (i = 0; i < 100; i++) {

Pthread_create(&tid, NULL,
thread,&i);

}

¢ Race Test
§ If no race, then each thread would get different value of i
§ Set of saved values would consist of one copy each of 0 through 99

Main thread
void *thread(void *vargp) {
 Pthread_detach(pthread_self());

int i = *((int *)vargp);
save_value(i);
return NULL;

}

Peer thread

race.c

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experimental Results

¢ The race can really happen!

No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race Elimination
/* Threaded program without the race */
int main()
{
 pthread_t tid[N];

int i, *ptr;

for (i = 0; i < N; i++) {
 ptr = Malloc(sizeof(int));
 *ptr = i;
 Pthread_create(&tid[i], NULL, thread, ptr);

}
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);
 Free(vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
} norace.c

¢ Avoid unintended sharing of
state

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another worry: Deadlock
¢ Def: A process is deadlocked iff it is waiting for a condition

that will never be true

¢ Typical Scenario
§ Processes 1 and 2 needs two resources (A and B) to proceed
§ Process 1 acquires A, waits for B
§ Process 2 acquires B, waits for A
§ Both will wait forever!

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlocking With Semaphores
int main()
{
 pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock Visualized in Progress Graph
Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for
either s0 or s1 to become
nonzero

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: deadlock is
often nondeterministic (race)

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoiding Deadlock
int main()
{
 pthread_t tid[2];
 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
 Pthread_create(&tid[0], NULL, count, (void*) 0);
 Pthread_create(&tid[1], NULL, count, (void*) 1);
 Pthread_join(tid[0], NULL);
 Pthread_join(tid[1], NULL);
 printf("cnt=%d\n", cnt);
 exit(0);
}

void *count(void *vargp)
{
 int i;
 int id = (int) vargp;
 for (i = 0; i < NITERS; i++) {
 P(&mutex[0]); P(&mutex[1]);
 cnt++;
 V(&mutex[id]); V(&mutex[1-id]);
 }
 return NULL;
}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
immaterial

