
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

Ø Assignment 1 – Marking now

Ø Checkpoint 2 – Now moved to next week
Ø Attend the lab as per Checkpoint 1

Ø Final Exam – Closed Book
Ø Wednesday 12/11/2025 2-5:15pm
Ø Melville Hall

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs
¢ Question: Which variables in a threaded C program are

shared?
§ The answer is not as simple as “global variables are shared” and

“stack variables are private”

¢ Def: A variable x is shared if and only if multiple threads
reference some instance of x.

¢ Requires answers to the following questions:
§ What is the memory model for threads?
§ How are instances of variables mapped to memory?
§ How many threads might reference each of these instances?

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

¢ Threads associated with process form a pool of peers
§ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model
¢ Conceptual model:

§ Multiple threads run within the context of a single process
§ Each thread has its own separate thread context

§ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

§ All threads share the remaining process context
§ Code, data, heap, and shared library segments of the process virtual address space
§ Open files and installed handlers

¢ Operationally, this model is not strictly enforced:
§ Register values are truly separate and protected, but…
§ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operational model
is a source of confusion and errors

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing
char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory
¢ Global variables

§ Def: Variable declared outside of a function
§ Virtual memory contains exactly one instance of any global variable

¢ Local variables
§ Def: Variable declared inside function without static attribute
§ Each thread stack contains one instance of each local variable

¢ Local static variables
§ Def: Variable declared inside function with the static attribute
§ Virtual memory contains exactly one instance of any local static

variable.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
¢ Which variables are shared?

¢ Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
n ptr, cnt, and msgs are shared
n i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads
¢ Shared variables are handy...

¢ …but introduce the possibility of nasty synchronization
errors.

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)

cnt++;

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?badcnt.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
¢ Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
§ Ii denotes that thread i executes instruction I
§ %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Li : Load cnt
Ui : Update cnt
Si : Store cnt

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
¢ Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1
-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
Li : Load cnt
Ui : Update cnt
Si : Store cnt

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
¢ How about this ordering?

¢ We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Li : Load cnt
Ui : Update cnt
Si : Store cnt

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
¢ Question: How can we guarantee a safe trajectory?

¢ Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
§ i.e., need to guarantee mutually exclusive access for each critical

section.

¢ Classic solution:
§ Semaphores (Edsger Dijkstra)

¢ Other approaches (out of our scope)
§ Mutex and condition variables (Pthreads)
§ Monitors (Java)

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
¢ Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately.
§ Test and decrement operations occur atomically (indivisibly)

§ If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

§ After restarting, the P operation decrements s and returns control to the
caller.

¢ V(s):
§ Increment s by 1.

§ Increment operation occurs atomically
§ If there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

¢ Semaphore invariant: (s >= 0)

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:
#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)

cnt++;

return NULL;
}

How can we fix this using
semaphores?

badcnt.c

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores for Mutual Exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

§ Surround corresponding critical sections with P(mutex) and
 V(mutex) operations.

¢ Terminology:
§ Binary semaphore: semaphore whose value is always 0 or 1
§ Mutex: binary semaphore used for mutual exclusion

§ P operation: “locking” the mutex
§ V operation: “unlocking” or “releasing” the mutex
§ “Holding” a mutex: locked and not yet unlocked.

§ Counting semaphore: used as a counter for set of available
resources.

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization
¢ Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt
*/

Sem_init(&mutex, 0, 1); /* mutex = 1 */

¢ Surround critical section with P and V:

for (i = 0; i < niters; i++) {
P(&mutex);
cnt++;
V(&mutex);

}

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

Unsafe region

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Programmers need a clear model of how variables are

shared by threads.

¢ Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

¢ Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

