Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

Course Update

> Assignment 1 — Marking now

> Checkpoint 2 — Now moved to next week
» Attend the lab as per Checkpoint 1

> Final Exam — Closed Book

» Wednesday 12/11/2025 2-5:15pm
» Melville Hall

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Synchronization: Basics

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:

= What is the memory model for threads?
= How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® 7
' (P1)

OXOXO),
_____________________ | (o
®

“a| shared code, data
and kernel context

*
*
*
*
*
*
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process

= Each thread has its own separate thread context
= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context

= Code, data, heap, and shared library segments of the process virtual address space
= Open files and installed handlers

m Operationally, this model is not strictly enforced:

= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operational model
is a source of confusion and errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Example Program to lllustrate Sharing

char xkptr; /% global var *x/ void *thread(void *xvargp)
{
int main() long myid = (long)vargp;
{ static int cnt = 0;
long 1ij;
pthread_t tid; printf("[%ld]: %s (cnt=%d)\n",
char *msgs[2] = { myid, ptrlmyid]l, ++cnt);
"Hello from foo", return NULL
"Hello from bar" } //f
}s 4
Peer threads reference main thread’s stack
ptr = msgs; indirectly through global ptr variable
for (i = 0; 1 < 2; i++)
Pthread_create(&tid,
NULL,
thread,
(void *)i);
Pthread_exit(NULL);
} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

m Global variables
= Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])
‘ Local vars: 1 instance (i .m, msgs.m)

7
char sxptr; /% global var Local var: 2 instances (
: : myid.pO [peer thread 0’s stack],
%nt Rt myid.pl [peer thread 1’s stack]
long 1ij;)
pthread_t tid; ///
char *msgs[2] = {
"Hello from foo", void *thread{void *vargp)
"Hello from bar" {
}; long myid = (long)vargp;
static int cnt = 0;
ptr = msgs;
for (1 =0; i< 2; i++) printf("[%1d]: 9%s (cnt=%d)\n",
Pthread_create(&tid, myid, ptrimyidl, ++cnt);
NULL, return NULLS;
thread, }
(void x)1i); 1
Pthread_exit (NULL); Local static var: 1 instance (cnt [data])
¥ sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-
Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared

®m i andmyid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Synchronizing Threads

m Shared variables are handy...

m ..but introduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

R
badcnt. c: Improper Synchronization

/* Global shared variable *x/
volatile long cnt = @; /* Counter x/

int main(int argc, char *x*argv)
{

long niters;

pthread_t tidl, tid2;

niters = atoi(argvI[1]l);
Pthread _create(&tidl, NULL,
thread, &niters);
Pthread _create(&tid2, NULL,
thread, &niters);
Pthread_join(tid1l, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 % niters))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1ld\n", cnt);
exit(0);
} badcnt.c

/* Thread routine *x/
void xthread(void *vargp)

{
long 1, niters =
*((long *)vargp);

for (i = @; i < niters; i++)
cnt++;

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000

BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

12

Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; i < niters; i++)
cnt++;

Asm code for thread i

movq $rdi) , Srcx \
testqg %rcx, %rcx _
Sl : L2 ' H;: Head
movl $0, %eax }
LL3: ’
movg cnt(%rip),%rdx Li:Load cnt
addg $1, %$rdx ' U;: Update cnt
movqg %rdx, cnt($rip) || S;i:Storecnt
TTTTTaddg ST, $rax T \
real el LR
L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Concurrent Execution

m Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt
1 H, _ - 0 Thread 1
1 L, 0 - 0 critical section
1 U, 1 - 0
1 S, 1 - 1 Thread 2
2 H, - - 1 critical section
2 L, - 1 1
2 U, - 2 1
2 S, - 2 2 L;:Load cnt
2 T, - 2 2 U;: Update cnt
1 Ty 1 - 2 OK S;: Store cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 H, - - 0

1 L, 0 - 0

1 U, 1 - 0

2 H, - - 0

2 L, : 0 0| ¢ummm

1 S, 1 - 1

1 T, 1 - 1

2 U, - 1 1

2 S, - 1 1

2 T, - 1 1 Oops!
L;:Load cnt
U;: Update cnt
S;: Store cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %rdx, %rdx, cnt

1 H, 0

1 L, 0

2 H,

2 L, 0 —
2 U, 1

2 S, 1 1

1 U, 1

1 S, 1 1

1 T 1

5 . 1 Oops!

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution
)8 o ° ° ° ° state space of concurrent
T threads.
? (Llr SZ)
7 ¢ ¢ ¢ ¢ ¢ Each axis corresponds to
S, the sequential order of
. Li:Loadent jhstryctions in a thread.
U;: Update cnt
U, SiiStoreent e point corresponds to
¢ o ® o ° ° a possible execution state
L, (Insty, Inst,).
® ® ® ® ® o
E.g., (L, S,) denotes state
H, where thread 1 has
o ° ® ° ® *— Thread 1 completed L, and thread
H, L, U, Sy T 2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
® ® ° Y ° state transitions that describes one
T, x possible concurrent execution of the
threads.
o [) o o ([
S, T Example:
i ¢ ¢ ¢ ¢ I H1, L1, U1, H2, L2, S1,T1, U2, S2, T2
— —p
° °
¢ *— Thread 1
Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
® ° ° o o o section with respect to the
shared variable cnt
T,
7 g ° ° ® ° Instructions in critical
S, sections (wrt some shared
critical it o ‘ . o o variable) should not be
section . interleaved
wrt U, Unsafe region
cnt ¢ ® ® ® ® ® Sets of states where such
L, interleaving occurs form
"4 o unsafe regions
H,
° ¢ ¢ ¢ ¢ *— Thread 1
H, L, U, Sq Ty
g /
g

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Critical Sections and Unsafe Regions

Thread 2

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

critical

section
wrt
cnt

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

-
Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
" Mutex and condition variables (Pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

-
Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.
m P(s)
" |fsis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

= |fsiszero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

= After restarting, the P operation decrements s and returns control to the
caller.
m V(s):
" Increment s by 1.
= |ncrement operation occurs atomically

= |f there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: (s >=0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val) ;} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include '"csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

R
badcnt. c: Improper Synchronization

/* Global shared variable x/ /* Thread routine */
volatile long cnt = @; /* Counter */ void xthread(void *vargp)
{
int main(int argc, char *xkargv) long i, niters =
{ *((long *)vargp);

long niters;

pthread_t tidl, tid2; for (i = @; i < niters:; i++)

niters = atoi(argvI[1]); cnt++;

Pthread _create(&tidl, NULL,
thread, &niters); return NULL;
Pthread_create(&tid2, NULL, }
thread, &niters);
Pthread_join(tid1l, NULL);
Pthread_join(tid2, NULL);

/* Check result x/ . . .
(e ler = Gh ey How can we fix this using

printf("BOOM! cnt=%ld\n", cnt); | semaphores?
else
printf("0K cnt=%1d\n", cnt);
exit(0);
¥ badcnt.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unigue semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
" Binary semaphore: semaphore whose value is always 0 or 1
" Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

" Counting semaphore: used as a counter for set of available
resources.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

-
goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = @; /* Counter x/
sem_t mutex; /* Semaphore that protects cnt

*/

Sem_init(&mutex, @, 1); /% mutex = 1 %/

m Surround critical section with P and V:

for (i = @; i < niters; i++) { linux> ./goodcnt 10000
P(&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
V(&mutex); OK cnt=20000
linux>
b goodcnt.c o

Warning: It’s orders of magnitude slower
than badcnt.c.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Why Mutexes Work

Thread 2
l. 1 1 0 0 0 0 1 1 Provide mutually exclusive
* ¢ * * * * * access to shared variable by
T, surrounding critical section
$] L o0 LT with P and V operations on
V(s) : : Forbidden region : : semaphore s (initially set to 1)
S, ! ! 1 Semaphore invariant
| 0 eV e ed ol e Lo 0 creates a forbidden region
U that encloses unsafe region
2 SO - . o LU0 and that cannot be entered by
L any trajectory.
210 0 1 1 A 0 0
P(s) 1 1 0 0 0 0 1 1
H,
01 ‘1 . 0 ‘0 00 00 01 . Threadl
ﬂ H, P(s) L, U, S V() T,
Initially

Bryanéarﬁ C]'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

