
Translating Loops and Observing Address
Space Addresses

In this week, we observe the assembly code gcc generates under different optimization targets and new
compilation options to generate assembly code that faithfluly follows the lecture slides.

Specifically, we use special gcc options to turn off position-independent code and execution. This way gcc
generates assembly code that more closely resembles the code shown in the lecture slides. Use Google to
try and get a sense of what these options do on your own.

We provide the Makefile with the source code to make it easy for you to compile the demo code. You should
change -Og to -O1 and back manually (read below).

Repeat the following activities using the source code we provide on the lecture webpage.

Use the provided C source code files to translate for and while loops into x86-64 assembly

Notice the for/while translation into a jump to middle pattern when the -Og optimization option of
gcc is used

Notice the for/while translation into a first test pattern when the -O1 optimization option of gcc is
used

Notice how the switch statement is translated into a jump table-based implementation when the -
Og optimization is used

Compile and run the locate binaries with and without the PIC/PIE-related flags and observe where each
part of the executable goes in memory

Follow the instructions in the demo to print out the addresses in the jump table. (Recall the examine
command x/8xg starting_address)

We also provide a swap.c . Learn to observe register updates in gdb by stepping through the swap code
and using info registers command of gdb.

Optional Activity
Read about the gcc optimization flags we have used in lecture demos

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Translating Loops and Observing Address Space Addresses
	Optional Activity

