
Convener: Prof John Taylor

Teaching: Comp4300 - Parallel Systems (semester 1)
 Systems, Network, and Concurrency (semester 2)
Research: AI for Science, High Performance Computing

Quick Logistics
Course webpage: https://comp.anu.edu.au/courses/comp2310/
Lectures (on the website)

§ Lecture slides
§ Lecture videos (Echo360)
§ 2 hours reserved (some lectures may be shorter, demos etc)

Policies
§ General conduct, assignment submissions, support, management,

grading

Resources
§ Past exam with solution and rubric
§ Stuff needed to finish the labs and assignments

https://comp.anu.edu.au/courses/comp2310/

Edstem
We will use edstem for all communication

§ If you ignore edstem, you will miss key
announcements
§ Drop-in sessions, make-up lectures,

problems, exercises, corrections, lecture
timing

§ Ask questions on edstem first (most
likely you will receive a response
quickly)

§ Ask instructors private questions on
edstem

§ Students are added/dropped automatically

Course Email

comp2310@anu.edu.au

§ Do not send me a direct email except for requests:
§ Super urgent
§ Personal
§ EAP-related

Guest lecture
Daniel Nadasi - Principal Engineer, Google Australia

Topic: Global Scale Distributed Systems
Daniel serves as a Principal Engineer for Cross Google Engineering which is
responsible for coordinating Google's technical roadmap. At Google prior to this Daniel
has led cross-functional teams across the software stack including Google’s
geographic data infrastructure, Google Photos, and Google Tasks among others. His
experience traverses the technical spectrum and includes infrastructure, machine
learning, mobile and web. Daniel also serves on ANU's Computing Advisory Board.

Ø Tomorrow, Tuesday 23 July, 12-1 pm

Motivation

6

Recall: How do we make electrons
do the work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Recall: How do we make electrons
do the work?
§ Using a sequence of systematic transformations

§ Developed over six decades

§ Each step must be studied and improved for the whole
stack to work efficiently

§ We call the steps of the process: Levels of transformation OR
Transformation hierarchy

§ At each level of the stack, we have choices
§ Language: Java, Python, Ruby, Scala, C++, C#
§ ISA: ARM, x86, SPARC, PowerPC, RISC-V
§ Microarchitecture: Intel, AMD, IBM

§ If we ignore any of the steps, then we cannot
§ Make the best use of computer systems
§ Build the best system for a set of programs

Recall: Transformation Hierarchy

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Program
Execution

Computer
Organization

Computer
Architecture2300

2300

2300

❌

2310

2310

Recall: Transformation Hierarchy & Us

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Recall: Hardware and Software

Hardware

Software

ISA = Hw/Sw
boundary/interface

§ The notion of abstraction

§ Hardware versus software

Recall: Two Recurring Themes

Recall: The Notion of Abstraction
§ Abstraction: Know components from a high level of detail

Apple M1 Chip
Billions of transistors
All working in parallel

No human (programmer) can track
10 billion elements. Computer systems
work because of abstraction!

Recall: The Notion of Abstraction
§ Abstraction: View the world from a higher level

§ Focus on the important aspects
§ Input? Output? X = ADD or MULTIPLY

§ Raise the level of abstraction for productivity and efficiency

§ But what if the world below does not work as expected?
§ To deal with it, we need to go below the abstraction layer

§ Deconstruction: To un-abstract when needed
§ Important skill

X
input output

Recall: The Notion of Abstraction
§ We will use this theme a lot!

§ Each layer in the transformation
hierarchy is an abstraction layer!

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Recall: Hardware versus Software
§ Hardware versus software

§ Hardware: Physical computer
§ Software: Programs, operating systems, compilers

§ One view: Ok to be an expert at one of these

§ Hw and Sw: Two parts of the computer system
§ COMP2300 view: Knowing the capabilities/limitations of

each leads to better overall systems

Software
Applications

Hardware
Systems

Requirements

Opportunities

COMP2310
deepens this
knowledge

Role of Compiler
§ What does a compiler do?

§ Translates high-level code into assembly
§ More generally, the compilation toolchain generates machine

code in a sequence of stages:
§ translate a group of related source files into assembly
§ resolve inter-dependencies between source files (linking)
§ handle the linking of any external libraries
§ perform optimizations (make use of special hardware features)

§ It is more complex than line-by-line C to assembly translation
§ Learning the process is important from a performance, efficiency,

security, and hacker perspective

Turning C into Object Code (details later)
text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc –c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Role of Operating System (OS)
§ Operating system

§ Enables safe abstractions of hardware resources
§ Virtualizes hardware for use by programs

§ Gives each program the illusion that it has the entire
resource for itself

§ Manages the hardware resources for efficient and safe working
of the system

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

COMP2310, Goal # 1
§ Deepen the understanding of how applications interact with

compiler and OS, and hardware

§ Today, critical for software to be correct, performant, efficient,
secure

§ Demystify how programs are loaded into memory and executed
§ What happens when you click an icon to start an

application?
§ Or type the program name into a shell program and press

enter

COMP2310, Goal # 1 (cont’d)
§ How are C programs translated into x86-64 assembly?

§ Compilation and linking fundamentals

§ Object files, executable formats, etc

§ Implementation of loops, procedure calls, data
structures (reprise)

§ Optimizations done (not done) by the compiler

Assembly is Important!
§ Intel x86-64 ISA widely used in server hardware

§ Tuning performance

§ Understanding optimization done (not done) by the compiler
§ Understanding behavior of programs and exploiting choice via

compile-time options

§ Writing systems software (device drivers)

§ Fighting security vulnerabilities

§ Behavior of buggy programs

COMP2310, Goal # 1 (cont’d)
§ What does the memory hierarchy look like?

§ How do caches work in more detail?
§ What is their impact on program behavior?

(programmer’s perspective)

§ How does main memory differ from a disk drive?

§ How does device behavior impact the design of computer
programs?

Memory matters!

Meta datacenters, 2022

§ Memory is a limited resource
§ Must be carefully managed

§ Memory bugs are hard to detect
§ Understanding pointers and

memory allocators helps
§ Memory performance is not always

uniform
§ Caches, virtual memory effects

need to understood

Memory matters!
void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms 2.0 GHz Intel Core i7 Haswell
§ Hierarchical memory organization
§ Performance depends on access patterns

§ Including how to step through a multi-dimensional array

Memory Hierarchy

COMP2310, Goal # 1 (cont’d)
§ How does the operating system abstract hardware resources

for use by application programs?
§ Processes
§ Virtual memory
§ Files

§ All these are abstractions the OS uses to isolate computer
programs from each other
§ Our focus is NOT on (re)building these “mechanisms” but

writing programs to use them

COMP2310, Goal # 2
§ Understand how applications use the operating system

(OS) and the C standard library for writing real-world
applications

§ Search engines

§ Databases

§ Android memory manager

COMP2310, Goal # 2
§ Write low-level code that interfaces with the operating system

kernel and C library

§ What interface (and interesting system calls) does the
operating system provide?

§ Learn to: -
§ Implement memory allocators, read/write from/to storage

disks and SSDs
§ Communicate with the outside world (networking), and

manage concurrently running processes and applications

User Code vs. Kernel Code
§ OS manages the hardware, interposed b/w the program

and hardware

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

§ Application code that runs on top of OS or any resource
manager in general is user code (or user program)

§ The code that manages the hardware is kernel code
§ The CPU is either in user mode or kernel mode

What is OS kernel?
§ Core component of OS that manages the hardware

§ Device management (keyboard, mouse, display, etc)
§ Memory (RAM) management
§ Network management
§ Storage management
§ Filesystem code

§ What else is in the OS?
§ Shell
§ GUI
§ Utilities

What does an OS do?
§ Manages the hardware, interposed b/w the program and

hardware
§ Our high-level view of system (no network for simplicity)

§ OS manages CPU (processor), memory (RAM), input/output (I/O)
devices (keyboard, disk, display, network), and files on disk

Main Memory Storage
1

da
y

Few years

How do applications use the OS?
§ OS provides services to be accessed by user programs
§ Programs can make use of “system calls” on Linux and

Windows application programming interface (“API”)
§ Allocate memory for me
§ Read “N” bytes from file F into memory location “M”
§ Write “N” bytes from memory location “M” into file F
§ Establish a network connection to www.anu.edu.au
§ Write “N” bytes to the network connection
§ Put me to sleep

http://www.anu.edu.au/

How applications use the OS?
§ OS provides an interface for applications to use

§ Programs access hardware/device capabilities
through this interface

§ Different hardware à Same interface
§ Interface is constant, its implementation is OS specific

§ We need to learn this interface to write
interesting applications
§ Learning “just enough” details of the implementation

to write correct, efficient, secure programs

Goal # 3, Systems Programming
§ All these aspects will help you become a systems programmer
§ Systems programmers

§ write low-level tools such as compilers, operating systems, and
debuggers

§ they must have an acute awareness of the environment, e.g.,
Linux versus Windows

§ they must use system calls for the specific OS
§ contrast with Python, Ruby, Java programs for business or ML

§ high-level libraries abstract OS and hardware details
§ C library abstracts OS/hardware but many Linux C programs

interface with the kernel API

Example of Pure User-Level C Program

§ Will not crash your machine if you did
something wrong

§ Programmer’s creativity is more critical in
solving the problem
§ Can get by not knowing how an array

looks like in memory
§ Uses a C library function for printing to the

screen
§ C library takes care of making it happen for the

programmer

Example of Pure System-Level C Program

§ Device driver code
§ Most likely crash your machine if you did

something wrong
§ Requires intricate knowledge of the hardware

for which driver is being written
§ Uses Linux kernel sources to reuse

functionality
§ Even “printf()” is not available
§ No C library

Example of User-Space System-Level C Program

§ Won’t crash your machine
§ But program is likely to

crash if something is wrong
§ Uses system call wrappers

provided by C library
§ Uses “interesting” system calls

§ fork() spawn a new
virtual CPU

§ mmap() instantiates a
region in the process’
address space

Focus of this course!

CPU Trends

Main Memory Storage
1

da
y

Few years

2X transistors/chip
every two years

§ Dennard scaling: As transistors get smaller, their power
density stays constant

§ In every technology generation, the area and power
consumption of individual transistors is halved
§ With twice the number of transistors, power consumption

still stays the same

Dennard scaling broke down b/w 2005-2007
 → As we add more transistors, power consumption for
 for a chip with the same area increases

End of Dennard Scaling

Implication: Frequency cannot increase any
further because that would make the power
problem even worse → Industry shifted to
multicores!

End of Dennard Scaling

https://silvanogai.github.io/posts/dennard/

https://www.maketecheasier.com/why-cpu-
clock-speed-isnt-increasing/

Uni-Processor Performance

technology: 35%
uarch: 17%

technology
breakdown
→ multicore

ISA diversity
100X in freq
gains

ISA hegemony
Freq gain < 2X

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

VA

X-
11

/7
80

, 5
 M

Hz

Modern System

§ Software must exploit parallelism for performance

Concurrency and Parallelism
§ Concurrency: When the execution of two processes overlap in

time. Think of a process as an instance of a program
§ Concurrency has always been important
§ It is a style of programming to solve a problem

§ Multiple users time-sharing a uniprocessor system
§ Handle an incoming request from the network, while

the user is watching a video recording

§ Parallelism: When two processes use dedicated resources
(separate CPUs) to execute at the same time
§ Multicores have made parallelism critical

Concurrency and Parallelism
Real-Life Example

Networking

§ Web, social media, email, online games, all use
the network

§ We will learn the basics of client-server model

§ Writing simple networking applications in C

Managing System Resources
§ Many interesting debates in computer systems

§ RISC vs. CISC
§ Compiler vs. hardware exploitation of ILP
§ Manual (C++) vs. automatic memory management (Java)

§ One more debate
§ Should “certain” hardware features be exposed to user-level

applications or not?
§ One camp: User-level programmer possesses better knowledge

of application logic than hardware or compiler or OS
§ They can “tune” the feature to make the optimal use of it

§ Other camp: They may also do something wrong
§ Leave it to the hardware or compiler or OS

Managing System Resources: Examples
§ CPU registers are exposed to software (OS and user-level)

§ CPU caches are managed by hardware
§ We say caches are transparent to software

§ A feature X is exposed to software, but OS utilizes the feature and
user-level code has no way to access it
§ Feature X is transparent to user-level code
§ Feature X is visible to OS, or X is exposed to OS
§ Physical memory is an example (what? that’s why 2310 exists!)

Modern NUMA System

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Some memories are
closer to the CPU,
while others are far
away. Wrong data
placement can hurt
performance.

Modern NUMA System

200 ns300 ns

100 ns

ns = nanoseconds =
1 billionth of a
second (10-9
seconds)

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Another system (cell phones)

Energy-efficientPower-hungry
Performance-driven

ARM big.LITTLE

background tasks
mission-critical tasks

Why learn systems programming?
§ Key takeaway: As a systems programmer, you can

advise the OS (or any resource manager) to make the
best use of the underlying hardware

§ We will teach you how you can build applications that
hook up with the kernel and do just that and other
interesting things

§ We won’t build: CPU, OS, compiler, here

More Examples of System Features
§ NUMA
§ Heterogeneous multicore processors (e.g., big.LITTLE)
§ Persistent memory (e.g., Intel Optane Persistent memory)
§ CPU-FPGA platforms
§ Computational storage devices (CSD)
§ Programmable network interface cards
§ Hyperthreading
§ Turbo boosting, low-power modes
§ Single Instruction Multiple Data (SIMD) instructions
§ ML accelerators
§ Some recent additions to ISA for hardware cache mgmt.
§ Dynamic voltage and frequency scaling (DVFS)
§ Processing in Memory (PIM)
§ Heterogeneous-ISA multicore processors
§ Remote memory
§ Single-ISA multicore processors
§ Intel Cache Allocation and Monitoring Technology
§ Memory-semantic solid-state drives (SSDs)
§ CXL-based memory expansion
§ Software defined storage

COMP2310: Holistic View of
Computer System

Course Perspective
§ Most systems courses are Builder-Centric

§ Computer Organization (COMP2300), Microarchitecture
§ Build a CPU. Implement an ISA

§ Operating Systems (COMP3300, Alwen Tiu)
§ Implement portions of operating system

§ Compilers (COMP3710, Tony Hosking)
§ Write compiler for a simple language

§ Computer Networks (COMP3310)
§ Implement and simulate network protocols

Course Perspective
§ COMP2310 is programmer-centric

§ By knowing more about the underlying system, you can be
more effective as a programmer

§ Enable you to
§ Write programs that are more reliable and efficient
§ Incorporate features that require hooks into OS

§ E.g., concurrency, signal handlers
§ Things you will not see elsewhere or are required background

knowledge
§ Not a course for dedicated hackers

§ We aim to bring the hidden hacker inside you!

Role within CS Curriculum

COMP2310

COMP2300

COMP1100

§ Software Security
§ Operating Systems
§ Compilers
§ Computer Networks
§ High Performance and Scientific Computing
§ Parallel Systems
§ Computer Graphics
§ Algorithms
§ Databases

Note: Not a pre-req for all courses by ANU policy

Content & Topics

59

Primary Textbook
§ Textbook really matters for the course (problems, lectures, labs)

§ Textbook is not “just” a recommendation
§ Warning: Paperback international version has “some” errors

Useful Books on C (optional)
Kernighan & Ritchie, The C Programming
Language, 2nd Edition
• “ANSI” (old-school) C
• Not too serious about things we now

consider criticalSlightly advanced,
more practical advice,
modern

Textbook: Electronic edition available for ANU students

CMU 213
§ Authors of the book at the Carnegie Mellon University created a

course to accompany with the book
§ Lecture slides, problem sets, exams, labs, etc
§ (Acknowledgement) We use the material from the course

§ We encourage you to explore the CMU course website
§ Note: Their course combines aspects of COMP2300 and

COMP2310 into one course
§ Their starting point: COMP2300 starting point
§ Their CPU coverage is limited (programmer’s perspective)
§ Key Point: Do not ignore COMP2310 & blindly follow CMU213

CMU 213
§ Authors of the book at the Carnegie Mellon University created a

course to accompany with the book
§ Lecture slides, problem sets, exams, labs, etc
§ (Acknowledgement) We use the material from the course
§ We encourage you to explore CMU website

High-Level to Low-Level Translation
§ C programming to x86-64 assembly

§ Compilation steps

§ Array allocation and access

§ Heterogenous data structures

§ Optimizations

§ Security vulnerabilities

COMP2310 is not a C Programming Course
§ Emphasis is on program transformation

§ How does high-level code look in assembly?

§ Do compilers always do the right thing?

§ Programmers WILL write more efficient code if they have insight
into transformation steps

§ The power to reverse engineer object code and binaries
§ A.k.a. hackers! Security professionals’ bread and butter

Qualified Answers to C Questions
§ What are pros and cons of programming in C?

§ Why should you NEVER use C in 2022? Why should everyone
learn C (and then program in whatever language they like?

§ Why is C insecure and what can be done about that?

§ Why is Linux OS written in C? And many other datacenter
software stacks?

§ Why is C dominant in the embedded domain?

Exceptional Control Flow
§ Processes

§ The illusion that each program has the entire CPU for its
own use even though many programs might be co-running

§ Exceptions and signals

§ Address spaces

§ How does Unix-like systems enable the process abstraction

§ Linux API and its use. (Key idea: not implementation of API)

Memory Hierarchy

Linking
§ The process of collecting and combining various pieces of code

and data into a single file that can be loaded (copied) into
memory executed

§ Topics
§ Static and dynamic linking
§ Object files, relocatable code
§ Symbols, symbol resolution, symbol tables
§ Position independent code
§ Library interpositioning

Virtual Memory
§ Illusion that a program has the entire physical address space for

its own use even though many programs may be co-running

§ Topics
§ Address translation
§ Translation-lookaside buffers
§ Page tables and page fault
§ Dynamic storage allocation
§ Garbage collection

System-Level I/O
§ Managing storage device (e.g., disk) as a reliable and easy-to-

use persistent storage resource

§ Topics
§ How to use the Linux filesystem API

§ Not a course for learning to implement filesystems
§ Appropriate API usage is an art in its own right!

§ System call and memory-mapped I/O
§ Includes aspects of virtual memory

Network Programming
§ High-level and low-level I/O contd., with extension to network

programming

§ Very similar API for storage and networking I/O

§ Internet services, web servers

Concurrent Programming
§ Concurrent server design

§ Threaded server versus process-based server
§ Last year’s assignment’s key theme

§ I/O multiplexing with select

§ Some aspects of parallel programming
§ Stepping-stone to parallel systems course

Java Virtual Machine (JVM)
§ Java programming language has an entire

runtime to deliver on its key promises
§ Memory safety + portability
§ Nothing comes for free in systems!

§ We will cover fundamentals of JVM
internals

§ Will inform us why Java is slower than C
and what can be done about that
§ Virtual machines is a powerful idea!

Big Data Frameworks
§ Big data frameworks today process very large datasets

§ They stress every aspect of key COMP2310 topics
§ Memory
§ Storage
§ CPU
§ Concurrency and networking

§ We will study a selection of datacenter frameworks
§ Lucene search engine, RocksDB key-value store, Redis

cache, Spark for machine learning analytics

Big Data Frameworks
§ Typical data processing framework you can aim to implement

after COMP2310

§ From book: Designing Data Intensive Applications, Page 5

Assessment

78

Checkpoint 1
§ Reverse engineering x86-64 object code

§ Proficient in low-level C programming
§ pointers, string manipulation, etc

Assignment 1
§ Implementing a memory allocator or malloc() from scratch

§ Open-ended extensions on top of a base spec

Checkpoint 2
§ Concurrency fundamentals

§ Pthread synchronization

Assignment 2
§ Related to networking with aspects of concurrency

§ Last year assignment was a web proxy with a user-level cache

§ Some changes this year but similar in inspiration

Quiz 1
§ Processes and signals

§ Tests first three weeks of content

§ Lab # 4 content is assessed indirectly by the first quiz

Quiz 2
§ Memory allocation, virtual memory, cache, storage, some

database concepts

§ Tests weeks 4 – 7 content

§ Lab # 6 content is assessed indirectly by the first quiz

Final Exam
§ Everything!

§ Inclusive of week 12

§ Every lab

§ Every slide

Assessment Schedule

Release Due

Checkpoint 1 Aug 8 Aug 16

Quiz 1 July 31 Aug 12

Assignment 1 Aug 28 Sep 11

Quiz 2 Sep 2 Sep 16

Checkpoint 2 Sep 27 Oct 10

Assignment 2 Oct 16 Oct 30

§ 2-week window to attempt quizzes
§ 8 – 9 days for checkpoints
§ ~ 2 weeks for assignments

Breakdown
§ Checkpoint 1 (5%)
§ Checkpoint 2 (5%)

§ Quiz 1 (2.5%)
§ Quiz 2 (2.5%)

§ Assignment 1 (20%)
§ Assignment 1 (20%)

§ Final Exam (45%)

Admin & Logistics

88

Succeeding in this course
§ Pay attention to lecture content

§ Finish all labs

§ Read the textbook

§ Submit all assessments

Assessment Difficulty
§ Assignments are manageable if you start early

§ Possibly the most “adventurous” exam of your ANU journey

§ Check out the past year’s exam and rubric on the website

§ If you spend many hours finishing the first two labs and struggle
with checkpoint 1
§ Make sure you finish COMP2300 first
§ Reconsider taking this course if it’s not compulsory
§ Focus on the key points in the last slide

2023 Exam

Readings: Book Chapters
Chapters Topics/Weeks 2310 Coverage

1 COMP2300 Recommended

2 COMP2300 Not required

3 Weeks 1 – 2 Full except 3.11

4 COMP2300 Not Required

5 Weeks 1 – 2 Selected

6 Week 3 Full

7 Week 12 Full

8 Week 4 Full

9 Weeks 5 – 6 Full

10 Week 7 Full

11 Week 9 – 10 Full

12 Week 11 Full

Practice Problems
§ Try practice questions in book (answers in the book)

Cheating/Plagiarism
§ Copying code, retyping by looking at a file

§ Describing a solution to someone else so they can then type

§ Searching the web for solutions to quiz or assignment
§ Last year’s iteration of COMP2310, other universities’

solutions in English or another language

§ Copying from a github repository with minor or no modification

§ Use of AI to generate your code

§ Helping others by supplying code

§ Debugging their code

§ Telling them how to put together different code snippets to reach
a working solution

Cheating/Plagiarism

§ Explaining how to use a tool
§ GDB, GCC, Valgrind, Editor, VSCode, Shell

§ High level discussions
§ Not pseudo-code, not specific algorithms

§ Using code supplied with the book

§ Using Linux manpages

§ Do not do this: COMP2310 malloc solution 2022

Not Cheating

§ Action to uphold integrity begins at the time of discovery (not at
the end of course)

§ Last year, I read all submitted code from every student (but we
will use automated tools as well)

§ Some students were unable to pass the course due to academic
integrity

§ Bottomline: We want you to get the experience of dealing with
systems programming issues from scratch!

Cheating Consequences

Tutorials/Labs
§ Labs are a critical component of this course (one every week)
§ Handout will be posted on the website “Labs” before each lab
§ First 2 labs

§ Becoming comfortable in C: pointers, bit-level manipulation, malloc()/free()
§ Lab 3 is assessed as the first checkpoint (no help from tutors)

§ Lab 4
§ Process API and signal handling

§ Lab 5 – 6
§ We will teach you to write a basic memory allocator, i.e., implementation of malloc()

§ Lab 6 (assignment 1 week)
§ Lab 7

§ Storage I/O
§ Lab 8

§ Concurrency fundamentals
§ Lab 9

§ Concurrency & Networking (sockets API)
§ Labs 10, 11

§ Assignment 2, threads & concurrency (pthreads)

Sy
st

em
s

Fo
un

da
tio

n

N
et

w
or

ki
ng

&

co

nc
ur

re
nc

y

Assignment Submission
§ Extensions will be granted on a per-request basis

§ Via the extension app

§ Assignment submissions are handled via Gitlab
§ You will learn more about it in the labs
§ Make a habit of using Git properly
§ Push often, always pull the latest

Each student submits their own work. No groups.

Note that: Student + AI = Group

Rough Plan for Lectures
1. Overview and x86 assembly
2. Optimizations and security implications (x86 as a vehicle)
3. Memory hierarchy
4. Processes and signals (abstraction for CPU, memory, I/O)
5. Virtual Memory (abstraction for main memory)
6. Dynamic memory allocation (memory allocator design)
7. Big data frameworks that are memory and I/O intensive
8. Storage and File I/O (abstraction for I/O devices)
9. Networking
10. Concurrency
11. Linking
12. Revision (time permitting!)

Course Organization (1)
§ First 6 weeks lay the foundation of systems programming

§ They deal with CPU and memory virtualization
§ CPU and memory as a raw resource is not safe for multi-

user systems and real programs

Processor Main memory I/O devices

Processes

Files

Virtual memory
Instruction set
architecture

hardware

OS abstractions

Course Organization (2)

Processor Main memory I/O devices

Processes

Files

Virtual memory
Instruction set
architecture

hardware

OS abstractions

§ Next week deals with abstraction for storage I/O devices
§ Without storage and files, no serious application can work

§ Next week: puts everything together to discuss real-life big
data processing frameworks

Course Organization (3)
§ And finally, every system must communicate with other systems

(world wide web)
§ We move to networking
§ Networking is also I/O so an extension of storage I/O

§ A networked application must deal with multiple producers and
consumers of information
§ In comes concurrency!

§ Finally, we end the course with linking (how large programs that
use external libraries are compiled efficiently and safely)
§ Ideally fits in week 4, but we need to approach memory early

Welcome and Have Fun!

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Machine-Level Programming I: Basics

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Carnegie Mellon

3

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

Carnegie Mellon

4

Intel x86 Processors
¢ Dominate laptop/desktop/server market

¢ Evolutionary design
§ Backwards compatible up until 8086, introduced in 1978
§ Added more features as time goes on

§ Now 3 volumes, about 5,000 pages of documentation

¢ Complex instruction set computer (CISC)
§ Many different instructions with many different formats

§ But, only small subset encountered with Linux programs
§ Hard to match performance of Reduced Instruction Set Computers

(RISC)
§ But, Intel has done just that!

§ In terms of speed. Less so for low power.

Carnegie Mellon

5

Intel x86 Evolution: Milestones

Name Date Transistors MHz
¢ 8086 1978 29K 5-10

§ First 16-bit Intel processor. Basis for IBM PC & DOS
§ 1MB address space

¢ 386 1985 275K 16-33
§ First 32 bit Intel processor , referred to as IA32
§ Added “flat addressing”, capable of running Unix

¢ Pentium 4E 2004 125M 2800-3800
§ First 64-bit Intel x86 processor, referred to as x86-64

¢ Core 2 2006 291M 1060-3333
§ First multi-core Intel processor

¢ Core i7 2008 731M 1600-4400
§ Four cores

Carnegie Mellon

6

Intel x86 Processors, cont.
¢ Machine Evolution

§ 386 1985 0.3M
§ Pentium 1993 3.1M
§ Pentium/MMX 1997 4.5M
§ PentiumPro 1995 6.5M
§ Pentium III 1999 8.2M
§ Pentium 4 2000 42M
§ Core 2 Duo 2006 291M
§ Core i7 2008 731M
§ Core i7 Skylake 2015 1.9B

¢ Added Features
§ Instructions to support multimedia operations
§ Instructions to enable more efficient conditional operations
§ Transition from 32 bits to 64 bits
§ More cores

Carnegie Mellon

7

Intel x86 Processors, cont.
¢ Past Generations

§ 1st Pentium Pro 1995 600 nm
§ 1st Pentium III 1999 250 nm
§ 1st Pentium 4 2000 180 nm
§ 1st Core 2 Duo 2006 65 nm

¢ Recent & Upcoming Generations
1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. Ivy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
7. Kaby Lake 2016 14 nm
8. Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm
10. Ice Lake 2019 10 nm
11. Tiger Lake 2020 10 nm
12. Alder Lake 2022 “intel 7” (10nm+++)
13. Raptor Lake 2023 “intel 7” (10nm+++)

Process technology

Process technology dimension
= width of narrowest wires
(10 nm ≈ 100 atoms wide)

Carnegie Mellon

8

2018 State of the Art: Coffee Lake

¢ Mobile Model: Core i7
§ 2.2-3.2 GHz
§ 45 W

¢ Server Model: Xeon E
§ Integrated graphics
§ Multi-socket enabled
§ 3.3-3.8 GHz
§ 80-95 W

¢ Desktop Model: Core i7
§ Integrated graphics
§ 2.4-4.0 GHz
§ 35-95 W

Carnegie Mellon

9

x86 Clones: Advanced Micro Devices (AMD)
¢ Historically
§AMD has followed just behind Intel
§A little bit slower, a lot cheaper

¢ Then
§Recruited top circuit designers from Digital Equipment Corp. and

other downward trending companies
§Built Opteron: tough competitor to Pentium 4
§Developed x86-64, their own extension to 64 bits

¢ Recent Years
§ Intel got its act together

§ 1995-2011: Lead semiconductor “fab” in world
§ 2018: #2 largest by $$ (#1 is Samsung)
§ 2019: reclaimed #1

§AMD fell behind: Spun off GlobalFoundaries
§2019-20: Pulled ahead! Used TSMC for part of fab
§2022: Intel re-took the lead

Carnegie Mellon

10

Intel’s 64-Bit History
¢ 2001: Intel Attempts Radical Shift from IA32 to IA64

§ Totally different architecture (Itanium)
§ Executes IA32 code only as legacy
§ Performance disappointing

¢ 2003: AMD Steps in with Evolutionary Solution
§ x86-64 (now called “AMD64”)

¢ Intel Felt Obligated to Focus on IA64
§ Hard to admit mistake or that AMD is better

¢ 2004: Intel Announces EM64T extension to IA32
§ Extended Memory 64-bit Technology
§ Almost identical to x86-64!

¢ All but low-end x86 processors support x86-64
§ But, lots of code still runs in 32-bit mode

Carnegie Mellon

11

Our Coverage
¢ x86-64

§ The standard
§ linux> gcc hello.c

§ linux> gcc –m64 hello.c

¢ Presentation
§ Book covers x86-64
§ Web aside on IA32
§ We will only cover x86-64

Carnegie Mellon

12

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

Carnegie Mellon

13

Levels of Abstraction

C programmer

Assembly programmer

Computer Designer

#include <stdio.h>
int main(){
 int i, n = 10, t1 = 0, t2 = 1, nxt;
for (i = 1; i <= n; ++i){

 printf("%d, ", t1);
 nxt = t1 + t2;
 t1 = t2;
 t2 = nxt; }
 return 0; }

Gates, clocks, circuit layout, …

Carnegie Mellon

14

Definitions
¢ Architecture: (also ISA: instruction set architecture) The

parts of a processor design that one needs to understand
for writing assembly/machine code.
§ Examples: instruction set specification, registers

¢ Microarchitecture: Implementation of the architecture
§ Examples: cache sizes and core frequency

¢ Code Forms:
§ Machine Code: The byte-level programs that a processor executes
§ Assembly Code: A text representation of machine code

¢ Example ISAs:
§ Intel: x86, IA32, Itanium, x86-64
§ ARM: Used in almost all mobile phones
§ RISC V: New open-source ISA

Carnegie Mellon

15

CPU

Assembly/Machine Code View

Programmer-Visible State
§ PC: Program counter

§ Address of next instruction
§ Called “RIP” (x86-64)

§ Register file
§ Heavily used program data

§ Condition codes
§ Store status information about most

recent arithmetic or logical operation
§ Used for conditional branching

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

§ Memory
§ Byte addressable array
§ Code and user data
§ Stack to support procedures

Carnegie Mellon

16

Assembly: Data Types
¢ “Integer” data of 1, 2, 4, or 8 bytes

§ Data values
§ Addresses (untyped pointers)

¢ Floating point data of 4, 8, or 10 bytes

¢ (SIMD vector data types of 8, 16, 32 or 64 bytes)

¢ Code: Byte sequences encoding series of instructions

¢ No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

Carnegie Mellon

17

Assembly: Data Types
¢ “Integer” data of 1, 2, 4, or 8 bytes

§ Data values
§ Addresses (untyped pointers)

add %rbx, %rax

Register names

addq %rbx, %rax

rax += rbx

is

These are 64-bit registers, so we
know this is a 64-bit add

Carnegie Mellon

18

%rsp

x86-64 Integer Registers

§ Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
§ Not part of memory (or cache)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Carnegie Mellon

19

Some History: IA32 Registers
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

Carnegie Mellon

20

Assembly: Operations
¢ Transfer data between memory and register

§ Load data from memory into register
§ Store register data into memory

¢ Perform arithmetic function on register or memory data

¢ Transfer control
§ Unconditional jumps to/from procedures
§ Conditional branches
§ Indirect branches

Carnegie Mellon

21

Moving Data
¢ Moving Data

movq Source, Dest

¢ Operand Types
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax, %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example: (%rax)
§ Various other “addressing modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source

Carnegie Mellon

22

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

Carnegie Mellon

23

Simple Memory Addressing Modes
¢ Normal (R) Mem[Reg[R]]

§ Register R specifies memory address
§ Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

24

Complete Memory Addressing Modes
¢ Most General Form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

§ D: Constant “displacement” 1, 2, or 4 bytes
§ Rb: Base register: Any of 16 integer registers
§ Ri: Index register: Any, except for %rsp
§ S: Scale: 1, 2, 4, or 8 (why these numbers?)

¢ Special Cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Carnegie Mellon

25

Example of Simple Addressing Modes

whatAmI:
 movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

void
whatAmI(<type> a, <type> b)
{
 ????
}

%rdi
%rsi

Carnegie Mellon

26

Interlude: Pointers

Pointers: Introduction

§ A pointer is a variable that contains the address of
another variable

00000004 P

17 D

8 C

10 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.int A = 19;

int B = 10;
int C = 8;

int D = 17;
....
int *P;

P = &B;
//unary operator & gives

the address of a
variable

§ Can use the pointer to access the value stored in a
memory location

int A = 19;

int B = 10;
int C = 8;

int D = 17;
....
int *P;

P = &B;

*P = 1;
//dereferencing or

// indirection operator
//that accesses the value

// stored at address in P

00000004 P

17 D

8 C

1 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.

Pointers: Introduction

§ A pointer is 4-bytes on a 32-bit system and 8-bytes on a 64-
bits system & it can be stored on the stack or data segment
like ordinary variables

int A = 19;

int B = 1;
int C = 8;

int D = 17;
....
int *P = &B;

char *Q = &B;
// Both P and Q contain

00000004
printf(“%i\n”,*P); ??

printf(“%i\n”,*Q); ??

00000004 P

17 D

8 C

1 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.

Pointers: Example

§ printf(“%i\n”,*P); Output is always 1

§ printf(“%i\n”,*Q); Big Endian: 0, Little Endian: 1

int A = 19;

int B = 1;
int C = 8;

int D = 17;
....
int *P = &B;

char *Q = &B;
// Both P and Q contain

00000004
printf(“%i\n”,*P); ??

printf(“%i\n”,*Q); ??

00000004 P

17 D

8 C

1 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.

Answer

§ A pointer points to a memory location

§ Its content is a memory address

§ It wears “datatype glasses”
§ Wherever it points, it sees through these glasses

§ The variable stored at some memory address can be
interpreted (via the dereferencing operator *) as character
or integer or float, depending on the type of the pointer

Pointers: Their Nature

Pointers: Their Nature

33
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Carnegie Mellon

Pointer Translation in Action
C

Store value t where designated by
dest

Assembly
Move 8-byte value to memory

Quad words in x86-64 parlance
Operands:
t: Register %rax
dest: Register %rbx
*dest: Memory M[%rbx]

Machine
3 bytes at address 0x40059e
Compact representation of the
assembly instruction
(Relatively) easy for hardware to
interpret

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

0100 1 0 0 0 10001011 00 000 011
REX W R X B MOV r->x Mod R M

34
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third
Edition

Carnegie Mellon

Back to Simple Addressing Modes

Carnegie Mellon

35

Example of Simple Addressing Modes

void swap
 (long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Carnegie Mellon

36

%rdi

%rsi

%rax

%rdx

Understanding Swap()

void swap
 (long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Registers

Carnegie Mellon

37

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

38

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

39

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

40

Understanding Swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

41

Understanding Swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
 movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Carnegie Mellon

42

Simple Memory Addressing Modes
¢ Normal (R) Mem[Reg[R]]

§ Register R specifies memory address
§ Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Carnegie Mellon

43

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

44

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Carnegie Mellon

45

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

Carnegie Mellon

46

Address Computation Instruction
¢ leaq Src, Dst
§ Src is address mode expression
§ Set Dst to address denoted by expression

¢ Uses
§ Computing addresses without a memory reference

§ E.g., translation of p = &x[i];
§ Computing arithmetic expressions of the form x + k*y

§ k = 1, 2, 4, or 8

¢ Example
long m12(long x)
{
 return x*12;
}

leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Carnegie Mellon

47

Some Arithmetic Operations
¢ Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest - Src
imulq Src,Dest Dest = Dest * Src
salq Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

¢ Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

¢ No distinction between signed and unsigned int (why?)

Carnegie Mellon

48

Some Arithmetic Operations
¢ One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = - Dest
notq Dest Dest = ~Dest

¢ See book for more instructions

Carnegie Mellon

49

Arithmetic Expression Example

Interesting Instructions
§ leaq: address computation
§ salq: shift
§ imulq: multiplication

§ But, only used once

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx
 leaq 4(%rdi,%rdx), %rcx
 imulq %rcx, %rax
 ret

Carnegie Mellon

50

Understanding Arithmetic Expression
Example

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (%rdi,%rsi), %rax # t1
 addq %rdx, %rax # t2
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx # t4
 leaq 4(%rdi,%rdx), %rcx # t5
 imulq %rcx, %rax # rval
 ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z,
t4

%rax t1, t2, rval

%rcx t5

Carnegie Mellon

51

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

Carnegie Mellon

52

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc –c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
§ Code in files p1.c p2.c
§ Compile with command: gcc –Og p1.c p2.c -o p

§ Use debugging-friendly optimizations (-Og)
§ Put resulting binary in file p

Carnegie Mellon

53

Compiling Into Assembly
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long y,
 long *dest)
{
 long t = plus(x, y);
 *dest = t;
}

Generated x86-64 Assembly
sumstore:
 pushq %rbx
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 ret

Obtain with command

gcc –Og –S sum.c

Produces file sum.s

Carnegie Mellon

54

What it really looks like
.globl sumstore

 .type sumstore, @function
sumstore:
.LFB35:
 .cfi_startproc
 pushq %rbx
 .cfi_def_cfa_offset 16
 .cfi_offset 3, -16
 movq %rdx, %rbx
 call plus

 movq %rax, (%rbx)
 popq %rbx
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc
.LFE35:
 .size sumstore, .-sumstore

Carnegie Mellon

55

What it really looks like
.globl sumstore

 .type sumstore, @function
sumstore:
.LFB35:
 .cfi_startproc
 pushq %rbx
 .cfi_def_cfa_offset 16
 .cfi_offset 3, -16
 movq %rdx, %rbx
 call plus

 movq %rax, (%rbx)
 popq %rbx
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc
.LFE35:
 .size sumstore, .-sumstore

Things that look weird
and are preceded by a ‘.’
are generally directives.

sumstore:
 pushq %rbx
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 ret

Carnegie Mellon

56

Code for sumstore
0x0400595:
 0x53
 0x48
 0x89
 0xd3
 0xe8
 0xf2
 0xff
 0xff
 0xff
 0x48
 0x89
 0x03
 0x5b
 0xc3

Object Code
¢ Assembler

§ Translates .s into .o
§ Binary encoding of each instruction
§ Nearly-complete image of executable code
§ Missing linkages between code in different

files

¢ Linker
§ Resolves references between files
§ Combines with static run-time libraries

§ E.g., code for malloc, printf
§ Some libraries are dynamically linked

§ Linking occurs when program begins
execution

• Total of 14 bytes
• Each instruction

1, 3, or 5 bytes
• Starts at address
0x0400595

Carnegie Mellon

57

Machine Instruction Example
¢ C Code

§ Store value t where designated by
dest

¢ Assembly
§ Move 8-byte value to memory

§ Quad words in x86-64 parlance
§ Operands:

t: Register %rax
dest: Register %rbx
*dest: Memory M[%rbx]

¢ Object Code
§ 3-byte instruction
§ Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Carnegie Mellon

58

Disassembled

Disassembling Object Code

¢ Disassembler
objdump –d sum

§ Useful tool for examining object code
§ Analyzes bit pattern of series of instructions
§ Produces approximate rendition of assembly code
§ Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
 400595: 53 push %rbx
 400596: 48 89 d3 mov %rdx,%rbx
 400599: e8 f2 ff ff ff callq 400590 <plus>
 40059e: 48 89 03 mov %rax,(%rbx)
 4005a1: 5b pop %rbx
 4005a2: c3 retq

Carnegie Mellon

59

Disassembled

Dump of assembler code for function sumstore:
 0x0000000000400595 <+0>: push %rbx
 0x0000000000400596 <+1>: mov %rdx,%rbx
 0x0000000000400599 <+4>: callq 0x400590 <plus>
 0x000000000040059e <+9>: mov %rax,(%rbx)
 0x00000000004005a1 <+12>:pop %rbx
 0x00000000004005a2 <+13>:retq

Alternate Disassembly

¢ Within gdb Debugger
§ Disassemble procedure
gdb sum
disassemble sumstore

Carnegie Mellon

60

Disassembled

Dump of assembler code for function sumstore:
 0x0000000000400595 <+0>: push %rbx
 0x0000000000400596 <+1>: mov %rdx,%rbx
 0x0000000000400599 <+4>: callq 0x400590 <plus>
 0x000000000040059e <+9>: mov %rax,(%rbx)
 0x00000000004005a1 <+12>:pop %rbx
 0x00000000004005a2 <+13>:retq

Alternate Disassembly

¢ Within gdb Debugger
§ Disassemble procedure
gdb sum
disassemble sumstore
§ Examine the 14 bytes starting at sumstore
x/14xb sumstore

Object
Code

0x0400595:
 0x53
 0x48
 0x89
 0xd3
 0xe8
 0xf2
 0xff
 0xff
 0xff
 0x48
 0x89
 0x03
 0x5b
 0xc3

Carnegie Mellon

61

What Can be Disassembled?

¢ Anything that can be interpreted as executable code
¢ Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

Carnegie Mellon

62

Machine Programming I: Summary
¢ History of Intel processors and architectures

§ Evolutionary design leads to many quirks and artifacts

¢ C, assembly, machine code
§ New forms of visible state: program counter, registers, ...
§ Compiler must transform statements, expressions, procedures into

low-level instruction sequences

¢ Assembly Basics: Registers, operands, move
§ The x86-64 move instructions cover wide range of data movement

forms

¢ Arithmetic
§ C compiler will figure out different instruction combinations to

carry out computation

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Course Update
¢ Public Holiday Monday 7 October
¢ Make-up Lecture

§ When: Tuesday 8 October, 14:00-16:00
§ Where: Copland Lecture Theatre

¢ Quiz 1 – released on Tuesday
§ On Wattle
§ Covers all of week 1 and 2
§ To help you assess your performance

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Machine-Level Programming II: Control

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Control: Condition codes
¢ Conditional branches
¢ Loops
¢ Switch Statements

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processor State (x86-64, Partial)

¢ Information about
currently executing
program
§ Temporary data

(%rax, …)
§ Location of runtime stack

(%rsp)
§ Location of current code

control point
(%rip, …)

§ Status of recent tests
(CF, ZF, SF, OF)

%rip

Registers

Current stack top
Instruction pointer

CF ZF SF OF Condition codes

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Condition Codes (Implicit Setting)

¢ Single bit registers
CF Carry Flag (for unsigned) SF Sign Flag (for signed)
ZF Zero Flag OF Overflow Flag (for signed)

¢ Implicitly set (think of it as side effect) by arithmetic operations
Example: addq Src,Dest ↔ t = a+b
CF set if carry out from most significant bit (unsigned overflow)
ZF set if t == 0
SF set if t < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

¢ Not set by leaq instruction

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Condition Codes (Explicit Setting: Compare)

¢ Explicit Setting by Compare Instruction
§cmpq Src2, Src1
§cmpq b,a like computing a-b without setting destination

§CF set if carry out from most significant bit (used for unsigned comparisons)
§ZF set if a == b
§SF set if (a-b) < 0 (as signed)
§OF set if two’s-complement (signed) overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Condition Codes (Explicit Setting: Test)

¢ Explicit Setting by Test instruction
§testq Src2, Src1

§testq b,a like computing a&b without setting destination

§Sets condition codes based on value of Src1 & Src2
§Useful to have one of the operands be a mask

§ZF set when a&b == 0
§SF set when a&b < 0

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Condition Codes

¢ SetX Instructions
§ Set low-order byte of destination to 0 or 1 based on combinations of

condition codes
§ Does not alter remaining 7 bytes

SetX Condition Description
sete ZF Equal / Zero
setne ~ZF Not Equal / Not Zero
sets SF Negative
setns ~SF Nonnegative
setg ~(SF^OF)&~ZF Greater (Signed)
setge ~(SF^OF) Greater or Equal (Signed)
setl (SF^OF) Less (Signed)
setle (SF^OF)|ZF Less or Equal (Signed)
seta ~CF&~ZF Above (unsigned)
setb CF Below (unsigned)

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rsp

x86-64 Integer Registers

§ Can reference low-order byte
§ setz %al ; Set AL to 1 if e.g. %EAX == %EBX, otherwise set AL to 0

%al

%bl

%cl

%dl

%sil

%dil

%spl

%bpl

%r8b

%r9b

%r10b

%r11b

%r12b

%r13b

%r14b

%r15b

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

cmpq %rsi, %rdi # Compare x:y
setg %al # Set when >
movzbl %al, %eax # Zero rest of %rax
ret

Reading Condition Codes (Cont.)
¢ SetX Instructions:

§ Set single byte based on combination of condition
codes

¢ One of addressable byte registers
§ Does not alter remaining bytes
§ Typically use movzbl to finish job

§ 32-bit instructions also set upper 32 bits to 0

int gt (long x, long y)
{
 return x > y;
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Control: Condition codes
¢ Conditional branches
¢ Loops
¢ Switch Statements

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jumping

¢ jX Instructions
§ Jump to different part of code depending on condition codes

jX Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conditional Branch Example (Old Style)

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 cmpq %rsi, %rdi # x:y
 jle .L4
 movq %rdi, %rax
 subq %rsi, %rax
 ret
.L4: # x <= y
 movq %rsi, %rax
 subq %rdi, %rax
 ret

¢ Generation
linux> gcc –Og -S –fno-if-conversion control.c

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expressing with Goto Code

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

¢ C allows goto statement
¢ Jump to position designated by label

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto Else;
 result = x-y;
 goto Done;
 Else:
 result = y-x;
 Done:
 return result;
}

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
val = Test ? Then_Expr : Else_Expr;

Goto Version
ntest = !Test;

 if (ntest) goto Else;
 val = Then_Expr;
 goto Done;
Else:
 val = Else_Expr;
Done:
 . . .

General Conditional Expression Translation
(Using Branches)

§ Create separate code regions for
then & else expressions

§ Execute appropriate one

val = x>y ? x-y : y-x;

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
val = Test
 ? Then_Expr
 : Else_Expr;

Goto Version
result = Then_Expr;

 eval = Else_Expr;
 nt = !Test;
 if (nt) result = eval;
 return result;

Using Conditional Moves
¢ Conditional Move Instructions
§ Instruction supports:

if (Test) Dest ß Src
§ Supported in post-1995 x86 processors
§ GCC tries to use them

§ But, only when known to be safe

¢ Why?
§ Branches are very disruptive to

instruction flow through pipelines
§ Conditional moves do not require

control transfer

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conditional Move Example

absdiff:
movq %rdi, %rax # x
subq %rsi, %rax # result = x-y
movq %rsi, %rdx
subq %rdi, %rdx # eval = y-x
cmpq %rsi, %rdi # x:y
cmovle %rdx, %rax # if <=, result = eval
ret

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Expensive Computations
Bad Cases for Conditional Move

¢ Both values get computed
¢ Only makes sense when computations

are very simple

val = Test(x) ? Hard1(x) : Hard2(x);

Risky Computations

¢ Both values get computed
¢ May have undesirable effects

val = p ? *p : 0;

Computations with side effects

¢ Both values get computed – x changes!
¢ Must be side-effect free

val = x > 0 ? x*=7 : x+=3;

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Control: Condition codes
¢ Conditional branches
¢ Loops
¢ Switch Statements

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
long pcount_do
 (unsigned long x) {
 long result = 0;
 do {
 result += x & 0x1;
 x >>= 1;
 } while (x);
 return result;
}

Goto Version
long pcount_goto
 (unsigned long x) {
 long result = 0;
 loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

“Do-While” Loop Example

¢ Count number of 1’s in argument x (“popcount”)
¢ Use conditional branch to either continue looping or to exit

loop

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goto Version
“Do-While” Loop Compilation

movl $0, %eax # result = 0
.L2: # loop:

movq %rdi, %rdx
andl $1, %edx # t = x & 0x1
addq %rdx, %rax # result += t
shrq %rdi # x >>= 1
jne .L2 # if (x) goto loop
rep; ret

long pcount_goto
 (unsigned long x) {
 long result = 0;
 loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

Register Use(s)

%rdi Argument x

%rax result

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
do
 Body
 while (Test);

Goto Version
loop:
 Body
 if (Test)
 goto loop

General “Do-While” Translation

¢ Body: {
 Statement1;
 Statement2;
 …
 Statementn;
}

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

While version
while (Test)
 Body

General “While” Translation #1

¢ “Jump-to-middle” translation
¢ Used with -Og Goto Version

goto test;
loop:
 Body
test:
 if (Test)
 goto loop;
done:

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
long pcount_while
 (unsigned long x) {
 long result = 0;
 while (x) {
 result += x & 0x1;
 x >>= 1;
 }
 return result;
}

Jump to Middle
Versionlong pcount_goto_jtm
 (unsigned long x) {
 long result = 0;
 goto test;
 loop:
 result += x & 0x1;
 x >>= 1;
 test:
 if(x) goto loop;
 return result;
}

While Loop Example #1

¢ Compare to do-while version of function
¢ Initial goto starts loop at test

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

While version
while (Test)
 Body

Do-While Version
if (!Test)

 goto done;
 do
 Body
 while(Test);
done:

General “While” Translation #2

¢ “Do-while” conversion
¢ Used with –O1

Goto Version
if (!Test)

 goto done;
loop:
 Body
 if (Test)
 goto loop;
done:

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code
long pcount_while
 (unsigned long x) {
 long result = 0;
 while (x) {
 result += x & 0x1;
 x >>= 1;
 }
 return result;
}

Do-While Version
long pcount_goto_dw
 (unsigned long x) {
 long result = 0;
 if (!x) goto done;
 loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 done:
 return result;
}

While Loop Example #2

¢ Compare to do-while version of function
¢ Initial conditional guards entrance to loop

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“For” Loop Form

for (Init; Test; Update)

 Body

General Form

#define WSIZE 8*sizeof(int)
long pcount_for
 (unsigned long x)
{
 size_t i;
 long result = 0;
 for (i = 0; i < WSIZE; i++)
 {
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
 }
 return result;
}

i = 0

i < WSIZE

i++

{
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
}

Init

Test

Update

Body

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“For” Loop à While Loop

for (Init; Test; Update)

 Body

For Version

Init;

while (Test) {

 Body

 Update;

}

While Version

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For-While Conversion
long pcount_for_while
 (unsigned long x)
{
 size_t i;
 long result = 0;
 i = 0;
 while (i < WSIZE)
 {
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
 i++;
 }
 return result;
}

i = 0

i < WSIZE

i++

{
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
}

Init

Test

Update

Body

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Code

“For” Loop Do-While Conversion

¢ Initial test can be optimized
away

long pcount_for
 (unsigned long x)
{
 size_t i;
 long result = 0;
 for (i = 0; i < WSIZE; i++)
 {
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
 }
 return result;
}

Goto Version
long pcount_for_goto_dw
 (unsigned long x) {
 size_t i;
 long result = 0;
 i = 0;
 if (!(i < WSIZE))
 goto done;
 loop:
 {
 unsigned bit =
 (x >> i) & 0x1;
 result += bit;
 }
 i++;
 if (i < WSIZE)
 goto loop;
 done:
 return result;
}

Init

!Test

Body

Update

Test

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Control: Condition codes
¢ Conditional branches
¢ Loops
¢ Switch Statements

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch Statement
Example

¢ Multiple case labels
§ Here: 5 & 6

¢ Fall through cases
§ Here: 2

¢ Missing cases
§ Here: 4

long switch_eg
 (long x, long y, long z)
{
 long w = 1;
 switch(x) {
 case 1:
 w = y*z;
 break;
 case 2:
 w = y/z;
 /* Fall Through */
 case 3:
 w += z;
 break;
 case 5:
 case 6:
 w -= z;
 break;
 default:
 w = 2;
 }
 return w;
}

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump Table Structure

Code Block
0

Targ0:

Code Block
1

Targ1:

Code Block
2

Targ2:

Code Block
n–1

Targn-1:

•
•
•

Targ0

Targ1

Targ2

Targn-1

•
•
•

jtab:

goto *JTab[x];

switch(x) {
 case val_0:
 Block 0
 case val_1:
 Block 1
 • • •
 case val_n-1:
 Block n–1
}

Switch Form

Translation (Extended C)

Jump Table Jump Targets

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch Statement Example

Setup:

long switch_eg(long x, long y, long z)
{
 long w = 1;
 switch(x) {
 . . .
 }
 return w;
}

switch_eg:
movq %rdx, %rcx
cmpq $6, %rdi # x:6
ja .L8
jmp *.L4(,%rdi,8)

What range of values
takes default?

Note that w not
initialized here

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch Statement Example
long switch_eg(long x, long y, long z)
{
 long w = 1;
 switch(x) {
 . . .
 }
 return w;
}

Indirect
jump

Jump table
.section .rodata
 .align 8
.L4:
 .quad .L8 # x = 0
 .quad .L3 # x = 1
 .quad .L5 # x = 2
 .quad .L9 # x = 3
 .quad .L8 # x = 4
 .quad .L7 # x = 5
 .quad .L7 # x = 6

Setup:

switch_eg:
movq %rdx, %rcx
cmpq $6, %rdi # x:6
ja .L8 # Use default
jmp *.L4(,%rdi,8) # goto *JTab[x]

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Setup Explanation

¢ Table Structure
§ Each target requires 8 bytes
§ Base address at .L4

¢ Jumping
§ Direct: jmp .L8
§ Jump target is denoted by label .L8

§ Indirect: jmp *.L4(,%rdi,8)
§ Start of jump table: .L4
§ Must scale by factor of 8 (addresses are 8 bytes)
§ Fetch target from effective Address .L4 + x*8

§ Only for 0 ≤ x ≤ 6

Jump table
.section .rodata
 .align 8
.L4:
 .quad .L8 # x = 0
 .quad .L3 # x = 1
 .quad .L5 # x = 2
 .quad .L9 # x = 3
 .quad .L8 # x = 4
 .quad .L7 # x = 5
 .quad .L7 # x = 6

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.section .rodata
 .align 8
.L4:
 .quad .L8 # x = 0
 .quad .L3 # x = 1
 .quad .L5 # x = 2
 .quad .L9 # x = 3
 .quad .L8 # x = 4
 .quad .L7 # x = 5
 .quad .L7 # x = 6

Jump Table
Jump table

switch(x) {
 case 1: // .L3
 w = y*z;
 break;
 case 2: // .L5
 w = y/z;
 /* Fall Through */
 case 3: // .L9
 w += z;
 break;
 case 5:
 case 6: // .L7
 w -= z;
 break;
 default: // .L8
 w = 2;
 }

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Blocks (x == 1)
.L3:

movq %rsi, %rax # y
imulq %rdx, %rax # y*z
ret

switch(x) {
 case 1: // .L3
 w = y*z;
 break;
 . . .
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Fall-Through

long w = 1;
 . . .
 switch(x) {
 . . .
 case 2:
 w = y/z;
 /* Fall Through */
 case 3:
 w += z;
 break;
 . . .
 } case 3:

 w = 1;

case 2:
 w = y/z;
 goto merge;

merge:
 w += z;

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Blocks (x == 2, x == 3)
.L5: # Case 2

movq %rsi, %rax
cqto
idivq %rcx # y/z
jmp .L6 # goto merge

.L9: # Case 3
movl $1, %eax # w = 1

.L6: # merge:
addq %rcx, %rax # w += z
ret

long w = 1;
 . . .
 switch(x) {
 . . .
 case 2:
 w = y/z;
 /* Fall Through */
 case 3:
 w += z;
 break;
 . . .
 } Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Blocks (x == 5, x == 6, default)
.L7: # Case 5,6
movl $1, %eax # w = 1
subq %rdx, %rax # w -= z
ret

.L8: # Default:
movl $2, %eax # 2
ret

switch(x) {
 . . .
 case 5: // .L7
 case 6: // .L7
 w -= z;
 break;
 default: // .L8
 w = 2;
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summarizing
¢ C Control
§ if-then-else
§ do-while
§ while, for
§ switch

¢ Assembler Control
§ Conditional jump
§ Conditional move
§ Indirect jump (via jump tables)
§ Compiler generates code sequence to implement more complex control

¢ Standard Techniques
§ Loops converted to do-while or jump-to-middle form
§ Large switch statements use jump tables
§ Sparse switch statements may use decision trees (if-elseif-elseif-else)

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

¢ Today
§ Control: Condition codes
§ Conditional branches & conditional moves
§ Loops
§ Switch statements

¢ Next Time
§ Stack
§ Call / return
§ Procedure call discipline

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming III:
Procedures

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mechanisms in Procedures
¢ Passing control
§ To beginning of procedure code
§ Back to return point

¢ Passing data
§ Procedure arguments
§ Return value

¢ Memory management
§ Allocate during procedure execution
§ Deallocate upon return

¢ Mechanisms all implemented with
machine instructions

¢ x86-64 implementation of a procedure
uses only the required mechanisms

P(…) {
 •
 •
 y = Q(x);
 print(y)
 •
}

int Q(int i)
{
 int t = 3*i;
 int v[10];
 •
 •
 return v[t];
}

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Procedures
§ Stack Structure
§ Calling Conventions

§ Passing control
§ Passing data
§ Managing local data

§ Illustration of Recursion

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Stack

¢ Region of memory managed
with stack discipline

¢ Grows toward lower addresses

¢ Register %rsp contains
lowest stack address
§ address of “top” element

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Stack: Push
¢ pushq Src

§ Fetch operand at Src
§ Decrement %rsp by 8
§ Write operand at address given by %rsp

-8

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

Stack Pointer: %rsp

Stack “Top”

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Pointer: %rsp

Stack
Grows
Down

Increasing
Addresses

Stack “Top”

Stack “Bottom”
x86-64 Stack: Pop

+8

¢ popq Dest
§ Read value at address given by %rsp
§ Increment %rsp by 8
§ Store value at Dest (must be register)

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Procedures
§ Stack Structure
§ Calling Conventions

§ Passing control
§ Passing data
§ Managing local data

§ Illustration of Recursion

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Examples

long mult2
 (long a, long b)
{
 long s = a * b;
 return s;
}

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

0000000000400550 <mult2>:
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
400557: retq # Return

0000000000400540 <multstore>:
400540: push %rbx # Save %rbx
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
400549: mov %rax,(%rbx) # Save at dest
40054c: pop %rbx # Restore %rbx
40054d: retq # Return

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure Control Flow

¢ Use stack to support procedure call and return
¢ Procedure call: call label

§ Push return address on stack
§ Jump to label

¢ Return address:
§ Address of the next instruction right after call
§ Example from disassembly

¢ Procedure return: ret
§ Pop address from stack
§ Jump to address

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Example #1

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•

 •
400557: retq

0000000000400540 <multstore>:
•

 •
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)

 •
 •

0x400544

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Example #2

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•

 •
400557: retq

0000000000400540 <multstore>:
•

 •
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)

 •
 •

0x400550

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Example #3

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•

 •
400557: retq

0000000000400540 <multstore>:
•

 •
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)

 •
 •

0x400557

0x118

0x400549

•
•
•

%rsp

0x120

0x128

0x130

0x118

%rip

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow Example #4

0000000000400550 <mult2>:
400550: mov %rdi,%rax
•

 •
400557: retq

0000000000400540 <multstore>:
•

 •
400544: callq 400550 <mult2>
400549: mov %rax,(%rbx)

 •
 •

0x400549

0x120

•
•
•

%rsp

0x120

0x128

0x130

%rip

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Procedures
§ Stack Structure
§ Calling Conventions

§ Passing control
§ Passing data
§ Managing local data

§ Illustrations of Recursion & Pointers

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure Data Flow

Registers
¢ First 6 arguments

¢ Return value

Stack

¢ Only allocate stack space
when needed

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

Arg 7

• • •

Arg 8

Arg n

• • •

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Flow
Examples

long mult2
 (long a, long b)
{
 long s = a * b;
 return s;
}

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

0000000000400550 <mult2>:
a in %rdi, b in %rsi
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
s in %rax
400557: retq # Return

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx
• • •
400541: mov %rdx,%rbx # Save dest
400544: callq 400550 <mult2> # mult2(x,y)
t in %rax
400549: mov %rax,(%rbx) # Save at dest
• • •

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Procedures
§ Stack Structure
§ Calling Conventions

§ Passing control
§ Passing data
§ Managing local data

§ Illustration of Recursion

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack-Based Languages
¢ Languages that support recursion

§ e.g., C, Pascal, Java
§ Code must be “Reentrant”

§ Multiple simultaneous instantiations of single procedure
§ Need some place to store state of each instantiation

§ Arguments
§ Local variables
§ Return pointer

¢ Stack discipline
§ State for given procedure needed for limited time

§ From when called to when return
§ Callee returns before caller does

¢ Stack allocated in Frames
§ state for single procedure instantiation

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Call Chain Example
yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

yoo

who

amI

amI

amI

Example
Call Chain

amI

Procedure amI() is recursive

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Frame Pointer: %rbp

Stack Frames

¢ Contents
§ Return information
§ Local storage (if needed)
§ Temporary space (if needed)

¢ Management
§ Space allocated when enter procedure

§ “Set-up” code
§ Includes push by call instruction

§ Deallocated when return
§ “Finish” code
§ Includes pop by ret instruction

Stack Pointer: %rsp

Stack “Top”

Previous
Frame

Frame for
proc

(Optional) x

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo
%rbp

%rsp

Stack

yoo

yoo(…)
{
 •
 •
 who();
 •
 •
}

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

yoo(…)
{
 •
 •
 who();
 •
 •
}

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI(…)
{
 •
 •
 amI();
 •
 •
}

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

amI(…)
{
 •
 •
 amI();
 •
 •
}

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

yoo(…)
{
 •
 •
 who();
 •
 •
}

who(…)
{
 • • •
 amI();
 • • •
 amI();
 • • •
}

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
yoo

who

amI

amI

amI

amI

yoo
%rbp

%rsp

Stack

yoo
yoo(…)
{
 •
 •
 who();
 •
 •
}

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64/Linux Stack Frame

¢ Current Stack Frame (“Top” to Bottom)
§ “Argument build:”

Parameters for function about to call
§ Local variables

If can’t keep in registers
§ Saved register context
§ Old frame pointer (optional)

¢ Caller Stack Frame
§ Return address

§ Pushed by call instruction
§ Arguments for this call

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7+

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: incr
long incr(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Register Use(s)
%rdi Argument p

%rsi Argument val, y

%rax x, Return value

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Calling incr #1

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
} %rsp

Initial Stack Structure

. . .

Rtn address

15213

Unused %rsp

Resulting Stack Structure

. . .

Rtn address
%rsp+8

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Calling incr #2

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

15213

Unused %rsp

Stack Structure

. . .

Rtn address
%rsp+8

Register Use(s)
%rdi &v1

%rsi 3000

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Calling incr #3

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

18213

Unused %rsp

Stack Structure

. . .

Rtn address
%rsp+8

Register Use(s)
%rdi &v1

%rsi 3000

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Calling incr #4

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

18213

Unused %rsp

Stack Structure

. . .

Rtn address
%rsp+8

Register Use(s)
%rax Return value

%rsp

Updated Stack Structure

. . .

Rtn address

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Calling incr #5

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

Register Use(s)
%rax Return value

%rsp

Updated Stack Structure

. . .

Rtn address

%rsp

Final Stack Structure

. . .

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Saving Conventions
¢ When procedure yoo calls who:

§ yoo is the caller
§ who is the callee

¢ Can register be used for temporary storage?

§ Contents of register %rdx overwritten by who
§ This could be trouble ➙ something should be done!

§ Need some coordination

yoo:
 • • •
 movq $15213, %rdx
 call who
 addq %rdx, %rax
 • • •
 ret

who:
 • • •
 subq $18213, %rdx
 • • •
 ret

85Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Saving Conventions
¢ When procedure yoo calls who:

§ yoo is the caller
§ who is the callee

¢ Can register be used for temporary storage?
¢ Conventions

§ “Caller Saved”
§ Caller saves temporary values in its frame before the call

§ “Callee Saved”
§ Callee saves temporary values in its frame before using
§ Callee restores them before returning to caller

86Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Linux Register Usage #1
¢ %rax

§ Return value
§ Also caller-saved
§ Can be modified by procedure

¢ %rdi, ..., %r9
§ Arguments
§ Also caller-saved
§ Can be modified by procedure

¢ %r10, %r11
§ Caller-saved
§ Can be modified by procedure

%rax

%rdx

%rcx

Return value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Caller-saved
temporaries

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Linux Register Usage #2
¢ %rbx, %r12, %r13, %r14

§ Callee-saved
§ Callee must save & restore

¢ %rbp
§ Callee-saved
§ Callee must save & restore
§ May be used as frame pointer
§ Can mix & match

¢ %rsp
§ Special form of callee save
§ Restored to original value upon

exit from procedure

%rbx

%rsp

Callee-saved
Temporaries

Special
%rbp

%r12

%r13

%r14

88Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee-Saved Example #1

call_incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret

long call_incr2(long x) {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return x+v2;
} %rsp

Initial Stack Structure

. . .

Rtn address

15213

Unused %rsp

Resulting Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

89Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee-Saved Example #2

call_incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret

long call_incr2(long x) {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return x+v2;
}

%rsp

Pre-return Stack Structure

. . .

Rtn address

15213

Unused %rsp

Resulting Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

90Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

¢ Procedures
§ Stack Structure
§ Calling Conventions

§ Passing control
§ Passing data
§ Managing local data

§ Illustration of Recursion

91Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

92Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Terminal Case
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rdi x Argument

%rax Return value Return value

93Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Register Save
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rdi x Argument

%rsp

. . .

Rtn address

Saved %rbx

94Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Call Setup
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rdi x >> 1 Rec. argument

%rbx x & 1 Callee-saved

95Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Call
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rbx x & 1 Callee-saved

%rax Recursive call
return value

96Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Result
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rbx x & 1 Callee-saved

%rax Return value

97Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1)
 + pcount_r(x >> 1);
}

Recursive Function Completion
pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 je .L6
 pushq %rbx
 movq %rdi, %rbx
 andl $1, %ebx
 shrq %rdi # (by 1)
 call pcount_r
 addq %rbx, %rax
 popq %rbx
.L6:
 rep; ret

Register Use(s) Type
%rax Return value Return value

%rsp
. . .

98Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Observations About Recursion
¢ Handled Without Special Consideration
§ Stack frames mean that each function call has private storage

§ Saved registers & local variables
§ Saved return pointer

§ Register saving conventions prevent one function call from corrupting
another’s data
§ Unless the C code explicitly does so (e.g., buffer overflow)

§ Stack discipline follows call / return pattern
§ If P calls Q, then Q returns before P
§ Last-In, First-Out

¢ Also works for mutual recursion
§ P calls Q; Q calls P

99Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Procedure Summary

¢ Important Points
§ Stack is the right data structure for procedure call

/ return
§ If P calls Q, then Q returns before P

¢ Recursion (& mutual recursion) handled by
normal calling conventions
§ Can safely store values in local stack frame and in

callee-saved registers
§ Put function arguments at top of stack
§ Result return in %rax

¢ Pointers are addresses of values
§ On stack or global

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %rbp

Arguments
7+

Caller
Frame

%rbp
(Optional)

%rsp

Carnegie Mellon

100

Convener: Prof John Taylor

Australian National University

101Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming IV:
Data

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

102Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Arrays

§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures
§ Allocation
§ Access
§ Alignment

103Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Allocation
¢ Basic Principle

T A[L];
§ Array of data type T and length L
§ Contiguously allocated region of L * sizeof(T) bytes in memory

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

104Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Access
¢ Basic Principle

T A[L];
§ Array of data type T and length L
§ Identifier A can be used as a pointer to array element 0: Type T*

¢ Reference Type Value
val[4] int 3
val int * x
val+1 int * x + 4
&val[2] int * x + 8
val[5] int ??
*(val+1) int 5
val + i int * x + 4 i

int val[5]; 1 5 2 1 3

x x + 4 x + 8 x + 12 x + 16 x + 20

105Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Example

¢ Declaration “zip_dig cmu” equivalent to “int cmu[5]”
¢ Example arrays were allocated in successive 20 byte blocks

§ Not guaranteed to happen in general

#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36
zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76

106Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Accessing Example

n Register %rdi contains
starting address of array

n Register %rsi contains
array index

n Desired digit at
%rdi + 4*%rsi

n Use memory reference
(%rdi,%rsi,4)

int get_digit
 (zip_dig z, int digit)
{
 return z[digit];
}

%rdi = z
 # %rsi = digit
movl (%rdi,%rsi,4), %eax # z[digit]

IA32

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

107Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%rdi = z
movl $0, %eax # i = 0
jmp .L3 # goto middle

.L4: # loop:
addl $1, (%rdi,%rax,4) # z[i]++
addq $1, %rax # i++

.L3: # middle
cmpq $4, %rax # i:4
jbe .L4 # if <=, goto loop
rep; ret

Array Loop Example

void zincr(zip_dig z) {
 size_t i;
 for (i = 0; i < ZLEN; i++)
 z[i]++;
}

108Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multidimensional (Nested) Arrays
¢ Declaration

T A[R][C];
§ 2D array of data type T
§ R rows, C columns
§ Type T element requires K bytes

¢ Array Size
§ R * C * K bytes

¢ Arrangement
§ Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A

[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C Bytes

109Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Example

¢ “zip_dig pgh[4]” equivalent to “int pgh[4][5]”
§ Variable pgh: array of 4 elements, allocated contiguously
§ Each element is an array of 5 int’s, allocated contiguously

¢ “Row-Major” ordering of all elements in memory

#define PCOUNT 4
zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};

zip_dig
pgh[4];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

110Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• • •

Nested Array Row Access
¢ Row Vectors

§ A[i] is array of C elements
§ Each element of type T requires K bytes
§ Starting address A + i * (C * K)

• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

111Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Row Access Code

¢ Row Vector
§ pgh[index] is array of 5 int’s
§ Starting address pgh+20*index

¢ Machine Code
§ Computes and returns address
§ Compute as pgh + 4*(index+4*index)

int *get_pgh_zip(int index)
{
 return pgh[index];
}

%rdi = index
 leaq (%rdi,%rdi,4),%rax # 5 * index
 leaq pgh(,%rax,4),%rax # pgh + (20 * index)

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

112Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• • •

Nested Array Element Access
¢ Array Elements

§ A[i][j] is element of type T, which requires K bytes
§ Address A + i * (C * K) + j * K = A + (i * C + j)* K

• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

A+(i*C*4)+(j*4)

113Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Element Access Code

¢ Array Elements
§ pgh[index][dig] is int
§ Address: pgh + 20*index + 4*dig

§ = pgh + 4*(5*index + dig)

int get_pgh_digit
 (int index, int dig)
{
 return pgh[index][dig];
}

leaq (%rdi,%rdi,4), %rax # 5*index
 addl %rax, %rsi # 5*index+dig
 movl pgh(,%rsi,4), %eax # M[pgh + 4*(5*index+dig)]

pgh

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

114Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Array Example
¢ Variable univ denotes

array of 3 elements
¢ Each element is a pointer

§ 8 bytes
¢ Each pointer points to array

of int’s

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};

36160

16

56

168

176

univ

cmu

mit

ucb

1 5 2 1 3

16 20 24 28 32 36
0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

115Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Element Access in Multi-Level Array

¢ Computation
§ Element access Mem[Mem[univ+8*index]+4*digit]
§ Must do two memory reads

§ First get pointer to row array
§ Then access element within array

salq $2, %rsi # 4*digit
 addq univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
 movl (%rsi), %eax # return *p
 ret

int get_univ_digit
 (size_t index, size_t digit)
{
 return univ[index][digit];
}

116Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array Element Accesses

int get_pgh_digit
 (size_t index, size_t digit)
{
 return pgh[index][digit];
}

int get_univ_digit
 (size_t index, size_t digit)
{
 return univ[index][digit];
}

Nested array Multi-level array

Accesses looks similar in C, but address computations very different:

Mem[pgh+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

117Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

N X N Matrix
Code
¢ Fixed dimensions

§ Know value of N at
compile time

¢ Variable dimensions,
explicit indexing
§ Traditional way to

implement dynamic
arrays

¢ Variable dimensions,
implicit indexing
§ Now supported by gcc

#define N 16
typedef int fix_matrix[N][N];
/* Get element a[i][j] */
int fix_ele(fix_matrix a,
 size_t i, size_t j)
{
 return a[i][j];
}

#define IDX(n, i, j) ((i)*(n)+(j))
/* Get element a[i][j] */
int vec_ele(size_t n, int *a,
 size_t i, size_t j)
{
 return a[IDX(n,i,j)];
}

/* Get element a[i][j] */
int var_ele(size_t n, int a[n][n],

size_t i, size_t j) {
return a[i][j];

}

118Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

16 X 16 Matrix Access

/* Get element a[i][j] */
int fix_ele(fix_matrix a, size_t i, size_t j) {
 return a[i][j];
}

a in %rdi, i in %rsi, j in %rdx
 salq $6, %rsi # 64*i
 addq %rsi, %rdi # a + 64*i
 movl (%rdi,%rdx,4), %eax # M[a + 64*i + 4*j]
 ret

¢ Array Elements
§ Address A + i * (C * K) + j * K
§ C = 16, K = 4

119Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

n X n Matrix Access

/* Get element a[i][j] */
int var_ele(size_t n, int a[n][n], size_t i, size_t j)
{
return a[i][j];

}

n in %rdi, a in %rsi, i in %rdx, j in %rcx
 imulq %rdx, %rdi # n*i
 leaq (%rsi,%rdi,4), %rax # a + 4*n*i
 movl (%rax,%rcx,4), %eax # a + 4*n*i + 4*j
 ret

¢ Array Elements
§ Address A + i * (C * K) + j * K
§ C = n, K = 4
§ Must perform integer multiplication

120Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Arrays

§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures
§ Allocation
§ Access
§ Alignment

121Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure Representation

¢ Structure represented as block of memory
§ Big enough to hold all of the fields

¢ Fields ordered according to declaration
§ Even if another ordering could yield a more compact

representation

¢ Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the structures

in the source code

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

122Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

r in %rdi, idx in %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

int *get_ap
 (struct rec *r, size_t idx)
{
 return &r->a[idx];
}

Generating Pointer to Structure Member

¢ Generating Pointer to
Array Element
§ Offset of each structure

member determined at
compile time

§ Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

123Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.L11: # loop:
movslq 16(%rdi), %rax # i = M[r+16]
movl %esi, (%rdi,%rax,4) # M[r+4*i] = val
movq 24(%rdi), %rdi # r = M[r+24]
testq %rdi, %rdi # Test r
jne .L11 # if !=0 goto loop

void set_val
(struct rec *r, int val)

{
while (r) {
int i = r->i;
r->a[i] = val;
r = r->next;

}
}

Following Linked List
¢ C Code

Register Value
%rdi r

%rsi val

struct rec {
 int a[4];
 int i;
 struct rec *next;
};

Element i

r

i next

0 16 24 32

a

124Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structures & Alignment
¢ Unaligned Data

¢ Aligned Data
§ Primitive data type requires K bytes
§ Address must be multiple of K

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v
p p+1 p+5 p+9 p+17

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

125Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Principles
¢ Aligned Data
§ Primitive data type requires K bytes
§ Address must be multiple of K
§ Required on some machines; advised on x86-64

¢ Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of 4 or 8 bytes (system

dependent)
§ Inefficient to load or store datum that spans quad word

boundaries
§ Virtual memory trickier when datum spans 2 pages

¢ Compiler
§ Inserts gaps in structure to ensure correct alignment of fields

126Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specific Cases of Alignment (x86-64)
¢ 1 byte: char, …
§ no restrictions on address

¢ 2 bytes: short, …
§ lowest 1 bit of address must be 02

¢ 4 bytes: int, float, …
§ lowest 2 bits of address must be 002

¢ 8 bytes: double, long, char *, …
§ lowest 3 bits of address must be 0002

§ If you have a double variable, its address in memory might look like
this in binary:
Ø … 00000000 00000000 00000000 000010002

¢ 16 bytes: long double (GCC on Linux)
§ lowest 4 bits of address must be 00002

127Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

Satisfying Alignment with Structures
¢ Within structure:
§ Must satisfy each element’s alignment requirement

¢ Overall structure placement
§ Each structure has alignment requirement K

§ K = Largest alignment of any element
§ Initial address & structure length must be multiples of K

¢ Example:
§ K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

128Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Meeting Overall Alignment Requirement

¢ For largest alignment requirement K
¢ Overall structure must be multiple of K

struct S2 {
 double v;
 int i[2];
 char c;
} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8

129Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arrays of Structures

¢ Overall structure length
multiple of K

¢ Satisfy alignment requirement
for every element

struct S2 {
 double v;
 int i[2];
 char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •
a+0 a+24 a+48 a+72

130Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Array Elements

¢ Compute array offset 12*idx
§ sizeof(S3), including alignment spacers

¢ Element j is at offset 8 within structure
¢ Assembler gives offset a+8
§ Resolved during linking

struct S3 {
 short i;
 float v;
 short j;
} a[10];

short get_j(int idx)
{
 return a[idx].j;
}

%rdi = idx
 leaq (%rdi,%rdi,2),%rax # 3*idx
 movzwl a+8(,%rax,4),%eax

a[0] • • • a[idx] • • •
a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes
a+12*idx a+12*idx+8

131Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Saving Space
¢ Put large data types first

¢ Effect (K=4)

struct S4 {
 char c;
 int i;
 char d;
} *p;

struct S5 {
 int i;
 char c;
 char d;
} *p;

c i3 bytes d 3 bytes

ci d 2 bytes

132Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Arrays

§ Elements packed into contiguous region of memory
§ Use index arithmetic to locate individual elements

¢ Structures
§ Elements packed into single region of memory
§ Access using offsets determined by compiler
§ Possible require internal and external padding to ensure alignment

¢ Combinations
§ Can nest structure and array code arbitrarily

133Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #1

¢ Cmp: Compiles (Y/N)
¢ Bad: Possible bad pointer reference (Y/N)
¢ Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size
int A1[3] Y N 12 Y N 4

int *A2 Y N 8 Y Y 4

134Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #1

¢ Cmp: Compiles (Y/N)
¢ Bad: Possible bad pointer reference (Y/N)
¢ Size: Value returned by sizeof

Decl An *An

Cmp Bad Size Cmp Bad Size
int A1[3] Y N 12 Y N 4

int *A2 Y N 8 Y Y 4

A1

A2
Allocated int

Unallocated pointer
Allocated pointer

Unallocated int

135Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #2

¢ Cmp: Compiles (Y/N)
¢ Bad: Possible bad pointer reference (Y/N)
¢ Size: Value returned by sizeof

Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size
int A1[3] Y N 12 Y N 4 N n/a n/a

int *A2[3] Y N 24 Y N 8 Y Y 4

136Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #2
Decl An *An **An

Cmp Bad Size Cmp Bad Size Cmp Bad Size
int A1[3] Y N 12 Y N 4 N - -

int *A2[3] Y N 24 Y N 8 Y Y 4

A1

A2

Allocated int
Unallocated pointer

Allocated pointer

Unallocated int

137Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #3

¢ Cmp: Compiles (Y/N)
¢ Bad: Possible bad

pointer reference (Y/N)
¢ Size: Value returned by
sizeof

Decl An *An **An

Cm
p

Bad Size Cm
p

Bad Size Cm
p

Bad Size

int A1[3][5]

int *A2[3][5]

Decl ***An

Cm
p

Bad Size

int A1[3][5]

int *A2[3][5]

138Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Declaration
int A1[3][5]

int *A2[3][5]

A2

Allocated int
Unallocated pointer

Allocated pointer

Unallocated int

Allocated pointer to unallocated int

A1

139Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Pointers & Arrays #3

¢ Cmp: Compiles (Y/N)
¢ Bad: Possible bad

pointer reference (Y/N)
¢ Size: Value returned by
sizeof

Decl An *An **An

Cm
p

Bad Size Cm
p

Bad Size Cm
p

Bad Size

int A1[3][5] Y N 60 Y N 20 Y N 4

int *A2[3][5] Y N 120 Y N 40 Y N 8

Decl ***An

Cm
p

Bad Size

int A1[3][5] N - -

int *A2[3][5] Y Y 4

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Course Update
¢ Public Holiday Monday 7 October
¢ Make-up Lecture – changed to:-

§ When: Friday 11 October, 10:00-12:00
§ Where: 7-11 Barry Drive

¢ Quiz 1 – released last week
§ On Wattle
§ Covers all of week 1 and 2 – not the Guest Lecture!
§ To help you assess your performance
§ Quiz must be completed by midnight 12th August (Week

4 Monday).

¢ Boost your knowledge and skills - Attend labs!

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming V:
Advanced Topics

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Memory Layout
¢ Buffer Overflow

§ Vulnerability
§ Protection

¢ Unions

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Linux Memory Layout

¢ Stack
§ Runtime stack (8MB limit)
§ E. g., local variables

¢ Heap
§ Dynamically allocated as needed
§ When call malloc(), calloc(), new()

¢ Data
§ Statically allocated data
§ E.g., global vars, static vars, string constants

¢ Text / Shared Libraries
§ Executable machine instructions
§ Read-only

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text
Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Allocation Example

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()
{

void *p1, *p2, *p3, *p4;
int local = 0;
p1 = malloc(1L << 28); /* 256 MB */
p2 = malloc(1L << 8); /* 256 B */
p3 = malloc(1L << 32); /* 4 GB */
p4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */
}

not drawn to scale

Where does everything go?

Stack

Text
Data

Heap

Shared
Libraries

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Example Addresses

local 0x00007ffe4d3be87c
p1 0x00007f7262a1e010
p3 0x00007f7162a1d010
p4 0x000000008359d120
p2 0x000000008359d010
big_array 0x0000000080601060
huge_array 0x0000000000601060
main() 0x000000000040060c
useless() 0x0000000000400590

address range ~247

00007F

000000

Text
Data

Heap

not drawn to scale

Heap

Stack

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Memory Layout
¢ Buffer Overflow

§ Vulnerability
§ Protection

¢ Unions

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

§ Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example
typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ Segmentation fault

Location accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Such problems are a BIG deal

¢ Generally called a “buffer overflow”
§ when exceeding the memory size allocated for an array

¢ Why a big deal?
§ It’s the #1 technical cause of security vulnerabilities

§ #1 overall cause is social engineering / user ignorance

¢ Most common form
§ Unchecked lengths on string inputs
§ Particularly for bounded character arrays on the stack

§ sometimes referred to as stack smashing

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

String Library Code
¢ Implementation of Unix function gets()

§ No way to specify limit on number of characters to read

¢ Similar problems with other library functions
§ strcpy, strcat: Copy strings of arbitrary length
§ scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{
 int c = getchar();
 char *p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Vulnerable Buffer Code

void call_echo() {
 echo();
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

çbtw, how big
 is big enough?

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Disassembly

00000000004006cf <echo>:
 4006cf: 48 83 ec 18 sub $0x18,%rsp
 4006d3: 48 89 e7 mov %rsp,%rdi
 4006d6: e8 a5 ff ff ff callq 400680 <gets>
 4006db: 48 89 e7 mov %rsp,%rdi
 4006de: e8 3d fe ff ff callq 400520 <puts@plt>
 4006e3: 48 83 c4 18 add $0x18,%rsp
 4006e7: c3 retq

4006e8: 48 83 ec 08 sub $0x8,%rsp
 4006ec: b8 00 00 00 00 mov $0x0,%eax
 4006f1: e8 d9 ff ff ff callq 4006cf <echo>
 4006f6: 48 83 c4 08 add $0x8,%rsp
 4006fa: c3 retq

call_echo:

echo:

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack

echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6
00 00 00 00

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #1
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:
00 40 06 f6
00 00 00 00

unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
00 32 31 30

Overflowed buffer, but did not corrupt state

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #2
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

Overflowed buffer and corrupted return pointer

00 40 00 34

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #3
echo:
 subq $24, %rsp
 movq %rsp, %rdi
 call gets
 . . .

void echo()
{
 char buf[4];
 gets(buf);
 . . .
}Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>
 4006f6: add $0x8,%rsp
 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

Overflowed buffer, corrupted return pointer, but program seems to work!

00 40 06 00

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #3 Explained

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused

. . .
 400600: mov %rsp,%rbp
400603: mov %rax,%rdx
400606: shr $0x3f,%rdx
40060a: add %rdx,%rax
40060d: sar %rax
400610: jne 400614
400612: pop %rbp
400613: retq

register_tm_clones:

00 00 00 00

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30

“Returns” to unrelated code
Lots of things happen, without modifying critical state
Eventually executes retq back to main

00 40 06 00

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Injection Attacks

¢ Input string contains byte representation of executable code
¢ Overwrite return address A with address of buffer B
¢ When Q executes ret, will jump to exploit code

int Q() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void P(){
 Q();
 ...
}

return
address
A

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploits Based on Buffer Overflows
¢ Buffer overflow bugs can allow remote machines to execute

arbitrary code on victim machines
¢ Distressingly common in real progams

§ Programmers keep making the same mistakes L
§ Recent measures make these attacks much more difficult

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Worms and Viruses
¢ Worm: A program that

§ Can run by itself
§ Can propagate a fully working version of itself to other computers

¢ Virus: Code that
§ Adds itself to other programs
§ Does not run independently

¢ Both are (usually) designed to spread among computers
and to wreak havoc

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

OK, what to do about buffer overflow
attacks

¢ Avoid overflow vulnerabilities

¢ Employ system-level protections

¢ Have compiler use “stack canaries”

¢ Lets talk about each…

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Avoid Overflow Vulnerabilities in Code (!)

¢ For example, use library routines that limit string lengths
§ fgets instead of gets
§ strncpy instead of strcpy
§ Don’t use scanf with %s conversion specification

§ Use fgets to read the string
§ Or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help
¢ Randomized stack offsets

§ At start of program, allocate
random amount of space on
stack

§ Shifts stack addresses for entire
program

§ Makes it difficult for hacker to
predict beginning of inserted
code

§ E.g.: 5 executions of memory
allocation code

§ Stack repositioned each time
program executes

local 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

main

Application
Code

Random
allocation

Stack base

B?

B?

exploit
code

pad

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help
¢ Nonexecutable code

segments
§ In traditional x86, can mark

region of memory as either
“read-only” or “writeable”
§ Can execute anything

readable
§ X86-64 added explicit

“execute” permission
§ Stack marked as non-

executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3. Stack Canaries can help
¢ Idea

§ Place special value (“canary”) on stack just beyond buffer
§ Check for corruption before exiting function

¢ GCC Implementation
§ -fstack-protector
§ Now the default (disabled earlier)

unix>./bufdemo-sp
Type a string:0123456
0123456

unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Protected Buffer Disassembly

40072f: sub $0x18,%rsp
400733: mov %fs:0x28,%rax
40073c: mov %rax,0x8(%rsp)
400741: xor %eax,%eax
400743: mov %rsp,%rdi
400746: callq 4006e0 <gets>
40074b: mov %rsp,%rdi
40074e: callq 400570 <puts@plt>
400753: mov 0x8(%rsp),%rax
400758: xor %fs:0x28,%rax
400761: je 400768 <echo+0x39>
400763: callq 400580 <__stack_chk_fail@plt>
400768: add $0x18,%rsp
40076c: retq

echo:

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Setting Up Canary

echo:
 . . .
 movq %fs:40, %rax # Get canary
 movq %rax, 8(%rsp) # Place on stack
 xorl %eax, %eax # Erase canary
 . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unusedCanary
(8 bytes)

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checking Canary

echo:
 . . .
 movq 8(%rsp), %rax # Retrieve from
stack
 xorq %fs:40, %rax # Compare to canary
 je .L6 # If same, OK
 call __stack_chk_fail # FAIL
.L6: . . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}Return Address

Saved %ebp

Stack Frame
for main

[3][2][1][0]

Before call to gets

Saved %ebx

Canary

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unusedCanary
(8 bytes)

00 36 35 34

Input: 0123456

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return-Oriented Programming Attacks
¢ Challenge (for hackers)

§ Stack randomization makes it hard to predict buffer location
§ Marking stack nonexecutable makes it hard to insert binary code

¢ Alternative Strategy
§ Use existing code

§ E.g., library code from stdlib
§ String together fragments to achieve overall desired outcome
§ Does not overcome stack canaries

¢ Construct program from gadgets
§ Sequence of instructions ending in ret

§ Encoded by single byte 0xc3
§ Code positions fixed from run to run
§ Code is executable

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #1

¢ Use tail end of existing functions

long ab_plus_c
 (long a, long b, long c)
{
 return a*b + c;
}

00000000004004d0 <ab_plus_c>:
4004d0: 48 0f af fe imul %rsi,%rdi
4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax
4004d8: c3 retq

rax ß rdi + rdx
Gadget address = 0x4004d4

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #2

¢ Repurpose byte codes

void setval(unsigned *p) {
 *p = 3347663060u;
}

<setval>:
4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
4004df: c3 retq

rdi ß rax
Gadget address = 0x4004dc

Encodes movq %rax, %rdi

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Execution

¢ Trigger with ret instruction
§ Will start executing Gadget 1

¢ Final ret in each gadget will start next one

�
�
�

c3Gadget 1 code

c3Gadget 2 code

c3Gadget n code
Stack

%rsp

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Memory Layout
¢ Buffer Overflow

§ Vulnerability
§ Protection

¢ Unions

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Union Allocation
¢ Allocate according to largest element
¢ Can only use one field at a time

union U1 {
 char c;
 int i[2];
 double v;
} *up;

struct S1 {
 char c;
 int i[2];
 double v;
} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

typedef union {
 float f;
 unsigned u;
} bit_float_t;

float bit2float(unsigned u)
{
 bit_float_t arg;
 arg.u = u;
 return arg.f;
}

unsigned float2bit(float f)
{
 bit_float_t arg;
 arg.f = f;
 return arg.u;
}

Using Union to Access Bit Patterns

Same as (float) u ? Same as (unsigned) f ?

u

f

0 4

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Revisited

¢ Idea
§ Short/long/quad words stored in memory as 2/4/8 consecutive bytes
§ Which byte is most (least) significant?
§ Can cause problems when exchanging binary data between machines

¢ Big Endian
§ Most significant byte has lowest address
§ Sparc

¢ Little Endian
§ Least significant byte has lowest address
§ Intel x86, ARM Android and IOS

¢ Bi Endian
§ Can be configured either way
§ ARM

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
union {

 unsigned char c[8];
 unsigned short s[4];
 unsigned int i[2];
 unsigned long l[1];
 } dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

32-bit

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

64-bit

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example (Cont).
int j;
for (j = 0; j < 8; j++)
 dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==
[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
 dw.c[0], dw.c[1], dw.c[2], dw.c[3],
 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",
 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",
 dw.l[0]);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on IA32
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf3f2f1f0]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
LSB MSB LSB MSB

Print

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on Sun
Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long 0 == [0xf0f1f2f3]

Output on Sun:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
MSB LSB MSB LSB

Print

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on x86-64
Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on x86-64:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]
LSB MSB

Print

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Compound Types in C
¢ Arrays
§ Contiguous allocation of memory
§ Aligned to satisfy every element’s alignment requirement
§ Pointer to first element
§ No bounds checking

¢ Structures
§ Allocate bytes in order declared
§ Pad in middle and at end to satisfy alignment

¢ Unions
§ Overlay declarations
§ Way to circumvent type system

Carnegie Mellon

1

Convener: Prof John taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Optimization – 1

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization
¢ Minimize number of instructions

§ Don’t do calculations more than once
§ Don’t do unnecessary calculations at all
§ Avoid slow instructions (multiplication, division)

¢ Avoid waiting for memory
§ Keep everything in registers whenever possible
§ Access memory in cache-friendly patterns
§ Load data from memory early, and only once

¢ Avoid branching
§ Don’t make unnecessary decisions at all
§ Make it easier for the CPU to predict branch destinations
§ “Unroll” loops to spread cost of branches over more instructions

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization
¢ Generally cannot improve algorithmic complexity

§ Only constant factors, but those can be worth 10x or more…

¢ Must not cause any change in program behavior
§ Programmer may not care about “edge case” behavior,

but compiler does not know that
§ Exception: language may declare some changes acceptable

¢ Often only analyze one function at a time
§ Whole-program analysis (“LTO”) expensive but gaining popularity
§ Exception: inlining merges many functions into one

¢ Tricky to anticipate run-time inputs
§ Profile-guided optimization can help with common case, but…
§ “Worst case” performance can be just as important as “normal”
§ Especially for code exposed to malicious input

(e.g. network servers)

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

¢ Local optimizations
work inside a single
basic block
§ Constant folding,

strength reduction, dead
code elimination, (local)
CSE, …

¢ Global optimizations
process the entire
control flow graph of a
function
§ Loop transformations,

code motion, (global)
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Try it yourself
¢ https://godbolt.org/z/Es5s8qsvj

¢ Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from –O3 to –Og,
etc. to see more or less aggressive optimization).

¢ Read descriptions of optimization levels
§ https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://godbolt.org/z/Es5s8qsvj

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant folding
¢ Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

¢ Any expression with constant inputs can be folded
¢ Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination
¢ Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

¢ Don’t emit code whose result is overwritten

x = 23;
x = 42;

¢ These may look silly, but...
§ Can be produced by other optimizations
§ Assignments to x might be far apart

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common subexpression elimination
¢ Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
 →
elt = &v[i];
x = elt->x;
y = elt->y;
norm[i] = x*x + y*y;

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code motion
¢ Move calculations out of a loop
¢ Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
 →
long j;
int ni = n*i;
for (j = 0; j < n; j++)
 a[ni+j] = b[j];

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

Always true Does nothing Can constant fold

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int func(int y) {
 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;
 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

int func(int y) {
 int tmp = 0;
 if (y != 0) tmp = y - 1;

 if (y != -1) tmp += y;
 return tmp;

}

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on Optimization
¢ We will have another lecture on optimization after

understanding memory and caches

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking – 1

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking
¢ Programs are translated and linked using a compiler driver:

§ linux> gcc -Og -o prog main.c sum.c

§ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers?
¢ Reason 1: Modularity

§ Program can be written as a collection of smaller source files,
rather than one monolithic mass.

§ Can build libraries of common functions
§ e.g., Math library, standard C library
§ Header files in C declare types that are defined in libraries

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers? (cont)
¢ Reason 2: Efficiency

§ Time: Separate compilation
§ Change one source file, compile, and then relink.
§ No need to recompile other source files.
§ Can compile multiple files concurrently.

§ Space: Libraries
§ Common functions can be aggregated into a single file...
§ Option 1: Static Linking

– Executable files and running memory images contain only
the library code they actually use

§ Option 2: Dynamic linking
– Executable files contain no library code
– During execution, single copy of library code can be shared

across all executing processes

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do?

¢ Step 1: Symbol resolution

§ Programs define and reference symbols (global variables and functions):
§ void swap() {…} /* define symbol swap */
§ swap(); /* reference symbol swap */
§ int *xp = &x; /* define symbol xp, reference x */

§ Symbol definitions are stored in object file (by assembler) in symbol table.
§ Symbol table is an array of entries
§ Each entry includes name, size, and location of symbol.

§ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Symbols in Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

Definitions

Reference

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do? (cont’d)
¢ Step 2: Relocation

§ Merges separate code and data sections into single sections

§ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

§ Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail….

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Kinds of Object Files (Modules)
¢ Relocatable object file (.o file)

§ Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.
§ Each .o file is produced from exactly one source (.c) file

¢ Executable object file (a.out file)
§ Contains code and data in a form that can be copied directly into

memory and then executed.

¢ Shared object file (.so file)
§ Special type of relocatable object file that can be loaded into

memory and linked dynamically, at either load time or run-time.
§ Called Dynamic Link Libraries (DLLs) by Windows

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on Linking
¢ Entire lecture toward the end of the course

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Exceptions and Processes

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow
¢ Processors do only one thing:

§ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

§ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Time

A von Neumann computer is
based on the von Neumann
architecture, a design model
for a stored-program digital
computer.
This architecture was
proposed by John von
Neumann in 1945 and has
become the foundation for
most modern computers.

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow
¢ Up to now: two mechanisms for changing control flow:

§ Jumps and branches
§ Call and return
React to changes in program state

¢ Insufficient for a useful system:
Difficult to react to changes in system state
§ Data arrives from a disk or a network adapter
§ Instruction divides by zero
§ User hits Ctrl-C at the keyboard
§ System timer expires

¢ System needs mechanisms for “exceptional control flow”

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow
¢ Exists at all levels of a computer system
¢ Low level mechanisms

§ 1. Exceptions
§ Change in control flow in response to a system event

(i.e., change in system state)
§ Implemented using combination of hardware and OS software

¢ Higher level mechanisms
§ 2. Process context switch

§ Implemented by OS software and hardware timer
§ 3. Signals

§ Implemented by OS software
§ 4. Nonlocal jumps: setjmp() and longjmp()

§ Implemented by C runtime library

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions
¢ An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
§ Kernel is the memory-resident part of the OS
§ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1
2 ...

n-1

Exception Tables

¢ Each type of event has a
unique exception number k

¢ k = index into exception table
(a.k.a. interrupt vector)

¢ Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)
¢ Caused by events external to the processor

§ Indicated by setting the processor’s interrupt pin
§ Handler returns to “next” instruction

¢ Examples:
§ Timer interrupt

§ Every few ms, an external timer chip triggers an interrupt
§ Used by the kernel to take back control from user programs

§ I/O interrupt from external device
§ Hitting Ctrl-C at the keyboard
§ Arrival of a packet from a network
§ Arrival of data from a disk

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
¢ Caused by events that occur as a result of executing an

instruction:
§ Traps

§ Intentional
§ Examples: system calls, breakpoint traps, special instructions
§ Returns control to “next” instruction

§ Faults
§ Unintentional but possibly recoverable
§ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
§ Either re-executes faulting (“current”) instruction or aborts

§ Aborts
§ Unintentional and unrecoverable
§ Examples: illegal instruction, parity error, machine check
§ Aborts current program

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

¢ Each x86-64 system call has a unique ID number
¢ Examples:

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
¢ User calls: open(filename, options)
¢ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %eax contains syscall number
¢ Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
¢ Return value in %rax
¢ Negative value is an error

corresponding to negative
errno

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
¢ User writes to memory location
¢ That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{
 a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

¢ Sends SIGSEGV signal to user process
¢ User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
¢ Definition: A process is an instance of a running

program.
§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

¢ Process provides each program with two key
abstractions:
§ Logical control flow

§ Each program seems to have exclusive use of the CPU
§ Provided by kernel mechanism called context switching

§ Private address space
§ Each program seems to have exclusive use of main

memory.
§ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

¢ Computer runs many processes simultaneously
§ Applications for one or more users

§ Web browsers, email clients, editors, …
§ Background tasks

§ Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

¢ Running program “top” on Mac
§ System has 123 processes, 5 of which are active
§ Identified by Process ID (PID)

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

¢ Single processor executes multiple processes concurrently
§ Process executions interleaved (multitasking)
§ Address spaces managed by virtual memory system (later in course)
§ Register values for non-executing processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

¢ Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

¢ Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

¢ Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

¢ Multicore processors
§ Multiple CPUs on single chip
§ Share main memory (and some of

the caches)
§ Each can execute a separate process

§ Scheduling of processors onto
cores done by kernel

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes
¢ Each process is a logical control flow.
¢ Two processes run concurrently (are concurrent) if their

flows overlap in time
¢ Otherwise, they are sequential
¢ Examples (running on single core):

§ Concurrent: A & B, A & C
§ Sequential: B & C

Process A Process B Process C

Time

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes
¢ Control flows for concurrent processes are physically

disjoint in time

¢ However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching
¢ Processes are managed by a shared chunk of memory-

resident OS code called the kernel
§ Important: the kernel is not a separate process, but rather runs as part

of some existing process.

¢ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Exceptional Control Flow
¢ Exceptions
¢ Processes
¢ Process Control

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling
¢ On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
¢ Hard and fast rule:

§ You must check the return status of every system-level function
§ Only exception is the handful of functions that return void

¢ Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions
¢ Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(0);
}

if ((pid = fork()) < 0)
unix_error("fork error");

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers
¢ We simplify the code we present to you even further by

using Stevens-style error-handling wrappers:

pid_t Fork(void)
{

pid_t pid;

if ((pid = fork()) < 0)
unix_error("Fork error");

return pid;
}

pid = Fork();

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs
¢ pid_t getpid(void)

§ Returns PID of current process

¢ pid_t getppid(void)
§ Returns PID of parent process

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process
as being in one of three states

¢ Running
§ Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

¢ Stopped
§ Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

¢ Terminated
§ Process is stopped permanently

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes
¢ Process becomes terminated for one of three reasons:

§ Receiving a signal whose default action is to terminate (next
lecture)

§ Returning from the main routine
§ Calling the exit function

¢ void exit(int status)
§ Terminates with an exit status of status
§ Convention: normal return status is 0, nonzero on error
§ Another way to explicitly set the exit status is to return an integer

value from the main routine

¢ exit is called once but never returns.

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes
¢ Parent process creates a new running child process by

calling fork

¢ int fork(void)
§ Returns 0 to the child process, child’s PID to parent process
§ Child is almost identical to parent:

§ Child get an identical (but separate) copy of the parent’s virtual
address space.

§ Child gets identical copies of the parent’s open file descriptors
§ Child has a different PID than the parent

¢ fork is interesting (and often confusing) because
it is called once but returns twice

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

/* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

¢ Call once, return twice
¢ Concurrent execution

§ Can’t predict execution
order of parent and child

¢ Duplicate but separate
address space
§ x has a value of 1 when

fork returns in parent and
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in

both parent and child

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling fork with Process Graphs

¢ A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
§ Each vertex is the execution of a statement
§ a -> b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no inedges

¢ Any topological sort of the graph corresponds to a feasible
total ordering.
§ Total ordering of vertices where all edges point from left to right

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

/* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs
¢ Original graph:

¢ Relabled graph:

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive forks

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();

 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()
{

printf("L0\n");
 if (fork() != 0) {

printf("L1\n");
 if (fork() != 0) {

printf("L2\n");
}

}
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in children

void fork5()
{

printf("L0\n");
 if (fork() == 0) {

printf("L1\n");
 if (fork() == 0) {

printf("L2\n");
}

}
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
¢ Idea

§ When process terminates, it still consumes system resources
§ Examples: Exit status, various OS tables

§ Called a “zombie”
§ Living corpse, half alive and half dead

¢ Reaping
§ Performed by parent on terminated child (using wait or waitpid)
§ Parent is given exit status information
§ Kernel then deletes zombie child process

¢ What if parent doesn’t reap?
§ If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
§ So, only need explicit reaping in long-running processes

§ e.g., shells and servers

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example

¢ ps shows child process as
“defunct” (i.e., a zombie)

¢ Killing parent allows child to be
reaped by init

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());

 while (1)
 ; /* Infinite loop */
 }
} forks.c

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Non-
terminating
Child Example

¢ Child process still active even
though parent has terminated

¢ Must kill child explicitly, or else will
keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",

getpid());
 while (1)
 ; /* Infinite loop */

} else {
printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

}
} forks.c

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children
¢ Parent reaps a child by calling the wait function

¢ int wait(int *child_status)
§ Suspends current process until one of its children terminates
§ Return value is the pid of the child process that terminated
§ If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
§ Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
¢ If multiple children completed, will take in arbitrary order
¢ Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));
else

 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process
¢ pid_t waitpid(pid_t pid, int &status, int options)

§ Suspends current process until specific process terminates
§ Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

¢ int execve(char *filename, char *argv[], char *envp[])

¢ Loads and runs in the current process:
§ Executable file filename

§ Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

§ …with argument list argv
§ By convention argv[0]==filename

§ …and environment variable list envp
§ “name=value” strings (e.g., USER=droh)
§ getenv, putenv, printenv

¢ Overwrites code, data, and stack
§ Retains PID, open files and signal context

¢ Called once and never returns
§ …except if there is an error

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

¢ Executes “/bin/ls –lt /usr/include” in child process
using current environment:

(argc == 3)

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Exceptions

§ Events that require nonstandard control flow
§ Generated externally (interrupts) or internally (traps and faults)

¢ Processes
§ At any given time, system has multiple active processes
§ Only one can execute at a time on a single core, though
§ Each process appears to have total control of

processor + private memory space

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)
¢ Spawning processes

§ Call fork
§ One call, two returns

¢ Process completion
§ Call exit
§ One call, no return

¢ Reaping and waiting for processes
§ Call wait or waitpid

¢ Loading and running programs
§ Call execve (or variant)
§ One call, (normally) no return

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Course Update
¢ Public Holiday Monday 7 October
¢ Make-up Lecture

§ When: Friday 11 October, 10:00-12:00
§ Where: 7-11 Barry Drive

¢ Quiz 1 – closes tonight at 11:59 pm
§ Start before 10:59 pm
§ On Wattle
§ Covers all of week 1 and 2
§ To help you assess your performance

¢ Checkpoint 1 – Closes this Fri 16th August at 11:59 pm
§ Allow time for debugging…start early

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Signals

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System
¢ Exceptions

§ Hardware and operating system kernel software

¢ Process Context Switch
§ Hardware timer and kernel software

¢ Signals
§ Kernel software and application software

¢ Nonlocal jumps
§ Application code

Previous Lecture

This Lecture

Textbook and
supplemental slides

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Shells
¢ Signals

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…
……

Note: you can view the
hierarchy using the Linux
pstree command

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs
¢ A shell is an application program that runs programs on behalf

of the user.
§ sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
§ csh/tcsh BSD Unix C shell
§ bash “Bourne-Again” Shell (default Linux shell)

int main()
{
 char cmdline[MAXLINE]; /* command line */

 while (1) {
 /* read */

printf("> ");
Fgets(cmdline, MAXLINE, stdin);

 if (feof(stdin))
 exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a
sequence of
read/evaluate
steps

shellex.c

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);

 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }

else
printf("%d %s", pid, cmdline);

}
return;

} shellex.c

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example
¢ Our example shell correctly waits for and reaps foreground

jobs

¢ But what about background jobs?
§ Will become zombies when they terminate
§ Will never be reaped because shell (typically) will not terminate
§ Will create a memory leak that could run the kernel out of memory

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!
¢ Solution: Exceptional control flow

§ The kernel will interrupt regular processing to alert us when a background
process completes

§ In Unix, the alert mechanism is called a signal

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Shells
¢ Signals
¢ Nonlocal jumps

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
¢ A signal is a small message that notifies a process that an

event of some type has occurred in the system
§ Akin to exceptions and interrupts
§ Sent from the kernel (sometimes at the request of another process) to a

process
§ Signal type is identified by small integer ID’s (1-30)
§ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal
¢ Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination process

¢ Kernel sends a signal for one of the following reasons:
§ Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)
§ Another process has invoked the kill system call to explicitly request

the kernel to send a signal to the destination process

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
¢ A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal

¢ Some possible ways to react:
§ Ignore the signal (do nothing)
§ Terminate the process (with optional core dump)
§ Catch the signal by executing a user-level function called signal handler

§ Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

¢ A signal is pending if sent but not yet received
§ There can be at most one pending signal of any particular type
§ Important: Signals are not queued

§ If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

¢ A process can block the receipt of certain signals
§ Blocked signals can be delivered, but will not be received until the signal

is unblocked

¢ A pending signal is received at most once

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

¢ Kernel maintains pending and blocked bit vectors in the
context of each process
§ pending: represents the set of pending signals

§ Kernel sets bit k in pending when a signal of type k is delivered
§ Kernel clears bit k in pending when a signal of type k is received

§ blocked: represents the set of blocked signals
§ Can be set and cleared by using the sigprocmask function
§ Also referred to as the signal mask.

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups
¢ Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see
text for details)

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program
¢ /bin/kill program

sends arbitrary signal to a
process or process group

¢ Examples
§ /bin/kill –9 24818

Send SIGKILL to process 24818

§ /bin/kill –9 –24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
¢ Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group.
§ SIGINT – default action is to terminate each process
§ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

 /* Child: Infinite Loop */
 while(1)
 ;
 }

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
 printf("Child %d terminated abnormally\n", wpid);
 }
} forks.c

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
¢ Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
¢ Suppose kernel is returning from an exception handler

and is ready to pass control to process p

¢ Kernel computes pnb = pending & ~blocked
§ The set of pending nonblocked signals for process p

¢ If (pnb == 0)
§ Pass control to next instruction in the logical flow for p

¢ Else
§ Choose least nonzero bit k in pnb and force process p to receive

signal k
§ The receipt of the signal triggers some action by p
§ Repeat for all nonzero k in pnb
§ Pass control to next instruction in logical flow for p

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions
¢ Each signal type has a predefined default action, which is

one of:
§ The process terminates
§ The process stops until restarted by a SIGCONT signal
§ The process ignores the signal

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
¢ The signal function modifies the default action associated

with the receipt of signal signum:
§ handler_t *signal(int signum, handler_t *handler)

¢ Different values for handler:
§ SIG_IGN: ignore signals of type signum
§ SIG_DFL: revert to the default action on receipt of signals of type signum
§ Otherwise, handler is the address of a user-level signal handler

§ Called when process receives signal of type signum
§ Referred to as “installing” the handler
§ Executing handler is called “catching” or “handling” the signal
§ When the handler executes its return statement, control passes back

to instruction in the control flow of the process that was interrupted
by receipt of the signal

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do
you?\n");

sleep(2);
 printf("Well...");
 fflush(stdout);

sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main()
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
}

sigint.c

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

¢ A signal handler is a separate logical flow (not a process) that
runs concurrently with the main program

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers
¢ Handlers can be interrupted by other handlers

(2) Control passes
to handler S

Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main
program

(7) Main program
resumes

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals
¢ Implicit blocking mechanism

§ Kernel blocks any pending signals of type currently being handled.
§ E.g., A SIGINT handler can’t be interrupted by another SIGINT

¢ Explicit blocking and unblocking mechanism
§ sigprocmask function

¢ Supporting functions
§ sigemptyset – Create empty set
§ sigfillset – Add every signal number to set
§ sigaddset – Add signal number to set
§ sigdelset – Delete signal number from set

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

 Sigemptyset(&mask);
 Sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT
*/

 /* Restore previous blocked set, unblocking SIGINT */
 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling
¢ Handlers are tricky because they are concurrent with

main program and share the same global data structures.
§ Shared data structures can become corrupted.

¢ We’ll explore concurrency issues later in the term.

¢ For now here are some guidelines to help you avoid
trouble.

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers
¢ G0: Keep your handlers as simple as possible

§ e.g., Set a global flag and return
¢ G1: Call only async-signal-safe functions in your handlers

§ printf, sprintf, malloc, and exit are not safe!
¢ G2: Save and restore errno on entry and exit

§ So that other handlers don’t overwrite your value of errno
¢ G3: Protect accesses to shared data structures by temporarily

blocking all signals.
§ To prevent possible corruption

¢ G4: Declare global variables as volatile
§ To prevent compiler from storing them in a register

¢ G5: Declare global flags as volatile sig_atomic_t
§ flag: variable that is only read or written (e.g. flag = 1, not flag++)
§ Flag declared this way does not need to be protected like other globals

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety
¢ Function is async-signal-safe if either reentrant (e.g., all

variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

¢ Posix guarantees 117 functions to be async-signal-safe
§ Source: “man 7 signal”
§ Popular functions on the list:

§ _exit, write, wait, waitpid, sleep, kill

§ Popular functions that are not on the list:
§ printf, sprintf, malloc, exit
§ Unfortunate fact: write is the only async-signal-safe output function

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safely Generating Formatted Output
¢ Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.
§ ssize_t sio_puts(char s[]) /* Put string */

§ ssize_t sio_putl(long v) /* Put long */

§ void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{
 Sio_puts("So you think you can stop the bomb with
ctrl-c, do you?\n");

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Pending signals are
not queued
§ For each signal type, one

bit indicates whether or
not signal is pending…

§ …thus at most one
pending signal of any
particular type.

¢ You can’t use signals
to count events, such as
children terminating.

int ccount = 0;
void child_handler(int sig) {
 int olderrno = errno;

pid_t pid;
 if ((pid = wait(NULL)) < 0)
 Sio_error("wait error");
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");

sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;

 ccount = N;
 Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
 if ((pid[i] = Fork()) == 0) {

Sleep(1);
 exit(0); /* Child exits */
 }
 }
 while (ccount > 0) /* Parent spins */
 ;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

Correct Signal Handling

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling
¢ Must wait for all terminated child processes

§ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;

pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");
 }
 if (errno != ECHILD)
 Sio_error("wait error");
 errno = olderrno;
} whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Portable Signal Handling
¢ Ugh! Different versions of Unix can have different signal

handling semantics
§ Some older systems restore action to default after catching signal
§ Some interrupted system calls can return with errno == EINTR
§ Some systems don’t block signals of the type being handled

¢ Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)
{
 struct sigaction action, old_action;

 action.sa_handler = handler;
 sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
 action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

 if (sigaction(signum, &action, &old_action) < 0)
 unix_error("Signal error");
 return (old_action.sa_handler);
} csapp.c

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

¢ Simple shell with a subtle synchronization error because it
assumes parent runs before child.

procmask1.c

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)
{
 int olderrno = errno;
 sigset_t mask_all, prev_all;

pid_t pid;

Sigfillset(&mask_all);
 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid); /* Delete the child from the job list */
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 if (errno != ECHILD)
 Sio_error("waitpid error");
 errno = olderrno;
}

¢ SIGCHLD handler for a simple shell

procmask1.c

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
} procmask2.c

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{
 int olderrno = errno;

pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid
*/

errno = olderrno;
}

void sigint_handler(int s)
{
}

¢ Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {
 sigset_t mask, prev;
 Signal(SIGCHLD, sigchld_handler);
 Signal(SIGINT, sigint_handler);
 Sigemptyset(&mask);
 Sigaddset(&mask, SIGCHLD);

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
 if (Fork() == 0) /* Child */
 exit(0);

/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */
printf(".");

}
exit(0);

} waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

while (!pid) /* Race! */
 pause();

¢ Program is correct, but very wasteful
¢ Other options:

¢ Solution: sigsuspend

while (!pid) /* Too slow! */
sleep(1);

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_BLOCK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

¢ int sigsuspend(const sigset_t *mask)

¢ Equivalent to atomic (uninterruptable) version of:

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {
 sigset_t mask, prev;
 Signal(SIGCHLD, sigchld_handler);
 Signal(SIGINT, sigint_handler);
 Sigemptyset(&mask);
 Sigaddset(&mask, SIGCHLD);

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
 if (Fork() == 0) /* Child */
 exit(0);

 /* Wait for SIGCHLD to be received */

pid = 0;
 while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */
Sigprocmask(SIG_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(".");

}
exit(0);

} sigsuspend.c

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Shells
¢ Signals

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Signals provide process-level exception handling

§ Can generate from user programs
§ Can define effect by declaring signal handler
§ Be very careful when writing signal handlers

§ …concurrency

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Hierarchy

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Random-Access Memory (RAM)
¢ Key features

§ RAM is traditionally packaged as a chip.
§ Basic storage unit is normally a cell (one bit per cell).
§ Multiple RAM chips form a memory.

¢ RAM comes in two varieties:
§ SRAM (Static RAM)
§ DRAM (Dynamic RAM)

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SRAM vs DRAM Summary

Trans. Access Needs Needs
 per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
 frame buffers

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonvolatile Memories
¢ DRAM and SRAM are volatile memories

§ Lose information if powered off.
¢ Nonvolatile memories retain value even if powered off

§ Read-only memory (ROM): programmed during production
§ Programmable ROM (PROM): can be programmed once
§ Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
§ Electrically eraseable PROM (EEPROM): electronic erase capability
§ Flash memory: EEPROMs. with partial (block-level) erase capability

§ Wears out after about 100,000 erasings
¢ Uses for Nonvolatile Memories

§ Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,…)

§ Solid state disks (SSD) (replace rotating disks in thumb drives,
smart phones, mp3 players, tablets, laptops,…)

§ Disk caches

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional Bus Structure Connecting
CPU and Memory
¢ A bus is a collection of parallel wires that carry address,

data, and control signals.
¢ Buses are typically shared by multiple devices.

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (1)
¢ CPU places address A on the memory bus.

ALU

Register file

Bus interface
A

0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (2)
¢ Main memory reads A from the memory bus, retrieves

word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main memory

%rax

I/O bridge

Load operation: movq A, %rax

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (3)
¢ CPU read word x from the bus and copies it into register

%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (1)
¢ CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (2)
¢ CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (3)
¢ Main memory reads data word y from the bus and stores

it at address A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry

¢ Disks consist of platters, each with two surfaces.
¢ Each surface consists of concentric rings called tracks.
¢ Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry (Muliple-Platter View)
¢ Aligned tracks form a cylinder.

Surface 0
Surface 1
Surface 2
Surface 3
Surface 4
Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Capacity
¢ Capacity: maximum number of bits that can be stored.

§ Vendors express capacity in units of gigabytes (GB), where
1 GB = 109 Bytes.

¢ Capacity is determined by these technology factors:
§ Recording density (bits/in): number of bits that can be squeezed

into a 1 inch segment of a track.
§ Track density (tracks/in): number of tracks that can be squeezed

into a 1 inch radial segment.
§ Areal density (bits/in2): product of recording and track density.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recording zones
¢ Modern disks partition tracks

into disjoint subsets called
recording zones
§ Each track in a zone has the same

number of sectors, determined
by the circumference of
innermost track.

§ Each zone has a different number
of sectors/track, outer zones
have more sectors/track than
inner zones.

§ So we use average number of
sectors/track when computing
capacity.

Spindle

…

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computing Disk Capacity
Capacity = (# bytes/sector) x (avg. # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x
 (# platters/disk)
Example:

§ 512 bytes/sector
§ 300 sectors/track (on average)
§ 20,000 tracks/surface
§ 2 surfaces/platter
§ 5 platters/disk

Capacity = 512 x 300 x 20000 x 2 x 5
 = 30,720,000,000
 = 30.72 GB

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head over
any track.

The read/write head
is attached to the end
of the arm and flies over
 the disk surface on
a thin cushion of air.

spindle

spindle

sp
in

dl
e

spindlespindle

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison

from cylinder to cylinder

Spindle

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tracks divided into sectors

Disk Structure - top view of single platter

Surface organized into tracks

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access

Head in position above a track

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access

Rotation is counter-clockwise

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

About to read blue sector

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read

After reading blue sector

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read

Red request scheduled next

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Seek

After BLUE read Seek for RED

Seek to red’s track

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Rotational Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time
¢ Average time to access some target sector approximated by :

§ Taccess = Tavg seek + Tavg rotation + Tavg transfer

¢ Seek time (Tavg seek)
§ Time to position heads over cylinder containing target sector.
§ Typical Tavg seek is 3—9 ms

¢ Rotational latency (Tavg rotation)
§ Time waiting for first bit of target sector to pass under r/w head.
§ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
§ Typical Tavg rotation = 7200 RPMs

¢ Transfer time (Tavg transfer)
§ Time to read the bits in the target sector.
§ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example
¢ Given:

§ Rotational rate = 7,200 RPM
§ Average seek time = 9 ms.
§ Avg # sectors/track = 400.

¢ Derived:
§ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
§ Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
§ Taccess = 9 ms + 4 ms + 0.02 ms

¢ Important points:
§ Access time dominated by seek time and rotational latency.
§ First bit in a sector is the most expensive, the rest are free.
§ SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

§ Disk is about 40,000 times slower than SRAM,
§ 2,500 times slower than DRAM.

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Disk Blocks
¢ Modern disks present a simpler abstract view of the

complex sector geometry:
§ The set of available sectors is modeled as a sequence of b-sized

logical blocks (0, 1, 2, ...)

¢ Mapping between logical blocks and actual (physical)
sectors
§ Maintained by hardware/firmware device called disk controller.
§ Converts requests for logical blocks into (surface, track, sector)

triples.

¢ Allows controller to set aside spare cylinders for each
zone.
§ Accounts for the difference in “formatted capacity” and “maximum

capacity”.

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Bus

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory.

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

¢ Pages: 512KB to 4KB, Blocks: 32 to 128 pages
¢ Data read/written in units of pages.
¢ Page can be written only after its block has been erased
¢ A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)
Requests to read and
write logical disk blocks

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Performance Characteristics

¢ Sequential access faster than random access
§ Common theme in the memory hierarchy

¢ Random writes are somewhat slower
§ Erasing a block takes a long time (~1 ms)
§ Modifying a block page requires all other pages to be copied to

new block
§ In earlier SSDs, the read/write gap was much larger.

Sequential read tput 550 MB/s Sequential write tput 470 MB/s
Random read tput 365 MB/s Random write tput 303 MB/s
Avg seq read time 50 us Avg seq write time 60 us

Source: Intel SSD 730 product specification.

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Tradeoffs vs Rotating Disks
¢ Advantages

§ No moving parts à faster, less power, more rugged

¢ Disadvantages
§ Have the potential to wear out

§ Mitigated by “wear leveling logic” in flash translation layer
§ E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of

writes before they wear out
§ In 2015, about 30 times more expensive per byte

¢ Applications
§ Initially MP3 players, smart phones, laptops
§ Now appear in desktops and servers

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality
¢ Principle of Locality: Programs tend to use data and

instructions with addresses near or equal to those they
have used recently

¢ Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

¢ Spatial locality:
§ Items with nearby addresses tend

to be referenced close together in time

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

¢ Data references
§ Reference array elements in succession

(stride-1 reference pattern).
§ Reference variable sum each iteration.

¢ Instruction references
§ Reference instructions in sequence.
§ Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Qualitative Estimates of Locality
¢ Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

¢ Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example
¢ Question: Does this function have good locality with

respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example
¢ Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[N][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 sum += a[k][i][j];
 return sum;
}

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchies
¢ Some fundamental and enduring properties of hardware

and software:
§ Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).
§ The gap between CPU and main memory speed is widening.
§ Well-written programs tend to exhibit good locality.

¢ These fundamental properties complement each other
beautifully.

¢ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Storage technologies and trends
¢ Locality of reference
¢ Caching in the memory hierarchy

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches
¢ Cache: A smaller, faster storage device that acts as a staging

area for a subset of the data in a larger, slower device.
¢ Fundamental idea of a memory hierarchy:

§ For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.

¢ Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.
§ Thus, the storage at level k+1 can be slower, and thus larger and

cheaper per bit.

¢ Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
Types of Cache Misses

¢ Cold (compulsory) miss
§ Cold misses occur because the cache is empty.

¢ Conflict miss
§ Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.
§ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

§ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.
§ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

¢ Capacity miss
§ Occurs when the set of active cache blocks (working set) is larger than

the cache.

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ The speed gap between CPU, memory and mass storage

continues to widen.

¢ Well-written programs exhibit a property called locality.

¢ Memory hierarchies based on caching close the gap by
exploiting locality.

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conventional DRAM Organization
¢ d x w DRAM:

§ dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit word

031 78151623243263 394047485556

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enhanced DRAMs
¢ Basic DRAM cell has not changed since its invention in 1966.

§ Commercialized by Intel in 1970.

¢ DRAM cores with better interface logic and faster I/O :
§ Synchronous DRAM (SDRAM)

§ Uses a conventional clock signal instead of asynchronous control
§ Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

§ Double data-rate synchronous DRAM (DDR SDRAM)
§ Double edge clocking sends two bits per cycle per pin
§ Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
§ By 2010, standard for most server and desktop systems
§ Intel Core i7 supports only DDR3 SDRAM

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 5 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock
rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle
time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective
cycle 166 50 6 0.30 0.25 0.10 0.08 2,075
time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Course Update
¢ Course survey available on Wattle

¢ The student representatives have just been appointed.
They are: -
§ Isaac Leong
§ Sarthak Pathak

¢ ChatGPT

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Address spaces
¢ VM as a tool for caching
¢ VM as a tool for memory management
¢ VM as a tool for memory protection
¢ Address translation

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Virtual Addressing

¢ Used in all modern servers, laptops, and smart phones
¢ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Spaces
¢ Linear address space: Ordered set of contiguous non-negative integer

addresses:
 {0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical addresses
 {0, 1, 2, 3, …, M-1}

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Virtual Memory (VM)?
¢ Uses main memory efficiently

§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ One process can’t interfere with another’s memory
§ User program cannot access privileged kernel information and code

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Address spaces
¢ VM as a tool for caching
¢ VM as a tool for memory management
¢ VM as a tool for memory protection
¢ Address translation

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Caching
¢ Conceptually, virtual memory is an array of N contiguous

bytes stored on disk.
¢ The contents of the array on disk are cached in physical

memory (DRAM cache)
§ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

DRAM Cache Organization
¢ DRAM cache organization driven by the enormous miss penalty

§ DRAM is about 10x slower than SRAM
§ Disk is about 10,000x slower than DRAM

¢ Consequences
§ Large page (block) size: typically 4 KB, sometimes 4 MB
§ Fully associative

§ Any VP can be placed in any PP
§ Requires a “large” mapping function – different from cache memories

§ Highly sophisticated, expensive replacement algorithms
§ Too complicated and open-ended to be implemented in hardware

§ Write-back rather than write-through

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enabling Data Structure: Page Table
¢ A page table is an array of page table entries (PTEs) that

maps virtual pages to physical pages.
§ Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit
¢ Page hit: reference to VM word that is in physical memory

(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault
¢ Page fault: reference to VM word that is not in physical

memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
¢ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
¢ Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!
¢ Virtual memory seems terribly inefficient, but it works

because of locality.

¢ At any point in time, programs tend to access a set of active
virtual pages called the working set
§ Programs with better temporal locality will have smaller working sets

¢ If (working set size < main memory size)
§ Good performance for one process after compulsory misses

¢ If (SUM(working set sizes) > main memory size)
§ Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Address spaces
¢ VM as a tool for caching
¢ VM as a tool for memory management
¢ VM as a tool for memory protection
¢ Address translation

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
¢ Key idea: each process has its own virtual address space

§ It can view memory as a simple linear array
§ Mapping function scatters addresses through physical memory

§ Well-chosen mappings can improve locality

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
¢ Simplifying memory allocation

§ Each virtual page can be mapped to any physical page
§ A virtual page can be stored in different physical pages at different times

¢ Sharing code and data among processes
§ Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simplifying Linking and Loading

¢ Linking
§ Each program has similar virtual

address space
§ Code, data, and heap always start

at the same addresses.

¢ Loading
§ execve allocates virtual pages

for .text and .data sections &
creates PTEs marked as invalid

§ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Address spaces
¢ VM as a tool for caching
¢ VM as a tool for memory management
¢ VM as a tool for memory protection
¢ Address translation

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Protection
¢ Extend PTEs with permission bits
¢ MMU checks these bits on each access

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Address spaces
¢ VM as a tool for caching
¢ VM as a tool for memory management
¢ VM as a tool for memory protection
¢ Address translation

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM Address Translation
¢ Virtual Address Space

§ V = {0, 1, …, N–1}

¢ Physical Address Space
§ P = {0, 1, …, M–1}

¢ Address Translation
§ MAP: V ® P U {Æ}
§ For virtual address a:

§ MAP(a) = a’ if data at virtual address a is at physical address a’ in P
§ MAP(a) = Æ if data at virtual address a is not in physical memory

– Either invalid or stored on disk

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Address Translation Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset
§ VPN: Virtual page number

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integrating VM and Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

¢ Page table entries (PTEs) are cached in L1 like any other
memory word
§ PTEs may be evicted by other data references
§ PTE hit still requires a small L1 delay

¢ Solution: Translation Lookaside Buffer (TLB)
§ Small set-associative hardware cache in MMU
§ Maps virtual page numbers to physical page numbers
§ Contains complete page table entries for small number of pages

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB
¢ MMU uses the VPN portion of the virtual address to

access the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables
¢ Suppose:

§ 4KB (212) page size, 48-bit address space, 8-byte PTE

¢ Problem:
§ Would need a 512 GB page table!

§ 248 * 2-12 * 23 = 239 bytes

¢ Common solution: Multi-level page table
¢ Example: 2-level page table

§ Level 1 table: each PTE points to a page table (always
memory resident)

§ Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

¢ Programmer’s view of virtual memory
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System view of virtual memory
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient interpositioning point

to check permissions

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset
§ VPN: Virtual page number

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example
¢ Addressing

§ 14-bit virtual addresses
§ 12-bit physical address
§ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Simple Memory System TLB
¢ 16 entries
¢ 4-way associative
¢ Memory accesses are 1-byte words (not 4-bytes)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. Simple Memory System Page Table
Only show first 16 entries (out of 256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3. Simple Memory System Cache
¢ 16 lines, 4-byte block size
¢ Physically addressed
¢ Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0
TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

00101011110000

VPOVPN

PPOPPN

COCICT

0001010 11010

0x0F 0x3 0x03 Y N 0x0D

0 0x5 0x0D Y 0x36

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation Example #2
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores
To I/O
bridge

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset
§ VPN: Virtual page number

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

G: Global Page Bit is used to indicate that a page is global.

If P=0, Page table physical base address: 40 most significant bits of physical page
table address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Page table physical base address Unused G PS A CD WT U/S R/W P=1

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical
address
of page

Physical
address
of L1 PT

9
VPO

9 12 Virtual
address

L4 PT
Page
table

L4 PTE

PPN PPO
40 12 Physical

address

Offset into
physical and
virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper

directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

99

40
/

40
/ 40

/
40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

¢ Observation
§ Bits that determine CI identical in virtual and physical address
§ Can index into cache while address translation taking place
§ Generally we hit in TLB, so PPN bits (CT bits) available next
§ “Virtually indexed, physically tagged”
§ Cache carefully sized to make this possible

Physical
address

(PA)

CT CO
40 6

CI
6

Virtual
address

(VA) VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI

L1 Cache

CT Tag Check

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack) Kernel

virtual
memory

0x00400000

Different for
each process

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

¢ pgd:
§ Page global directory address
§ Points to L1 page table

¢ vm_prot:
§ Read/write permissions for

this area

¢ vm_flags
§ Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

vm_next

vm_next

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write
2

read
3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries
vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Simple memory system example
¢ Case study: Core i7/Linux memory system
¢ Memory mapping

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mapping
¢ VM areas initialized by associating them with disk objects.

§ Process is known as memory mapping.

¢ Area can be backed by (i.e., get its initial values from) :
§ Regular file on disk (e.g., an executable object file)

§ Initial page bytes come from a section of a file
§ Anonymous file (e.g., nothing)

§ First fault will allocate a physical page full of 0's (demand-zero page)
§ Once the page is written to (dirtied), it is like any other page

¢ Dirty pages are copied back and forth between memory and a
special swap file.

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

¢ Process 1 maps
the shared
object.

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

¢ Process 2 maps
the shared
object.

¢ Notice how the
virtual
addresses can
be different.

Shared
object

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

¢ Two processes
mapping a private
copy-on-write
(COW) object.

¢ Area flagged as
private copy-on-
write

¢ PTEs in private
areas are flagged
as read-only

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Instruction writing
to private page
triggers
protection fault.

¢ Handler creates
new R/W page.

¢ Instruction
restarts upon
handler return.

¢ Copying deferred
as long as
possible!

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Private
copy-on-write object

Sharing Revisited:
Private Copy-on-write (COW) Objects

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The fork Function Revisited

¢ VM and memory mapping explain how fork provides private
address space for each process.

¢ To create virtual address for new new process
§ Create exact copies of current mm_struct, vm_area_struct, and

page tables.
§ Flag each page in both processes as read-only
§ Flag each vm_area_struct in both processes as private COW

¢ On return, each process has exact copy of virtual memory

¢ Subsequent writes create new pages using COW mechanism.

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The execve Function Revisited
¢ To load and run a new

program a.out in the
current process using
execve:

¢ Free vm_area_struct’s
and page tables for old areas

¢ Create vm_area_struct’s
and page tables for new
areas
§ Programs and initialized data

backed by object files.
§ .bss and stack backed by

anonymous files .

¢ Set PC to entry point in
.text
§ Linux will fault in code and

data pages as needed.

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

¢ Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start
§ start: may be 0 for “pick an address”
§ prot: PROT_READ, PROT_WRITE, ...
§ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

¢ Return a pointer to start of mapped area (may not be start)

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;

int fd;

/* Check for required cmd line arg
*/
 if (argc != 2) {
 printf("usage: %s
<filename>\n",
 argv[0]);
 exit(0);
 }

 /* Copy input file to stdout */
fd = Open(argv[1], O_RDONLY, 0);
Fstat(fd, &stat);
mmapcopy(fd, stat.st_size);
exit(0);

}

¢ Copying a file to stdout without transferring data to user
space .

#include "csapp.h"

void mmapcopy(int fd, int size)
{

 /* Ptr to memory mapped area
*/

char *bufp;

bufp = Mmap(NULL, size,
PROT_READ,
MAP_PRIVATE,
fd, 0);

Write(1, bufp, size);
return;

}

mmapcopy.c mmapcopy.c

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update
Ø Course survey available on Wattle

Ø Checkpoint 1 results are out now

Ø Assignment 1 released this Wednesday
Ø Due Wed 11th September
Ø Tomorrow we will cover memory-related perils and pitfalls

Ø Quiz 2 released Monday 2nd September
Ø Due Monday 16th September
Ø Cover weeks 3-6 of lectures

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Basic concepts
¢ Implicit free lists

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation
¢ Programmers use

dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
§ For data structures whose

size is only known at
runtime.

¢ Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator

Heap

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ E.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ E.g. garbage collection in Java, ML, and Lisp

¢ Will discuss simple explicit memory allocation today

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
 free(p);
}

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions Made in This Lecture
¢ Memory is word addressed.
¢ Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints
¢ Applications

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Goals: maximize throughput and peak memory utilization
§ These goals are often conflicting

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:

§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi<=k Pi) / Hk

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation
¢ Poor memory utilization caused by fragmentation

§ internal fragmentation
§ external fragmentation

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if a payload is

smaller than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation
¢ Occurs when there is enough aggregate heap memory,

but no single free block is large enough

¢ Depends on the pattern of future requests
§ Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues
¢ How do we know how much memory to free given just a

pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many
might fit?

¢ How do we reinsert freed block?

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free
¢ Standard method

§ Keep the length of a block in the word preceding the block.
§ This word is often called the header field or header

§ Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Basic concepts
¢ Implicit free lists

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit List
¢ For each block we need both size and allocation status

§ Could store this information in two words: wasteful!

¢ Standard trick
§ If blocks are aligned, some low-order address bits are always 0
§ Instead of storing an always-0 bit, use it as an allocated/free flag
§ When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(required for allocated blocks only)

a

Optional
padding

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block: fits, with fewest bytes left over
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting

§ Since allocated space might be smaller than free space, we might want
to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block
¢ Simplest implementation:

§ Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free

§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags
¢ Internal fragmentation

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
¢ Placement policy:

§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists (next lecture)

approximate a best fit placement policy without having to search
entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
§ Coalesce as you scan the free list for malloc
§ Coalesce when the amount of external fragmentation reaches

some threshold

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:

§ linear time worst case
¢ Free cost:

§ constant time worst case
§ even with coalescing

¢ Memory usage:
§ will depend on placement policy
§ First-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Garbage collection
¢ Memory-related perils and pitfalls

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
¢ Method 1: Implicit free list using length—links all blocks

¢ Method 2: Explicit free list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

¢ Maintain list(s) of free blocks, not all blocks
§ The “next” free block could be anywhere

§ So we need to store forward/back pointers, not just sizes
§ Still need boundary tags for coalescing
§ Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists
¢ Logically:

¢ Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
¢ Insertion policy: Where in the free list do you put a newly

freed block?
¢ LIFO (last-in-first-out) policy

§ Insert freed block at the beginning of the free list
§ Pro: simple and constant time
§ Con: studies suggest fragmentation is worse than address ordered

¢ Address-ordered policy
§ Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)
§ Con: requires search
§ Pro: studies suggest fragmentation is lower than LIFO

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

¢ Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

¢ Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

¢ Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

¢ Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
¢ Comparison to implicit list:

§ Allocate is linear time in number of free blocks instead of all blocks
§ Much faster when most of the memory is full

§ Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

§ Some extra space for the links (2 extra words needed for each block)
§ Does this increase internal fragmentation?

¢ Most common use of linked lists is in conjunction with
segregated free lists
§ Keep multiple linked lists of different size classes, or possibly for

different types of objects

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Garbage collection
¢ Memory-related perils and pitfalls

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
¢ Each size class of blocks has its own free list

¢ Often have separate classes for each small size
¢ For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
¢ Given an array of free lists, each one for some size class

¢ To allocate a block of size n:
§ Search appropriate free list for block of size m > n
§ If an appropriate block is found:

§ Split block and place fragment on appropriate list (optional)
§ If no block is found, try next larger class
§ Repeat until block is found

¢ If no block is found:
§ Request additional heap memory from OS (using sbrk())
§ Allocate block of n bytes from this new memory
§ Place remainder as a single free block in largest size class.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
¢ To free a block:

§ Coalesce and place on appropriate list

¢ Advantages of seglist allocators
§ Higher throughput

§ log time for power-of-two size classes
§ Better memory utilization

§ First-fit search of segregated free list approximates a best-fit
search of entire heap.

§ Extreme case: Giving each block its own size class is equivalent to
best-fit.

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

¢ D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
§ The classic reference on dynamic storage allocation

¢ Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
§ Comprehensive survey
§ Available from CS:APP student site (csapp.cs.cmu.edu)

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Garbage collection
¢ Memory-related perils and pitfalls

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Memory Management:
Garbage Collection
¢ Garbage collection: automatic reclamation of heap-allocated

storage—application never has to free

¢ Common in many dynamic languages:
§ Python, Ruby, Java, Perl, ML, Lisp, Mathematica

¢ Variants (“conservative” garbage collectors) exist for C and C++
§ However, cannot necessarily collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbage Collection
¢ How does the memory manager know when memory can be

freed?
§ In general we cannot know what is going to be used in the future since it

depends on conditionals
§ But we can tell that certain blocks cannot be used if there are no

pointers to them

¢ Must make certain assumptions about pointers
§ Memory manager can distinguish pointers from non-pointers
§ All pointers point to the start of a block
§ Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical GC Algorithms
¢ Mark-and-sweep collection (McCarthy, 1960)

§ Does not move blocks (unless you also “compact”)

¢ Reference counting (Collins, 1960)
§ Does not move blocks (not discussed)

¢ Copying collection (Minsky, 1963)
§ Moves blocks (not discussed)

¢ Generational Collectors (Lieberman and Hewitt, 1983)
§ Collection based on lifetimes

§ Most allocations become garbage very soon
§ So focus reclamation work on zones of memory recently allocated

¢ For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory as a Graph
¢ We view memory as a directed graph

§ Each block is a node in the graph
§ Each pointer is an edge in the graph
§ Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Collecting
¢ Can build on top of malloc/free package

§ Allocate using malloc until you “run out of space”

¢ When out of space:
§ Use extra mark bit in the head of each block
§ Mark: Start at roots and set mark bit on each reachable block
§ Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions For a Simple Implementation
¢ Application

§ new(n): returns pointer to new block with all locations cleared
§ read(b,i): read location i of block b into register
§ write(b,i,v): write v into location i of block b

¢ Each block will have a header word
§ addressed as b[-1], for a block b
§ Used for different purposes in different collectors

¢ Instructions used by the Garbage Collector
§ is_ptr(p): determines whether p is a pointer
§ length(b): returns the length of block b, not including the header
§ get_roots(): returns all the roots

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return; // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet(p)
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conservative Mark & Sweep in C
¢ A “conservative garbage collector” for C programs

§ is_ptr() determines if a word is a pointer by checking if it points to
an allocated block of memory

§ But, in C pointers can point to the middle of a block

¢ So how to find the beginning of the block?
§ Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)
§ Balanced-tree pointers can be stored in header (use two additional

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Garbage collection
¢ Memory-related perils and pitfalls

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls
¢ Dereferencing bad pointers
¢ Reading uninitialized memory
¢ Overwriting memory
¢ Referencing non-existent variables
¢ Freeing blocks multiple times
¢ Referencing freed blocks
¢ Failing to free blocks

¢ See section 9.11 of CS:APP – Common Memory related bugs

¢ See p.40 of CS:APP – ‘Origins of the C programming language’
§ Understand ‘why C’ – portable and efficient

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

¢ ->, (), and [] have high precedence, with * and & just below
¢ Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
¢ The classic scanf bug

int val;

...

scanf(“%d”, val);

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
¢ Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Off-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Not checking the max string size

¢ Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Misunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof(int);

 return p;
}

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
¢ Forgetting that local variables disappear when a function

returns

int *foo () {
 int val;

 return &val;
}

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
¢ Nasty!

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);

y = malloc(M*sizeof(int));
 <manipulate y>
free(x);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
¢ Evil!

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);
 ...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
¢ Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
¢ Freeing only part of a data structure

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head = malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
¢ Debugger: gdb

§ Good for finding bad pointer dereferences
§ Hard to detect the other memory bugs

¢ Data structure consistency checker
§ Runs silently, prints message only on error
§ Use as a probe to zero in on error

¢ Binary translator: valgrind
§ Powerful debugging and analysis technique
§ Rewrites text section of executable object file
§ Checks each individual reference at runtime

§ Bad pointers, overwrites, refs outside of allocated block

¢ glibc malloc contains checking code
§ setenv MALLOC_CHECK_ 3

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

Carnegie Mellon

2

Course Update

➢ Assignment 1 – marking now

➢ Quiz 2 released today - Monday 16th September

➢ Due next Monday 23rd September

➢ Cover weeks 3-6 of lectures

➢ 30 questions in 30 mins

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System-Level I/O

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 RIO (robust I/O) package

 Metadata, sharing, and redirection

 Standard I/O

 Closing remarks

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 A Linux file is a sequence of m bytes:
▪ B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
▪ /dev/sda2 (/usr disk partition)

▪ /dev/tty2 (terminal)

 Even the kernel is represented as a file:
▪ /boot/vmlinuz-3.13.0-55-generic (kernel image)

▪ /proc (kernel data structures)

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
▪ Opening and closing files

▪ open()and close()

▪ Reading and writing a file

▪ read() and write()

▪ Changing the current file position (seek)

▪ indicates next offset into file to read or write

▪ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

 Each file has a type indicating its role in the system
▪ Regular file: Contains arbitrary data

▪ Directory: Index for a related group of files

▪ Socket: For communicating with a process on another machine

 Other file types beyond our scope

▪ Named pipes (FIFOs)

▪ Symbolic links

▪ Character and block devices

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary
files
▪ Text files are regular files with only ASCII or Unicode characters

▪ Binary files are everything else

▪ e.g., object files, JPEG images

▪ Kernel doesn’t know the difference!

 Text file is sequence of text lines
▪ Text line is sequence of chars terminated by newline char (‘\n’)

▪ Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
▪ Linux and Mac OS: ‘\n’ (0xa)

▪ line feed (LF)

▪ Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

▪ Carriage return (CR) followed by line feed (LF)

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

 Directory consists of an array of links
▪ Each link maps a filename to a file

 Each directory contains at least two entries
▪ . (dot) is a link to itself

▪ .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
▪ mkdir: create empty directory

▪ ls: view directory contents

▪ rmdir: delete empty directory

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
▪ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames

 Locations of files in the hierarchy denoted by pathnames
▪ Absolute pathname starts with ‘/’ and denotes path from root

▪ /home/droh/hello.c

▪ Relative pathname denotes path from current working directory

▪ ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

 Opening a file informs the kernel that you are getting ready to
access that file

 Returns a small identifying integer file descriptor
▪ fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three
open files associated with a terminal:
▪ 0: standard input (stdin)

▪ 1: standard output (stdout)

▪ 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

 perror("open");

 exit(1);

}

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

 perror("close");

 exit(1);

}

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files

 Reading a file copies bytes from the current file position to
memory, and then updates file position

 Returns number of bytes read from file fd into buf
▪ Return type ssize_t is signed integer

▪ nbytes < 0 indicates that an error occurred

▪ Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

 perror("read");

 exit(1);

}

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files

 Writing a file copies bytes from memory to the current file
position, and then updates current file position

 Returns number of bytes written from buf to file fd
▪ nbytes < 0 indicates that an error occurred

▪ As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

 perror("write");

 exit(1);

}

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
 Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void)

{

char c;

 while(Read(STDIN_FILENO, &c, 1) != 0)

 Write(STDOUT_FILENO, &c, 1);

 exit(0);

}

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

 Short counts can occur in these situations:

▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 RIO (robust I/O) package

 Metadata, sharing, and redirection

 Standard I/O

 Closing remarks

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package

 RIO is a set of wrappers that provide efficient and robust I/O
in apps, such as network programs that are subject to short
counts

 RIO provides two different kinds of functions
▪ Unbuffered input and output of binary data

▪ rio_readn and rio_writen

▪ Buffered input of text lines and binary data

▪ rio_readlineb and rio_readnb

▪ Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
→ src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output

 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn
/*

 * rio_readn - Robustly read n bytes (unbuffered)

 */

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

 size_t nleft = n;

 ssize_t nread;

 char *bufp = usrbuf;

 while (nleft > 0) {

 if ((nread = read(fd, bufp, nleft)) < 0) {

 if (errno == EINTR) /* Interrupted by sig handler return */

 nread = 0; /* and call read() again */

 else

 return -1; /* errno set by read() */

 }

 else if (nread == 0)

 break; /* EOF */

 nleft -= nread;

 bufp += nread;

 }

 return (n - nleft); /* Return >= 0 */

} csapp.c

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

▪ rio_readnb reads up to n bytes from file fd

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered

▪ Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

▪ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation

 For reading from file

 File has associated buffer to hold bytes that have been read
from file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readnot in buffer unseen

Current File Position

Buffered Portion

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration

 All information contained in struct

typedef struct {

 int rio_fd; /* descriptor for this internal buf */

 int rio_cnt; /* unread bytes in internal buf */

 char *rio_bufptr; /* next unread byte in internal buf */

 char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RIO Example

 Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)

{

 int n;

 rio_t rio;

 char buf[MAXLINE];

 Rio_readinitb(&rio, STDIN_FILENO);

 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

 Rio_writen(STDOUT_FILENO, buf, n);

 exit(0);

} cpfile.c

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 RIO (robust I/O) package

 Metadata, sharing, and redirection

 Standard I/O

 Closing remarks

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel
▪ accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

 dev_t st_dev; /* Device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* Protection and file type */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device type (if inode device) */

 off_t st_size; /* Total size, in bytes */

 unsigned long st_blksize; /* Blocksize for filesystem I/O */

 unsigned long st_blocks; /* Number of blocks allocated */

 time_t st_atime; /* Time of last access */

 time_t st_mtime; /* Time of last modification */

 time_t st_ctime; /* Time of last change */

};

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv)

{

 struct stat stat;

 char *type, *readok;

 Stat(argv[1], &stat);

 if (S_ISREG(stat.st_mode)) /* Determine file type */

 type = "regular";

 else if (S_ISDIR(stat.st_mode))

 type = "directory";

else

 type = "other";

 if ((stat.st_mode & S_IRUSR)) /* Check read access */

 readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through

two distinct open file table entries
▪ E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (disk)

File B (disk)

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
 A child process inherits its parent’s open files

▪ Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files

 After fork:

▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

 Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function

▪ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)

▪ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 RIO (robust I/O) package

 Metadata, sharing, and redirection

 Standard I/O

 Closing remarks

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

 The C standard library (libc.so) contains a collection of
higher-level standard I/O functions

▪ Documented in Appendix B of K&R

 Examples of standard I/O functions:
▪ Opening and closing files (fopen and fclose)

▪ Reading and writing bytes (fread and fwrite)

▪ Reading and writing text lines (fgets and fputs)

▪ Formatted reading and writing (fscanf and fprintf)

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams

 Standard I/O models open files as streams
▪ Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)
▪ stdin (standard input)

▪ stdout (standard output)

▪ stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

 fprintf(stdout, "Hello, world\n");

}

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation

 Applications often read/write one character at a time
▪ getc, putc, ungetc

▪ gets, fgets

▪ Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
▪ read and write require Unix kernel calls

▪ > 10,000 clock cycles

 Solution: Buffered read
▪ Use Unix read to grab block of bytes

▪ User input functions take one byte at a time from buffer

▪ Refill buffer when empty

unreadalready readBuffer

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

 You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

 printf("h");

 printf("e");

 printf("l");

 printf("l");

 printf("o");

 printf("\n");

 fflush(stdout);

 exit(0);

}

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 RIO (robust I/O) package

 Metadata, sharing, and redirection

 Standard I/O

 Closing remarks

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries

▪ dirent structure contains information about a directory entry

▪ DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>

#include <dirent.h>

{

 DIR *directory;

 struct dirent *de;

 ...

 if (!(directory = opendir(dir_name)))

 error("Failed to open directory");

 ...

 while (0 != (de = readdir(directory))) {

 printf("Found file: %s\n", de->d_name);

 }

 ...

 closedir(directory);

}

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

User-level vs. Kernel-level Buffering

 Disk accesses are extremely slow

▪ OS reads multiple sectors in one access

▪ Typical: 512-byte sector (physical block)

▪ Typical: 4 KB filesystem block

▪ OS reads 4 KB min. on each access to a block
device (disk, SSD)

▪ Kernel-level buffering: page cache stores file
contents in memory

 In the application or user space
▪ One buffer maintained by Standard I/O or RIO

▪ One buffer provided by the programmer

 Copy operations
▪ One copy when using Unix read syscall

▪ Two copies with RIO or Standard I/O

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Australian National University

Second Style of I/O: mmio

 Using mmap() system call

▪ Relies on the OS page faulting mechanism for disk to memory transfers

▪ Avoids syscall (trap) overhead on each file read/write access

▪ No free lunch: must incur the overhead of a page fault

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

 Pros
▪ Unix I/O is the most general and lowest overhead form of I/O

▪ All other I/O packages are implemented using Unix I/O functions

▪ Unix I/O provides functions for accessing file metadata

▪ Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

 Cons

▪ Dealing with short counts is tricky and error prone

▪ Efficient reading of text lines requires some form of buffering, also tricky
and error prone

▪ Both of these issues are addressed by the standard I/O and RIO packages

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

 Pros:
▪ Buffering increases efficiency by decreasing the number of read and
write system calls

▪ Short counts are handled automatically

 Cons:
▪ Provides no function for accessing file metadata

▪ Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers

▪ Standard I/O is not appropriate for input and output on network sockets

▪ There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions

 General rule: use the highest-level I/O functions you can

▪ Many C programmers are able to do all of their work using the standard
I/O functions

▪ But, be sure to understand the functions you use!

 When to use standard I/O

▪ When working with disk or terminal files

 When to use raw Unix I/O
▪ Inside signal handlers, because Unix I/O is async-signal-safe

▪ In rare cases when you need absolute highest performance

 When to use RIO
▪ When you are reading and writing network sockets

▪ Avoid using standard I/O on sockets

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Functions you should never use on binary files
▪ Text-oriented I/O such as fgets, scanf, rio_readlineb

▪ Interpret EOL characters.

▪ Use functions like rio_readn or rio_readnb instead

▪ String functions

▪ strlen, strcpy, strcat

▪ Interprets byte value 0 (end of string) as special

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information
 The Unix bible:

▪ W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 2nd Edition, Addison Wesley, 2005

▪ Updated from Stevens’s 1993 classic text

 The Linux bible:
▪ Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

▪ Encyclopedic and authoritative

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview of the Internet

Acknowledgement of material: With changes suited to ANU needs, the slides are
obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Internet Components

 Internet backbone:

▪ collection of routers (nationwide or worldwide) connected by high-speed
point-to-point networks

 Internet Exchange Points (IXP):
▪ router that connects multiple backbones (often referred to as peers)

▪ Also called Network Access Points (NAP)

 Regional networks:
▪ smaller backbones that cover smaller geographical areas

(e.g., cities or states)

 Point of presence (POP):
▪ machine that is connected to the Internet

 Internet Service Providers (ISPs):

▪ provide direct access to POPs

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internet Connection Hierarchy

IXP IXP

Backbone BackboneBackboneBackbone

IXP

POP POP POP

Regional net

POPPOP POP

POPPOP

Small Business

Big BusinessISP

POP POP POP POP

Pgh employee

Cable
modem

DC employee

POP

T3

T1

ISP (for individuals)

POP

DSL
T1

Colocation
sites

Private
“peering”

agreements
between

two backbone
companies

often bypass
IXP

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IP Address Structure

 IP (V4) Address space divided into classes:

 Network ID Written in form w.x.y.z/n
▪ n = number of bits in host address

▪ E.g., CMU written as 128.2.0.0/16

▪ Class B address

 Unrouted (private) IP addresses:
 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31

0 Net ID Host ID

Host ID

Host IDNet ID

Net ID

Multicast address

Reserved for experiments

1 0

1 01

1 1 01

1 1 11

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet

 Original Idea
▪ Every node on Internet would have unique IP address

▪ Everyone would be able to talk directly to everyone

▪ No secrecy or authentication

▪ Messages visible to routers and hosts on same LAN

▪ Possible to forge source field in packet header

 Shortcomings
▪ There aren't enough IP addresses available

▪ Don't want everyone to have access or knowledge of all other hosts

▪ Security issues mandate secrecy & authentication

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Naming

 Dynamic address assignment

▪ Most hosts don't need to have known address

▪ Only those functioning as servers

▪ DHCP (Dynamic Host Configuration Protocol)

▪ Local ISP assigns address for temporary use

 Example:
▪ Laptop at ANU (wired connection)

▪ IP address 128.2.213.29 (xyz.cs.anu.edu)

▪ Assigned statically

▪ Laptop at home

▪ IP address 192.168.1.5

▪ Only valid within home network

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Firewalls

 Firewalls
▪ Hides organizations nodes from rest of Internet

▪ Use local IP addresses within organization

▪ For external service, provides proxy service

1. Client request: src=10.2.2.2, dest=216.99.99.99

2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99

3. Server responds: src=216.99.99.99, dest=176.3.3.3

4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Corporation X

Firewall

Internet

10.2.2.2
1

4 2

3

176.3.3.3

216.99.99.99

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part I

Acknowledgement of material: With changes suited to ANU needs, the slides are
obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Client-Server Transaction

 Most network applications are based on the client-server
model:
▪ A server process and one or more client processes

▪ Server manages some resource

▪ Server provides service by manipulating resource for clients

▪ Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization of a Network Host

main
memory

I/O
bridge

MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory

 Hierarchy Regs

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices

Remote secondary storage

(e.g., Web servers)

Local disks hold files

retrieved from disks
on remote servers

L2 cache

(SRAM)

L1 cache holds cache lines

retrieved from the L2 cache.

CPU registers hold words

retrieved from the L1 cache.

L2 cache holds cache lines

 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices
L3 cache

(SRAM)
L3 cache holds cache lines

 retrieved from main memory.

L6:

Main memory holds

disk blocks retrieved
from local disks.

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Networks

 A network is a hierarchical system of boxes and wires
organized by geographical proximity
▪ SAN (System Area Network) spans cluster or machine room

▪ Switched Ethernet, Quadrics QSW, …

▪ LAN (Local Area Network) spans a building or campus

▪ Ethernet is most prominent example

▪ WAN (Wide Area Network) spans country or world

▪ Typically high-speed point-to-point phone lines

 An internetwork (internet) is an interconnected set of
networks
▪ The Global IP Internet (uppercase “I”) is the most famous example

of an internet (lowercase “i”)

 Let’s see how an internet is built from the ground up

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a switch

 Spans room or floor in a building

 Operation
▪ Each Ethernet adapter has a unique 48-bit address (MAC address)

▪ E.g., 00:16:ea:e3:54:e6

▪ Hosts send bits to any other host in chunks called frames
▪ Bridges (switches, routers) became cheap enough to replace hubs

host host host

Switch
100 Mb/s100 Mb/s

port

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

 Spans building or campus

 Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub
100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual View of LANs

 For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host host host...

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: internets

 Multiple incompatible LANs can be physically connected by
specialized computers called routers

 The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible

(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router

LAN 1 LAN 2

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Structure of an internet

 Ad hoc interconnection of networks

▪ No particular topology

▪ Vastly different router & link capacities

 Send packets from source to destination by hopping through
networks
▪ Router forms bridge from one network to another

▪ Different packets may take different routes

router

router

router
router

router

router

host
host

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Notion of an internet Protocol

 How is it possible to send bits across incompatible LANs
and WANs?

 Solution: protocol software running on each host and
router
▪ Protocol is a set of rules that governs how hosts and routers should

cooperate when they transfer data from network to network.

▪ Smooths out the differences between the different networks

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Does an internet Protocol Do?

 Provides a naming scheme

▪ An internet protocol defines a uniform format for host addresses

▪ Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

 Provides a delivery mechanism
▪ An internet protocol defines a standard transfer unit (packet)

▪ Packet consists of header and payload

▪ Header: contains info such as packet size, source and destination
addresses

▪ Payload: contains data bits sent from source host

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LAN2

Transferring internet Data Via Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Issues

 We are glossing over a number of important questions:
▪ What if different networks have different maximum frame sizes?

(segmentation)

▪ How do routers know where to forward frames?

▪ How are routers informed when the network topology changes?

▪ What if packets get lost?

 These (and other) questions are addressed by the area of
systems known as computer networking

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global IP Internet (upper case)

 Most famous example of an internet

 Based on the TCP/IP protocol family
▪ IP (Internet Protocol) :

▪ Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

▪ UDP (Unreliable Datagram Protocol)

▪ Uses IP to provide unreliable datagram delivery from
process-to-process

▪ TCP (Transmission Control Protocol)

▪ Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the
sockets interface

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware and Software Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
▪ 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names

▪ 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: IPv4 and IPv6
 The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
▪ Intended as the successor to IPv4

 As of 2024, the majority of Internet traffic is still carried
by IPv4
▪ About 45% of users access Google services using IPv6.

▪ 31% in Australia.

 We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IPv6 Adoption

Source: Google (14 Sep. 24)

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct

▪ IP addresses are always stored in memory in network byte order
(big-endian byte order)

▪ True in general for any integer transferred in a packet header from one
machine to another.

▪ E.g., the port number used to identify an Internet connection.

/* Internet address structure */

struct in_addr {

 uint32_t s_addr; /* network byte order (big-endian) */

};

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dotted Decimal Notation

 By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period

▪ IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Domain Naming System (DNS)

 The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database called
DNS

 Conceptually, programmers can view the DNS database as a
collection of billions of host entries.
▪ Each host entry defines the mapping between a set of domain names and IP

addresses.

▪ In a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings

 Can explore properties of DNS mappings using nslookup

▪ Output edited for brevity

 Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost

Address: 127.0.0.1

linux> hostname

whaleshark.ics.cs.cmu.edu

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)

 Simple case: one-to-one mapping between domain name and IP
address:

 Multiple domain names mapped to the same IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu

Address: 128.2.210.175

linux> nslookup cs.mit.edu

Address: 18.62.1.6

linux> nslookup eecs.mit.edu

Address: 18.62.1.6

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)

 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.x.com

Address: 104.244.42.193

Address: 104.244.42.1

Address: 104.244.42.129

Address: 104.244.42.65

linux> nslookup www.x.com

Address: 104.244.42.1

Address: 104.244.42.65

Address: 104.244.42.129

Address: 104.244.42.193

linux> nslookup ics.cs.cmu.edu

*** Can't find ics.cs.cmu.edu: No answer

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(3) Internet Connections
 Clients and servers communicate by sending streams of bytes

over connections. Each connection is:
▪ Point-to-point: connects a pair of processes.

▪ Full-duplex: data can flow in both directions at the same time,

▪ Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

 A socket is an endpoint of a connection
▪ Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
▪ Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.

▪ Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Well-known Ports and Service Names

 Popular services have permanently assigned well-known
ports and corresponding well-known service names:

▪ echo server: 7/echo

▪ ssh servers: 22/ssh

▪ email server: 25/smtp

▪ Web servers: 80/http

 Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Connection

 A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)
▪ (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface

 Set of system-level functions used in conjunction with
Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
▪ Unix variants, Windows, OS X, IOS, Android, ARM

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets

 What is a socket?
▪ To the kernel, a socket is an endpoint of communication

▪ To an application, a socket is a file descriptor that lets the
application read/write from/to the network

▪ Remember: All Unix I/O devices, including networks, are
modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures

 Generic socket address:
▪ For address arguments to connect, bind, and accept

▪ Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

▪ For casting convenience, we adopt the Stevens convention:

 typedef struct sockaddr SA;

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures

 Internet-specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
▪ Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:

▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code

▪ Works with both IPv4 and IPv6

 Disadvantages
▪ Somewhat complex

▪ Fortunately, a small number of usage patterns suffice in most cases.

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
▪ freeadderinfo frees the entire linked list.

▪ gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */

 const char *service, /* Port or service name

*/

 const struct addrinfo *hints,/* Input parameters */

 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {

 int ai_flags; /* Hints argument flags */

 int ai_family; /* First arg to socket function */

 int ai_socktype; /* Second arg to socket function */

 int ai_protocol; /* Third arg to socket function */

 char *ai_canonname; /* Canonical host name */

 size_t ai_addrlen; /* Size of ai_addr struct */

 struct sockaddr *ai_addr; /* Ptr to socket address structure */

 struct addrinfo *ai_next; /* Ptr to next item in linked list */

};

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
▪ Replaces obsolete gethostbyaddr and getservbyport funcs.

▪ Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */

 char *host, size_t hostlen, /* Out: host */

 char *serv, size_t servlen, /* Out: service */

 int flags); /* optional flags */

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)

{

 struct addrinfo *p, *listp, hints;

 char buf[MAXLINE];

 int rc, flags;

 /* Get a list of addrinfo records */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_family = AF_INET; /* IPv4 only */

 hints.ai_socktype = SOCK_STREAM; /* Connections only */

 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));

 exit(1);

 }

hostinfo.c

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example (cont)

/* Walk the list and display each IP address */

 flags = NI_NUMERICHOST; /* Display address instead of name */

for (p = listp; p; p = p->ai_next) {

Getnameinfo(p->ai_addr, p->ai_addrlen,

buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);

}

 /* Clean up */

 Freeaddrinfo(listp);

 exit(0);

} hostinfo.c

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next time

 Using getaddrinfo for host and service conversion

 Writing clients and servers

 Writing Web servers!

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

➢ Assignment 1 – Marking now, due in about 2 weeks…

➢ Quiz 2 - Due today!

➢ Cover weeks 3-6 of lectures

➢ 30 questions in 30 mins

➢ Checkpoint 2 - Released Friday 27 September
➢ Due Thursday 10 October

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part II

Acknowledgement of material: With changes suited to ANU needs, the slides are
obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Socket Address Structures

 Generic socket address:
▪ For address arguments to connect, bind, and accept

▪ Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

▪ For casting convenience, we adopt the Stevens convention:

 typedef struct sockaddr SA;

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Socket Address Structures

 Internet-specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen

 By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding

connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
▪ If successful, then clientfd is now ready for reading and

writing.

▪ Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

▪ x is client address

▪ y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors

 Listening descriptor
▪ End point for client connection requests

▪ Created once and exists for lifetime of the server

 Connected descriptor
▪ End point of the connection between client and server

▪ A new descriptor is created each time the server accepts a
connection request from a client

▪ Exists only as long as it takes to service client

 Why the distinction?
▪ Allows for concurrent servers that can communicate over many

client connections simultaneously

▪ E.g., Each time we receive a new request, we fork a child to
handle the request

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {

 int clientfd;

 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Open a connection */

 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */

 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */

 Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd (cont)

/* Walk the list for one that we can successfully connect to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

 /* Connect to the server */

 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

 break; /* Success */

 Close(clientfd); /* Connect failed, try another */

 }

 /* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* All connects failed */

return -1;

 else /* The last connect succeeded */

 return clientfd;

} csapp.c

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd

int open_listenfd(char *port)

{

 struct addrinfo hints, *listp, *p;

 int listenfd, optval=1;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */

 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */

 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */

 Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

 break; /* Success */

 Close(listenfd); /* Bind failed, try the next */

 } csapp.c

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* No address worked */

return -1;

 /* Make it a listening socket ready to accept conn. requests */

 if (listen(listenfd, LISTENQ) < 0) {

 Close(listenfd);

return -1;

}

 return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)

{

 int clientfd;

 char *host, *port, buf[MAXLINE];

rio_t rio;

host = argv[1];

port = argv[2];

clientfd = Open_clientfd(host, port);

Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {

Rio_writen(clientfd, buf, strlen(buf));

Rio_readlineb(&rio, buf, MAXLINE);

Fputs(buf, stdout);

}

 Close(clientfd);

 exit(0);

} echoclient.c

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Echo Server: Main Routine
#include "csapp.h”

void echo(int connfd);

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr; /* Enough room for any addr */

 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage); /* Important! */

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 Getnameinfo((SA *) &clientaddr, clientlen,

 client_hostname, MAXLINE, client_port, MAXLINE, 0);

 printf("Connected to (%s, %s)\n", client_hostname, client_port);

 echo(connfd);

 Close(connfd);

 }

 exit(0);

} echoserveri.c

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server: echo function

void echo(int connfd)

{

size_t n;

char buf[MAXLINE];

rio_t rio;

Rio_readinitb(&rio, connfd);

 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

 printf("server received %d bytes\n", (int)n);

 Rio_writen(connfd, buf, n);

 }

}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
▪ EOF condition caused by client calling close(clientfd)

echo.c

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections

▪ Our simple echo server

▪ Web servers

▪ Mail servers

 Usage:
▪ linux> telnet <host> <portnumber>

▪ Creates a connection with a server running on <host> and
listening on port <portnumber>

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)

server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

makoshark>

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

▪ Client and server establish
TCP/QUIC connection

▪ Client requests content

▪ Server responds with requested
content

▪ Client and server close connection
(eventually)

 Current version is HTTP/3

▪ RFC 9114 in 2022. HTTP/3

▪ HTTP semantics are consistent
across versions

Web
client

(browser)

https://www.rfc-editor.org/rfc/rfc9114

Datagrams

Streams

Web content

https://en.wikipedia.org/wiki/HTTP/3

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Content

 Web servers return content to clients
▪ content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
▪ text/html HTML document

▪ text/plain Unformatted text

▪ image/gif Binary image encoded in GIF format

▪ image/png Binar image encoded in PNG format

▪ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static and Dynamic Content

 The content returned in HTTP responses can be either
static or dynamic
▪ Static content: content stored in files and retrieved in response to

an HTTP request

▪ Examples: HTML files, images, audio clips

▪ Request identifies which content file

▪ Dynamic content: content produced on-the-fly in response to an
HTTP request

▪ Example: content produced by a program executed by the
server on behalf of the client

▪ Request identifies file containing executable code

 Bottom line: Web content is associated with a file that is
managed by the server

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

URLs and how clients and servers use them

 Unique name for a file: URL (Universal Resource Locator)

 Example URL: https://www.anu.edu:443/index.html

 Clients use prefix (https://www.anu.edu:443) to infer:

▪ What kind (protocol) of server to contact (HTTPS)

▪ Where the server is (www.anu.edu)

▪ What port it is listening on (443)

 Servers use suffix (/index.html) to:

▪ Determine if request is for static or dynamic content.

▪ No hard and fast rules for this

▪ One convention: executables reside in cgi-bin directory

▪ Find file on file system

▪ Initial “/” in suffix denotes home directory for requested content.

▪ Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Requests

 HTTP request is a request line, followed by zero or more request
headers

 Request line: <method> <uri> <version>

▪ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

▪ <uri> is typically URL for proxies, URL suffix for servers

▪ A URL is a type of URI (Uniform Resource Identifier)

▪ See http://www.ietf.org/rfc/rfc2396.txt

▪ <version> is HTTP version of request (e.g HTTP/3.0 or HTTP/1.1)

 Request headers: <header name>: <header data>

▪ Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:

 <version> <status code> <status msg>

▪ <version> is HTTP version of the response

▪ <status code> is numeric status

▪ <status msg> is corresponding English text

▪ 200 OK Request was handled without error

▪ 301 Moved Provide alternate URL

▪ 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
▪ Provide additional information about response

▪ Content-Type: MIME type of content in response body

▪ Content-Length: Length of content in response body

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: empty line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: empty line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content
▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

 int srcfd;

 char *srcp, filetype[MAXLINE], buf[MAXBUF];

 /* Send response headers to client */

get_filetype(filename, filetype);

 sprintf(buf, "HTTP/1.0 200 OK\r\n");

 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

 sprintf(buf, "%sConnection: close\r\n", buf);

 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

 Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

 Close(srcfd);

 Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny

server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A CGI Program

Output page

host port CGI program

arguments

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING

▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

 if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* Child */

 /* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

/* Make the response body */

 sprintf(content, "Welcome to add.com: ");

 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

 content, n1, n2, n1 + n2);

 sprintf(content, "%sThanks for visiting!\r\n", content);

 /* Generate the HTTP response */

 printf("Content-length: %d\r\n", (int)strlen(content));

 printf("Content-type: text/html\r\n\r\n");

 printf("%s", content);

 fflush(stdout);

 exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Transfer Mechanisms

 Standard
▪ Specify total length with content-length

▪ Requires that program buffer entire message

 Chunked
▪ Break into blocks

▪ Prefix each block with number of bytes (Hex coded)

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chunked Encoding Example
HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n

Server: Apache/1.3.41 (Unix)\n

Keep-Alive: timeout=15, max=100\n

Connection: Keep-Alive\n

Transfer-Encoding: chunked\n

Content-Type: text/html\n

\r\n

d75\r\n

<html>

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"

type="text/css">

</head>

<body id="calendar_body">

<div id='calendar'><table width='100%' border='0' cellpadding='0'

cellspacing='1' id='cal'>

 . . .

</body>

</html>

\r\n

0\r\n

\r\n

First Chunk: 0xd75 = 3445 bytes

Second Chunk: 0 bytes (indicates last chunk)

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more

expensive

global network

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For More Information

 W. Richard Stevens et. al. “Unix Network Programming:
The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
▪ THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2017
▪ THE Linux programming bible.

 Complete versions of all code in this lecture is available
from the 213 schedule page.
▪ http://www.cs.cmu.edu/~213/schedule.html

▪ csapp.{.c,h}, hostinfo.c, echoclient.c, echoserveri.c, tiny.c, adder.c

▪ You can use any of this code in your assignments.

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

➢ Assignment 1 – Marking now

➢ Checkpoint 2 - Released Friday 27 September
➢ Due Thursday 10 October

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon
University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 The human mind tends to be sequential
▪ “As humans, we have a very limited capacity for simultaneous thought -- we

can only hold a little bit of information in the mind at any single moment. You

don’t actually multitask, you task-switch. This wastes time, makes you error-

prone and decreases your ability to be creative.”
https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

 The notion of time is often misleading
▪ In concurrent programs, the order in which threads or processes execute can vary

each time the program runs.

 Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible
▪ Bugs in concurrent programs can be non-deterministic, meaning they don’t always

occur in the same way.

https://radius.mit.edu/programs/multitasking-why-your-brain-cant-do-it-and-what-you-should-do-about-it

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

▪ Example: who gets the last seat on the airplane?

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

▪ Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the
scope of our course..

▪ but, not all ☺

▪ We’ll cover some of these aspects in the next few lectures.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2

connect

accept connect

write read

call read

close

accept

write

read

close Wait for server
to finish with
Client 1

call read

write

ret read

writeret read

read

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Block?

 Second client attempts to
connect to iterative server

 Call to connect returns
▪ Even though connection not

yet accepted

▪ Server side TCP manager
queues request

▪ Feature known as “TCP
listen backlog”

 Call to rio_writen returns

▪ Server side TCP manager
buffers input data

 Call to rio_readlineb
blocks
▪ Server hasn’t written

anything for it to read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
▪ Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes

out to lunch

Client 1 blocks

waiting for user

to type in data

Client 2 blocks

waiting to read

from server

Server blocks

waiting for

data from

Client 1

Client 1 Server Client 2

connect

accept connect

write call read

call read
write

call read
writeret read

call read

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers

➢ Allow server to handle multiple clients concurrently

1. Process-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow has its own private address space

2. Event-based
▪ Programmer manually interleaves multiple logical flows

▪ All flows share the same address space

▪ Uses technique called I/O multiplexing.

3. Thread-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow shares the same address space

▪ Hybrid of process-based and event-based.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes out

to lunch

Client 1 blocks

waiting for
user to type in

data

call accept

ret accept

call fgets

writefork

call

read

child 2

write

call read

ret read

close
close

...

Child blocks

waiting for

data from

Client 1

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(argv[1]);

 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
 if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 }
}

Process-Based Concurrent Echo Server

echoserverp.c

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server
(cont)

void sigchld_handler(int sig)
{
 while (waitpid(-1, 0, WNOHANG) > 0)
 ;

return;
}

▪ Reap all zombie children

echoserverp.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

Server
Child

connfd(4)

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

▪ Each client handled by independent child process

▪ No shared state between them

▪ Both parent & child have copies of listenfd and connfd
▪ Parent must close connfd

▪ Child should close listenfd

Client 1

server

process

Client 2

server

process

Listening

server

process

Connection requests

Client 1 data

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

 Listening server process must reap zombie children

▪ to avoid fatal memory leak

 Parent process must close its copy of connfd

▪ Kernel keeps reference count for each socket/open file

▪ After fork, refcnt(connfd) = 2

▪ Connection will not be closed until refcnt(connfd) = 0

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

 + Handle multiple connections concurrently
 + Clean sharing model

▪ descriptors (no)

▪ file tables (yes)

▪ global variables (no)

 + Simple and straightforward

 – Additional overhead for process control
 – Nontrivial to share data between processes

▪ Requires IPC (interprocess communication) mechanisms

▪ FIFO’s (named pipes), System V shared memory and semaphores

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

 Server maintains set of active connections
▪ Array of connfd’s

 Repeat:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select or epoll functions

▪ arrival of pending input is an event

▪ If listenfd has input, then accept connection

▪ and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in Chapter 12.2

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Active Descriptors Pending Inputs

Read and service

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

 + One logical control flow and address space.

 + Can single-step with a debugger.
 + No process or thread control overhead.

▪ Design of choice for high-performance Web servers and search
engines. e.g., Node.js, nginx, Tornado

 – Significantly more complex to code than process- or thread-
based designs.

 – Hard to provide fine-grained concurrency
▪ E.g., how to deal with partial HTTP request headers

 – Cannot take advantage of multi-core
▪ Single thread of control

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)

▪ …but using threads instead of processes

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Shared libraries

Run-time heap

0

Read/write data

Program context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:

 VM structures

 Descriptor table

 brk pointer

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

 Data registers

 Condition codes

 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 2 context:

 Data registers

 Condition codes

 SP2
 PC2

stack 2

Thread 2 (peer thread)

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

 Threads associated with process form a pool of peers

▪ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

 Two threads are concurrent if their flows overlap in
time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by
time slicing

 Multi-Core Processor

▪ Can have true
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except local stacks)

▪ Processes (typically) do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs

▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads] , RET [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");

return NULL;
}

The Pthreads "hello, world" Program

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);

exit(0);
}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

Return value

(void **p)

hello.c

Thread ID

Thread routine

hello.c

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for

peer thread to terminate

exit()

Terminates

main thread and

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread

terminates

Pthread_create() returns

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)
{
 int listenfd, *connfdp;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;
 pthread_t tid;

listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen=sizeof(struct sockaddr_storage);

connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd,

(SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, thread, connfdp);

}
} echoservert.c

▪ malloc of connected descriptor necessary to avoid
deadly race (later)

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */
void *thread(void *vargp)
{

int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
}

▪ Run thread in “detached” mode.

▪ Runs independently of other threads

▪ Reaped automatically (by kernel) when it terminates

▪ Free storage allocated to hold connfd.

▪ Close connfd (important!)

echoservert.c

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

▪ Each client handled by individual peer thread

▪ Threads share all process state except TID

▪ Each thread has a separate stack for local variables

Client 1

server

peer

thread

Client 2

server

peer

thread

Listening

server

main thread

Connection requests

Client 1 data Client 2 data

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

 Must run “detached” to avoid memory leak
▪ At any point in time, a thread is either joinable or detached

▪ Joinable thread can be reaped and killed by other threads

▪ must be reaped (with pthread_join) to free memory resources

▪ Detached thread cannot be reaped or killed by other threads

▪ resources are automatically reaped on termination

▪ Default state is joinable

▪ use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
▪ For example, passing pointer to main thread’s stack

▪ Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
▪ (next lecture)

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

 + Easy to share data structures between threads

▪ e.g., logging information, file cache

 + Threads are more efficient than processes

 – Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

▪ The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome very low

▪ But nonzero!

▪ Future lectures

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Event-based
▪ Tedious and low level

▪ Total control over scheduling

▪ Very low overhead

▪ Cannot create as fine grained a level of concurrency

▪ Does not make use of multi-core

 Thread-based
▪ Easy to share resources: Perhaps too easy

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug
▪ Event orderings not repeatable

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update

Ø Assignment 1 – Marking now

Ø Checkpoint 2 - Released
Ø Due Friday 13 October

Ø Final Exam – Closed Book

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs
¢ Question: Which variables in a threaded C program are

shared?
§ The answer is not as simple as “global variables are shared” and

“stack variables are private”

¢ Def: A variable x is shared if and only if multiple threads
reference some instance of x.

¢ Requires answers to the following questions:
§ What is the memory model for threads?
§ How are instances of variables mapped to memory?
§ How many threads might reference each of these instances?

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

¢ Threads associated with process form a pool of peers
§ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model
¢ Conceptual model:

§ Multiple threads run within the context of a single process
§ Each thread has its own separate thread context

§ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

§ All threads share the remaining process context
§ Code, data, heap, and shared library segments of the process virtual address space
§ Open files and installed handlers

¢ Operationally, this model is not strictly enforced:
§ Register values are truly separate and protected, but…
§ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operational model
is a source of confusion and errors

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing
char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory
¢ Global variables

§ Def: Variable declared outside of a function
§ Virtual memory contains exactly one instance of any global variable

¢ Local variables
§ Def: Variable declared inside function without static attribute
§ Each thread stack contains one instance of each local variable

¢ Local static variables
§ Def: Variable declared inside function with the static attribute
§ Virtual memory contains exactly one instance of any local static

variable.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
¢ Which variables are shared?

¢ Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
n ptr, cnt, and msgs are shared
n i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads
¢ Shared variables are handy...

¢ …but introduce the possibility of nasty synchronization
errors.

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)

cnt++;

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?badcnt.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
¢ Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
§ Ii denotes that thread i executes instruction I
§ %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Li : Load cnt
Ui : Update cnt
Si : Store cnt

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
¢ Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1
-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
Li : Load cnt
Ui : Update cnt
Si : Store cnt

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
¢ How about this ordering?

¢ We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Li : Load cnt
Ui : Update cnt
Si : Store cnt

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
¢ Question: How can we guarantee a safe trajectory?

¢ Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
§ i.e., need to guarantee mutually exclusive access for each critical

section.

¢ Classic solution:
§ Semaphores (Edsger Dijkstra)

¢ Other approaches (out of our scope)
§ Mutex and condition variables (Pthreads)
§ Monitors (Java)

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
¢ Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately.
§ Test and decrement operations occur atomically (indivisibly)

§ If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

§ After restarting, the P operation decrements s and returns control to the
caller.

¢ V(s):
§ Increment s by 1.

§ Increment operation occurs atomically
§ If there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

¢ Semaphore invariant: (s >= 0)

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:
#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)

cnt++;

return NULL;
}

How can we fix this using
semaphores?

badcnt.c

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores for Mutual Exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

§ Surround corresponding critical sections with P(mutex) and
 V(mutex) operations.

¢ Terminology:
§ Binary semaphore: semaphore whose value is always 0 or 1
§ Mutex: binary semaphore used for mutual exclusion

§ P operation: “locking” the mutex
§ V operation: “unlocking” or “releasing” the mutex
§ “Holding” a mutex: locked and not yet unlocked.

§ Counting semaphore: used as a counter for set of available
resources.

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization
¢ Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt
*/

Sem_init(&mutex, 0, 1); /* mutex = 1 */

¢ Surround critical section with P and V:

for (i = 0; i < niters; i++) {
P(&mutex);
cnt++;
V(&mutex);

}

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

Unsafe region

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
¢ Programmers need a clear model of how variables are

shared by threads.

¢ Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

¢ Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Advanced

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Semaphores
¢ Semaphore: non-negative global integer synchronization

variable. Manipulated by P and V operations.
¢ P(s)

§ If s is nonzero, then decrement s by 1 and return immediately.
§ If s is zero, then suspend thread until s becomes nonzero and the thread

is restarted by a V operation.
§ After restarting, the P operation decrements s and returns control to the

caller.

¢ V(s):
§ Increment s by 1.
§ If there are any threads blocked in a P operation waiting for s to become

non-zero, then restart exactly one of those threads, which then
completes its P operation by decrementing s.

¢ Semaphore invariant: (s >= 0)

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Using semaphores to protect shared
resources via mutual exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

§ Surround each access to the shared variable(s) with P(mutex) and
 V(mutex) operations

mutex = 1

 P(mutex)
 cnt++
 V(mutex)

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores to Coordinate
Access to Shared Resources

¢ Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
§ Use counting semaphores to keep track of resource state and to

notify other threads
§ Use mutex to protect access to resource

¢ Two classic examples:
§ The Producer-Consumer Problem
§ The Readers-Writers Problem

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer Problem

¢ Common synchronization pattern:
§ Producer waits for empty slot, inserts item in buffer, and notifies consumer
§ Consumer waits for item, removes it from buffer, and notifies producer

¢ Examples
§ Multimedia processing:

§ Producer creates MPEG video frames, consumer renders them
§ Event-driven graphical user interfaces

§ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

§ Consumer retrieves events from buffer and paints the display

Producer
thread

Shared
buffer

Consumer
thread

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer
¢ Requires a mutex and two counting semaphores:

§ mutex: enforces mutually exclusive access to the the buffer
§ slots: counts the available slots in the buffer
§ items: counts the available items in the buffer

¢ Implemented using a shared buffer package called sbuf.

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Declarations

#include "csapp.h”

typedef struct {
 int *buf; /* Buffer array */
 int n; /* Maximum number of slots */
 int front; /* buf[(front+1)%n] is first item */
 int rear; /* buf[rear%n] is last item */
 sem_t mutex; /* Protects accesses to buf */
 sem_t slots; /* Counts available slots */
 sem_t items; /* Counts available items */
} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);
void sbuf_deinit(sbuf_t *sp);
void sbuf_insert(sbuf_t *sp, int item);
int sbuf_remove(sbuf_t *sp); sbuf.h

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t *sp, int n)
{
 sp->buf = Calloc(n, sizeof(int));
 sp->n = n; /* Buffer holds max of n items */
 sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
 Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
 Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
 Sem_init(&sp->items, 0, 0); /* Initially, buf has 0 items */
}

/* Clean up buffer sp */
void sbuf_deinit(sbuf_t *sp)
{

Free(sp->buf);
} sbuf.c

Initializing and deinitializing a shared buffer:

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t *sp, int item)
{
 P(&sp->slots); /* Wait for available slot
*/
 P(&sp->mutex); /* Lock the buffer */
 sp->buf[(++sp->rear)%(sp->n)] = item; /* Insert the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->items); /* Announce available item
*/
} sbuf.c

Inserting an item into a shared buffer:

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t *sp)
{
 int item;
 P(&sp->items); /* Wait for available item */
 P(&sp->mutex); /* Lock the buffer */
 item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->slots); /* Announce available slot */
 return item;
}

sbuf.c

Removing an item from a shared buffer:

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers-Writers Problem
¢ Generalization of the mutual exclusion problem

¢ Problem statement:
§ Reader threads only read the object
§ Writer threads modify the object
§ Writers must have exclusive access to the object
§ Unlimited number of readers can access the object

¢ Occurs frequently in real systems, e.g.,
§ Online airline reservation system
§ Multithreaded caching Web proxy

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variants of Readers-Writers
¢ First readers-writers problem (favors readers)

§ No reader should be kept waiting unless a writer has already been
granted permission to use the object

§ A reader that arrives after a waiting writer gets priority over the writer

¢ Second readers-writers problem (favors writers)
§ Once a writer is ready to write, it performs its write as soon as possible
§ A reader that arrives after a writer must wait, even if the writer is also

waiting

¢ Starvation (where a thread waits indefinitely) is possible in
both cases

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially = 0 */
sem_t mutex, w; /* Initially = 1 */

void reader(void)
{
 while (1) {

P(&mutex);
readcnt++;

 if (readcnt == 1) /* First in */
P(&w);

V(&mutex);

/* Critical section */
/* Reading happens */

P(&mutex);
readcnt--;

 if (readcnt == 0) /* Last out */
V(&w);

V(&mutex);
}

}

void writer(void)
{
 while (1) {

P(&w);

 /* Critical section */
/* Writing happens */

V(&w);
}

}

Readers: Writers:

rw1.c

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: Prethreaded
Concurrent Server

Master
thread Buffer ...Accept

connections

Insert
descriptors Remove

descriptors

Worker
thread

Worker
thread

Client

Client

...

Service client

Service client

Pool of
worker
 threads

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server
sbuf_t sbuf; /* Shared buffer of connected descriptors */

int main(int argc, char **argv)
{
 int i, listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr;
 pthread_t tid;

 listenfd = Open_listenfd(argv[1]);

sbuf_init(&sbuf, SBUFSIZE);
 for (i = 0; i < NTHREADS; i++) /* Create worker threads */

Pthread_create(&tid, NULL, thread, NULL);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage);
 connfd = Accept(listenfd, (SA *) &clientaddr,
&clientlen);
 sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */
 }
} echoservert_pre.c

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void *thread(void *vargp)
{
 Pthread_detach(pthread_self());
 while (1) {
 int connfd = sbuf_remove(&sbuf); /* Remove connfd from buf
*/

echo_cnt(connfd); /* Service client */
Close(connfd);

}
} echoservert_pre.c

Worker thread routine:

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

static int byte_cnt; /* Byte counter */
static sem_t mutex; /* and the mutex that protects it */

static void init_echo_cnt(void)
{

Sem_init(&mutex, 0, 1);
byte_cnt = 0;

}
echo_cnt.c

echo_cnt initialization routine:

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prethreaded Concurrent Server

void echo_cnt(int connfd)
{

int n;
char buf[MAXLINE];
rio_t rio;
static pthread_once_t once = PTHREAD_ONCE_INIT;

 Pthread_once(&once, init_echo_cnt);
 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

P(&mutex);
 byte_cnt += n;
 printf("thread %d received %d (%d total) bytes on fd
%d\n",
 (int) pthread_self(), n, byte_cnt, connfd);

V(&mutex);
Rio_writen(connfd, buf, n);

}
}

Worker thread service routine:

echo_cnt.c

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crucial concept: Thread Safety
¢ Functions called from a thread must be thread-safe

¢ Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads

¢ Classes of thread-unsafe functions:
§ Class 1: Functions that do not protect shared variables
§ Class 2: Functions that keep state across multiple invocations
§ Class 3: Functions that return a pointer to a static variable
§ Class 4: Functions that call thread-unsafe functions J

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 1)

¢ Failing to protect shared variables
§ Fix: Use P and V semaphore operations
§ Example: goodcnt.c
§ Issue: Synchronization operations will slow down code

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 2)
¢ Relying on persistent state across multiple function invocations

§ Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767
*/
int rand(void)
{
 next = next*1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{
 next = seed;
}

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Random Number Generator

¢ Pass state as part of argument
§ and, thereby, eliminate global state

¢ Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{
 *nextp = *nextp * 1103515245 + 12345;
 return (unsigned int)(*nextp/65536) % 32768;
}

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 3)
¢ Returning a pointer to a

static variable
¢ Fix 1. Rewrite function so

caller passes address of
variable to store result
§ Requires changes in caller and

callee

¢ Fix 2. Lock-and-copy
§ Requires simple changes in

caller (and none in callee)
§ However, caller must free

memory.

/* lock-and-copy version */
char *ctime_ts(const time_t *timep,

char *privatep)
{

char *sharedp;

P(&mutex);
sharedp = ctime(timep);
strcpy(privatep, sharedp);
V(&mutex);
return privatep;

}

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Unsafe Functions (Class 4)
¢ Calling thread-unsafe functions

§ Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

§ Fix: Modify the function so it calls only thread-safe functions J

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reentrant Functions
¢ Def: A function is reentrant iff it accesses no shared

variables when called by multiple threads.
§ Important subset of thread-safe functions

§ Require no synchronization operations
§ Only way to make a Class 2 function thread-safe is to make it

reetnrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Safe Library Functions
¢ All functions in the Standard C Library (at the back of the

K&R C text) are thread-safe
§ Examples: malloc, free, printf, scanf

¢ Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

One worry: Races
¢ A race occurs when correctness of the program depends on one

thread reaching point x before another thread reaches point y
/* A threaded program with a race */
int main()
{
 pthread_t tid[N];

int i;

for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)
Pthread_join(tid[i], NULL);

exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 int myid = *((int *)vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
} race.c

N threads are sharing i

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race Illustration

Main thread

Peer thread 0

for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);

i = 0

myid = *((int *)vargp)i = 1 Race!

¢ Race between increment of i in main thread and deref of
vargp in peer thread:
§ If deref happens while i = 0, then OK
§ Otherwise, peer thread gets wrong id value

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Could this race really occur?

int i;
for (i = 0; i < 100; i++) {

Pthread_create(&tid, NULL,
thread,&i);

}

¢ Race Test
§ If no race, then each thread would get different value of i
§ Set of saved values would consist of one copy each of 0 through 99

Main thread
void *thread(void *vargp) {
 Pthread_detach(pthread_self());

int i = *((int *)vargp);
save_value(i);
return NULL;

}

Peer thread

race.c

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experimental Results

¢ The race can really happen!

No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race Elimination
/* Threaded program without the race */
int main()
{
 pthread_t tid[N];

int i, *ptr;

for (i = 0; i < N; i++) {
 ptr = Malloc(sizeof(int));
 *ptr = i;
 Pthread_create(&tid[i], NULL, thread, ptr);

}
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

int myid = *((int *)vargp);
 Free(vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
} norace.c

¢ Avoid unintended sharing of
state

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another worry: Deadlock
¢ Def: A process is deadlocked iff it is waiting for a condition

that will never be true

¢ Typical Scenario
§ Processes 1 and 2 needs two resources (A and B) to proceed
§ Process 1 acquires A, waits for B
§ Process 2 acquires B, waits for A
§ Both will wait forever!

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlocking With Semaphores
int main()
{
 pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock Visualized in Progress Graph
Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for
either s0 or s1 to become
nonzero

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: deadlock is
often nondeterministic (race)

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoiding Deadlock
int main()
{
 pthread_t tid[2];
 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
 Pthread_create(&tid[0], NULL, count, (void*) 0);
 Pthread_create(&tid[1], NULL, count, (void*) 1);
 Pthread_join(tid[0], NULL);
 Pthread_join(tid[1], NULL);
 printf("cnt=%d\n", cnt);
 exit(0);
}

void *count(void *vargp)
{
 int i;
 int id = (int) vargp;
 for (i = 0; i < NITERS; i++) {
 P(&mutex[0]); P(&mutex[1]);
 cnt++;
 V(&mutex[id]); V(&mutex[1-id]);
 }
 return NULL;
}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0)
Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
immaterial

Carnegie Mellon

1

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Memories

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Cache memory organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concept

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Memories
¢ Cache memories are small, fast SRAM-based memories

managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memory

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Direct-Mapped Cache Simulation

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block
1 0 M[0-1]

1 0 M[6-7]

1 1 M[8-9]

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

miss
hit

miss
miss
miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2-Way Set Associative Cache Simulation

M=16 byte (4-bit addresses), B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What about writes?
¢ Multiple copies of data exist:

§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Need a dirty bit (line different from memory or not)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

§ Average access time:
 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache Friendly Code
¢ Make the common case go fast

§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain
¢ Read throughput (read bandwidth)

§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
§ Compact way to characterize memory system performance.

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 * array “data” with stride of "stride", using
 * using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
 long length = elems, limit = length - sx4;

 /* Combine 4 elements at a time */
 for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
 for (; i < length; i++) {

acc0 = acc0 + data[i];
}

 return ((acc0 + acc1) + (acc2 + acc3));
}

Call test() with many
combinations of elems
and stride.

For each elems
and stride:

1. Call test()
once to warm up
the caches.

2. Call test()
again and measure
the read
throughput(MB/s)

mountain/mountain.c

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example
¢ Description:

§ Multiply N x N matrices
§ Matrix elements are

doubles (8 bytes)
§ O(N3) total operations
§ N reads per source

element
§ N values summed per

destination
§ but may be able to

hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

matmult/mm.c

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply
¢ Assume:

§ Block size = 32B (big enough for four doubles)
§ Matrix dimension (N) is very large

§ Approximate 1/N as 0.0
§ Cache is not even big enough to hold multiple rows

¢ Analysis Method:
§ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layout of C Arrays in Memory (review)
¢ C arrays allocated in row-major order

§ each row in contiguous memory locations
¢ Stepping through columns in one row:

§ for (i = 0; i < N; i++)
sum += a[0][i];

§ accesses successive elements
§ if block size (B) > sizeof(aij) bytes, exploit spatial locality

§ miss rate = sizeof(aij) / B
¢ Stepping through rows in one column:

§ for (i = 0; i < n; i++)
sum += a[i][0];

§ accesses distant elements
§ no spatial locality!

§ miss rate = 1 (i.e. 100%)

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

matmult/mm.c

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

matmult/mm.c

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;

 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }

}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }

}

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
yc

le
s

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

ijk / jik

jki / kji

kij / ikj

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ First iteration:
§ n/8 + n = 9n/8 misses

§ Afterwards in cache:
(schematic)

*=

n

*=
8 wide

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ Second iteration:
§ Again:

n/8 + n = 9n/8 misses

¢ Total misses:
§ 9n/8 * n2 = (9/8) * n3

n

*=
8 wide

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=
c

+

Block size B x B

matmult/bmm.c

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ First (block) iteration:
§ B2/8 misses for each block
§ 2n/B * B2/8 = nB/4

(omitting matrix c)

§ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ Second (block) iteration:
§ Same as first iteration
§ 2n/B * B2/8 = nB/4

¢ Total misses:
§ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary
¢ No blocking: (9/8) * n3

¢ Blocking: 1/(4B) * n3

¢ Suggest largest possible block size B, but limit 3B2 < C!

¢ Reason for dramatic difference:
§ Matrix multiplication has inherent temporal locality:

§ Input data: 3n2, computation 2n3

§ Every array elements used O(n) times!
§ But program has to be written properly

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Summary
¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory

accesses occur.
§ Try to maximize spatial locality by reading data objects with

sequentially with stride 1.
§ Try to maximize temporal locality by using a data object as often as

possible once it’s read from memory.

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Update
Ø Assignment 1 – Marks Released.

Ø Checkpoint 2 - Released
Ø Due Sunday 13 October

Ø Final Exam – Closed Book
Ø 9am Saturday 9th November

Ø No make-up lecture on
Friday is required as lectures
are running on schedule

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Linking
¢ Case study: Library interpositioning

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

}

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

}
main.c sum.c

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static Linking
¢ Programs are translated and linked using a compiler driver:

§ linux> gcc -Og -o prog main.c sum.c

§ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers?
¢ Reason 1: Modularity

§ Program can be written as a collection of smaller source files,
rather than one monolithic mass.

§ Can build libraries of common functions (more on this later)
§ e.g., Math library, standard C library

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers? (cont)
¢ Reason 2: Efficiency

§ Time: Separate compilation
§ Change one source file, compile, and then relink.
§ No need to recompile other source files.

§ Space: Libraries
§ Common functions can be aggregated into a single file...
§ Yet executable files and running memory images contain only

code for the functions they actually use.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do?

¢ Step 1: Symbol resolution

§ Programs define and reference symbols (global variables and functions):
§ void swap() {…} /* define symbol swap */
§ swap(); /* reference symbol swap */
§ int *xp = &x; /* define symbol xp, reference x */

§ Symbol definitions are stored in object file (by assembler) in symbol table.
§ Symbol table is an array of structs
§ Each entry includes name, size, and location of symbol.

§ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do? (cont)
¢ Step 2: Relocation

§ Merges separate code and data sections into single sections

§ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

§ Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail….

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Kinds of Object Files (Modules)
¢ Relocatable object file (.o file)

§ Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.
§ Each .o file is produced from exactly one source (.c) file

¢ Executable object file (a.out file)
§ Contains code and data in a form that can be copied directly into

memory and then executed.

¢ Shared object file (.so file)
§ Special type of relocatable object file that can be loaded into

memory and linked dynamically, at either load time or run-time.
§ Called Dynamic Link Libraries (DLLs) by Windows

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Executable and Linkable Format (ELF)
¢ Standard binary format for object files

¢ One unified format for
§ Relocatable object files (.o),
§ Executable object files (a.out)
§ Shared object files (.so)

¢ Generic name: ELF binaries

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format
¢ Elf header

§ Word size, byte ordering, file type (.o, exec,
.so), machine type, etc.

¢ Segment header table
§ Page size, virtual addresses memory segments

(sections), segment sizes.

¢ .text section
§ Code

¢ .rodata section
§ Read only data: jump tables, ...

¢ .data section
§ Initialized global variables

¢ .bss section
§ Uninitialized global variables
§ “Block Started by Symbol”
§ “Better Save Space”
§ Has section header but occupies no space

0
ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

.data section

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format (cont.)
¢ .symtab section

§ Symbol table
§ Procedure and static variable names
§ Section names and locations

¢ .rel.text section
§ Relocation info for .text section
§ Addresses of instructions that will need to be

modified in the executable
§ Instructions for modifying.

¢ .rel.data section
§ Relocation info for .data section
§ Addresses of pointer data that will need to be

modified in the merged executable

¢ .debug section
§ Info for symbolic debugging (gcc -g)

¢ Section header table
§ Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Symbols

¢ Global symbols
§ Symbols defined by module m that can be referenced by other modules.
§ E.g.: non-static C functions and non-static global variables.

¢ External symbols
§ Global symbols that are referenced by module m but defined by some

other module.

¢ Local symbols
§ Symbols that are defined and referenced exclusively by module m.
§ E.g.: C functions and global variables defined with the static

attribute.
§ Local linker symbols are not local program variables

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 1: Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c

int sum(int *a, int n)
{

int i, s = 0;

for (i = 0; i < n; i++) {
s += a[i];

}
return s;

} sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Local Symbols
¢ Local non-static C variables vs. local static C variables

§ local non-static C variables: stored on the stack
§ local static C variables: stored in either .bss, or .data

int f()
{
 static int x = 0;

return x;
}

int g()
{
 static int x = 1;

return x;
}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x.1
and x.2.

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Linker Resolves Duplicate Symbol
Definitions

¢ Program symbols are either strong or weak
§ Strong: procedures and initialized globals
§ Weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker’s Symbol Rules
¢ Rule 1: Multiple strong symbols are not allowed

§ Each item can be defined only once
§ Otherwise: Linker error

¢ Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
§ References to the weak symbol resolve to the strong symbol

¢ Rule 3: If there are multiple weak symbols, pick an arbitrary
one
§ Can override this with gcc –fno-common

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

References to x will refer to the same initialized
variable.

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global Variables
¢ Avoid if you can

¢ Otherwise
§ Use static if you can
§ Initialize if you define a global variable
§ Use extern if you reference an external global variable

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

swap()

0

More system code

Executable Object File

.text

.symtab
.debug

.data

System code

System data

int array[2]={1,2}

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:
0: 48 83 ec 08 sub $0x8,%rsp

 4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

 a: R_X86_64_32 array # Relocation entry

 e: e8 00 00 00 00 callq 13 <main+0x13> # sum()
 f: R_X86_64_PC32 sum-0x4 # Relocation entry
 13: 48 83 c4 08 add $0x8,%rsp
 17: c3 retq

main.o

int array[2] = {1, 2};

int main()
{

int val = sum(array, 2);
return val;

} main.c

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocated .text section
00000000004004d0 <main>:
4004d0: 48 83 ec 08 sub $0x8,%rsp

 4004d4: be 02 00 00 00 mov $0x2,%esi
4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array

 4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()
 4004e3: 48 83 c4 08 add $0x8,%rsp
 4004e7: c3 retq

00000000004004e8 <sum>:
4004e8: b8 00 00 00 00 mov $0x0,%eax
4004ed: ba 00 00 00 00 mov $0x0,%edx
4004f2: eb 09 jmp 4004fd <sum+0x15>
4004f4: 48 63 ca movslq %edx,%rcx

 4004f7: 03 04 8f add (%rdi,%rcx,4),%eax
 4004fa: 83 c2 01 add $0x1,%edx
4004fd: 39 f2 cmp %esi,%edx
4004ff: 7c f3 jl 4004f4 <sum+0xc>
400501: f3 c3 repz retq

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5

Source: objdump -dx prog

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Packaging Commonly Used Functions
¢ How to package functions commonly used by programmers?

§ Math, I/O, memory management, string manipulation, etc.

¢ Awkward, given the linker framework so far:
§ Option 1: Put all functions into a single source file

§ Programmers link big object file into their programs
§ Space and time inefficient

§ Option 2: Put each function in a separate source file
§ Programmers explicitly link appropriate binaries into their

programs
§ More efficient, but burdensome on the programmer

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Old-fashioned Solution: Static Libraries

¢ Static libraries (.a archive files)
§ Concatenate related relocatable object files into a single file with an

index (called an archive).

§ Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

§ If an archive member file resolves reference, link it into the executable.

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

C standard library

¢ Archiver allows incremental updates
¢ Recompile function that changes and replace .o file in archive.

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commonly Used Libraries
libc.a (the C standard library)

§ 4.6 MB archive of 1496 object files.
§ I/O, memory allocation, signal handling, string handling, data and time,

random numbers, integer math

libm.a (the C math library)
§ 2 MB archive of 444 object files.
§ floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar –t libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar –t libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{
 addvec(x, y, z, 2);

printf("z = [%d %d]\n”,
z[0], z[1]);

return 0;
} main2.c

void addvec(int *x, int *y,
int *z, int n) {

int i;

 for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

}

void multvec(int *x, int *y,
int *z, int n)

{
int i;

for (i = 0; i < n; i++)
z[i] = x[i] * y[i];

} multvec.c

addvec.c

libvector.a

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

prog2c

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

“c” for “compile-time”

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Static Libraries

¢ Linker’s algorithm for resolving external references:
§ Scan .o files and .a files in the command line order.
§ During the scan, keep a list of the current unresolved references.
§ As each new .o or .a file, obj, is encountered, try to resolve each

unresolved reference in the list against the symbols defined in obj.
§ If any entries in the unresolved list at end of scan, then error.

¢ Problem:
§ Command line order matters!
§ Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern Solution: Shared Libraries

¢ Static libraries have the following disadvantages:
§ Duplication in the stored executables (every function needs libc)
§ Duplication in the running executables
§ Minor bug fixes of system libraries require each application to explicitly

relink

¢ Modern solution: Shared Libraries
§ Object files that contain code and data that are loaded and linked into

an application dynamically, at either load-time or run-time
§ Also called: dynamic link libraries, DLLs, .so files

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Libraries (cont.)
¢ Dynamic linking can occur when executable is first loaded

and run (load-time linking).
§ Common case for Linux, handled automatically by the dynamic linker

(ld-linux.so).
§ Standard C library (libc.so) usually dynamically linked.

¢ Dynamic linking can also occur after program has begun
(run-time linking).
§ In Linux, this is done by calls to the dlopen() interface.

§ Distributing software.
§ High-performance web servers.
§ Runtime library interpositioning.

¢ Shared library routines can be shared by multiple processes.
§ Take advantage of virtual memory

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Load-time

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

prog2l

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader
(execve)

unix> gcc -shared -o libvector.so \
 addvec.c multvec.c

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Run-time
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main()
{

void *handle;
void (*addvec)(int *, int *, int *, int);
char *error;

/* Dynamically load the shared library that contains addvec() */
handle = dlopen("./libvector.so", RTLD_LAZY);

 if (!handle) {
fprintf(stderr, "%s\n", dlerror());
exit(1);

} dll.c

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Linking at Run-time
...

 /* Get a pointer to the addvec() function we just loaded */
 addvec = dlsym(handle, "addvec");
 if ((error = dlerror()) != NULL) {
 fprintf(stderr, "%s\n", error);
 exit(1);
 }

 /* Now we can call addvec() just like any other function */
 addvec(x, y, z, 2);

printf("z = [%d %d]\n", z[0], z[1]);

/* Unload the shared library */
 if (dlclose(handle) < 0) {

fprintf(stderr, "%s\n", dlerror());
exit(1);

}
return 0;

} dll.c

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking Summary
¢ Linking is a technique that allows programs to be

constructed from multiple object files.

¢ Linking can happen at different times in a program’s
lifetime:
§ Compile time (when a program is compiled)
§ Load time (when a program is loaded into memory)
§ Run time (while a program is executing)

¢ Understanding linking can help you avoid nasty errors and
make you a better programmer.

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Linking
¢ Case study: Library interpositioning

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Case Study: Library Interpositioning
¢ Library interpositioning : powerful linking technique that

allows programmers to intercept calls to arbitrary
functions

¢ Interpositioning can occur at:
§ Compile time: When the source code is compiled
§ Link time: When the relocatable object files are statically linked to

form an executable object file
§ Load/run time: When an executable object file is loaded into

memory, dynamically linked, and then executed.

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Interpositioning Applications
¢ Security

§ Confinement (sandboxing)
§ Behind the scenes encryption

¢ Debugging
§ In 2014, two Facebook engineers debugged a treacherous 1-year

old bug in their iPhone app using interpositioning
§ Code in the SPDY networking stack was writing to the wrong

location
§ Solved by intercepting calls to Posix write functions (write, writev,

pwrite)

Source: Facebook engineering blog post at
https://code.facebook.com/posts/313033472212144/debugging-
file-corruption-on-ios/

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Interpositioning Applications
¢ Monitoring and Profiling

§ Count number of calls to functions
§ Characterize call sites and arguments to functions
§ Malloc tracing

§ Detecting memory leaks
§ Generating address traces

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example program

¢ Goal: trace the addresses
and sizes of the allocated
and freed blocks, without
breaking the program, and
without modifying the
source code.

¢ Three solutions: interpose
on the lib malloc and
free functions at compile
time, link time, and
load/run time.

#include <stdio.h>
#include <malloc.h>

int main()
{
 int *p = malloc(32);
 free(p);

return(0);
} int.c

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compile-time Interpositioning
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>

/* malloc wrapper function */
void *mymalloc(size_t size)
{
 void *ptr = malloc(size);
 printf("malloc(%d)=%p\n",

(int)size, ptr);
return ptr;

}

/* free wrapper function */
void myfree(void *ptr)
{
 free(ptr);
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compile-time Interpositioning

#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)

void *mymalloc(size_t size);
void myfree(void *ptr);

malloc.h

linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc
malloc(32)=0x1edc010
free(0x1edc010)
linux>

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Link-time Interpositioning
#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);
void __real_free(void *ptr);

/* malloc wrapper function */
void *__wrap_malloc(size_t size)
{
 void *ptr = __real_malloc(size); /* Call libc malloc */
 printf("malloc(%d) = %p\n", (int)size, ptr);
 return ptr;
}

/* free wrapper function */
void __wrap_free(void *ptr)
{
 __real_free(ptr); /* Call libc free */
 printf("free(%p)\n", ptr);
}
#endif mymalloc.c

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Link-time Interpositioning

¢ The “-Wl” flag passes argument to linker, replacing each
comma with a space.

¢ The “--wrap,malloc ” arg instructs linker to resolve
references in a special way:
§ Refs to malloc should be resolved as __wrap_malloc
§ Refs to __real_malloc should be resolved as malloc

linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap,malloc -Wl,--wrap,free -o intl
int.o mymalloc.o
linux> make runl
./intl
malloc(32) = 0x1aa0010
free(0x1aa0010)
linux>

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

#ifdef RUNTIME
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

/* malloc wrapper function */
void *malloc(size_t size)
{
 void *(*mallocp)(size_t size);
 char *error;

 mallocp = dlsym(RTLD_NEXT, "malloc"); /* Get addr of libc malloc
*/
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 char *ptr = mallocp(size); /* Call libc malloc */
 printf("malloc(%d) = %p\n", (int)size, ptr);
 return ptr;
}

Load/Run-time
Interpositioning

mymalloc.c

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load/Run-time Interpositioning

/* free wrapper function */
void free(void *ptr)
{

void (*freep)(void *) = NULL;
char *error;

 if (!ptr)
return;

 freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
 if ((error = dlerror()) != NULL) {
 fputs(error, stderr);
 exit(1);
 }
 freep(ptr); /* Call libc free */
 printf("free(%p)\n", ptr);
}
#endif

mymalloc.c

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Load/Run-time Interpositioning

¢ The LD_PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., to malloc)by looking
in mymalloc.so first.

linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr)
malloc(32) = 0xe60010
free(0xe60010)
linux>

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpositioning Recap
¢ Compile Time

§ Apparent calls to malloc/free get macro-expanded into calls to
mymalloc/myfree

¢ Link Time
§ Use linker trick to have special name resolutions

§ malloc à __wrap_malloc
§ __real_malloc à malloc

¢ Load/Run Time
§ Implement custom version of malloc/free that use dynamic linking

to load library malloc/free under different names

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Level Parallelism

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Parallel Computing Hardware

§ Multicore
§ Multiple separate processors on single chip

§ Hyperthreading
§ Efficient execution of multiple threads on single core

¢ Thread-Level Parallelism
§ Splitting program into independent tasks

§ Example 1: Parallel summation
§ Divide-and conquer parallelism

§ Example 2: Parallel quicksort

¢ Consistency Models
§ What happens when multiple threads are reading & writing shared

state

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

¢ So far, we’ve used threads to deal with I/O delays
§ e.g., one thread per client to prevent one from delaying another

¢ Multi-core/Hyperthreaded CPUs offer another
opportunity
§ Spread work over threads executing in parallel
§ Happens automatically, if many independent tasks

§ e.g., running many applications or serving many clients

§ Can also write code to make one big task go faster
§ by organizing it as multiple parallel sub-tasks

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Multicore Processor

¢ Multiple processors operating with coherent view of
memory

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Out-of-Order Processor Structure

¢ Instruction control dynamically converts program into
stream of operations

¢ Operations mapped onto functional units to execute in
parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hyperthreading Implementation

¢ Replicate enough instruction control to process K
instruction streams

¢ K copies of all registers
¢ Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A PC B

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

¢ Get data about linux machine from /proc/cpuinfo
¢ Modern Machines

§ Intel 6960P Processor @ 2.7 GHz
§ Xeon 6, ca. 2024
§ 72 Cores
§ 144 threads, Each can do 2x hyperthreading
§ 432MB L3 cache

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 1: Parallel Summation
¢ Sum numbers 0, …, n-1

§ Should add up to ((n-1)*n)/2

¢ Partition values 1, …, n-1 into t ranges
§ ën/tû values in each range
§ Each of t threads processes 1 range
§ For simplicity, assume n is a multiple of t

¢ Let’s consider different ways that multiple threads might
work on their assigned ranges in parallel

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First attempt: psum-mutex

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */
long gsum = 0; /* Global sum */
long nelems_per_thread; /* Number of elements to sum */
sem_t mutex; /* Mutex to protect global sum */

int main(int argc, char **argv)
{
 long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];
 pthread_t tid[MAXTHREADS];

 /* Get input arguments */
 nthreads = atoi(argv[1]);
 log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);
 nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex (cont)

/* Create peer threads and wait for them to finish */
 for (i = 0; i < nthreads; i++) {

myid[i] = i;
 Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]);

}
 for (i = 0; i < nthreads; i++)
 Pthread_join(tid[i], NULL);

 /* Check final answer */
 if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum);

return 0;
} psum-mutex.c

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Thread Routine

¢ Simplest approach: Threads sum into a global variable
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */
void *sum_mutex(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i;

 for (i = start; i < end; i++) {
P(&mutex);

 gsum += i;
V(&mutex);

 }
 return NULL;
} psum-mutex.c

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex Performance

¢ For a test machine with 8 cores, n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

¢ Nasty surprise:
§ Single thread is very slow
§ Gets slower as we use more cores

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-array

¢ Peer thread i sums into global array element psum[i]
¢ Main waits for threads to finish, then sums elements of psum
¢ Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */
void *sum_array(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i;

 for (i = start; i < end; i++) {
 psum[myid] += i;
 }

return NULL;
} psum-array.c

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-array Performance

¢ Orders of magnitude faster than psum-mutex

5.36

4.24

2.54

1.64

0.94

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

se
co

nd
s

Threads (cores)

Parallel Summation

psum-array

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Attempt: psum-local

¢ Reduce memory references by having peer thread i sum
into a local variable (register)

/* Thread routine for psum-local.c */
void *sum_local(void *vargp)
{
 long myid = *((long *)vargp); /* Extract thread ID */
 long start = myid * nelems_per_thread; /* Start element index */
 long end = start + nelems_per_thread; /* End element index */
 long i, sum = 0;

 for (i = start; i < end; i++) {
 sum += i;
 }

psum[myid] = sum;
return NULL;

} psum-local.c

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-local Performance

¢ Significantly faster than psum-array

5.36

4.24

2.54

1.64

0.94

1.98

1.14

0.6
0.32 0.33

0

1

2

3

4

5

6

1(1) 2(2) 4(4) 8(8) 16(8)

El
ap

se
d

se
co

nd
s

Threads (cores)

Parallel Summation

psum-array

psum-local

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing Parallel Program Performance
¢ p processor cores, Tk is the running time using k cores

¢ Def. Speedup: Sp = T1 / Tp
§ Sp is relative speedup if T1 is running time of parallel version of the

code running on 1 core.
§ Sp is absolute speedup if T1 is running time of sequential version of

code running on 1 core.
§ Absolute speedup is a much truer measure of the benefits of

parallelism.

¢ Def. Efficiency: Ep = Sp /p = T1 /(pTp)
§ Reported as a percentage in the range (0, 100].
§ Measures the overhead due to parallelization

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance of psum-local
Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time
(Tp)

1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

¢ Efficiencies OK, not great
¢ Our example is easily parallelizable
¢ Real codes are often much harder to parallelize

§ e.g., parallel quicksort later in this lecture

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law
§ Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

¢ Captures the difficulty of using parallelism to speed things up.
¢ Overall problem

§ T Total sequential time required
§ p Fraction of total that can be sped up (0 £ p £ 1)
§ k Speedup factor

¢ Resulting Performance
§ Tk = pT/k + (1-p)T

§ Portion which can be sped up runs k times faster
§ Portion which cannot be sped up stays the same

§ Least possible running time:
§ k = ¥
§ T¥ = (1-p)T

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law Example
¢ Overall problem

§ T = 10 Total time required
§ p = 0.9 Fraction of total which can be sped up
§ k = 9 Speedup factor

¢ Resulting Performance
§ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
§ Least possible running time:

§ T¥ = 0.1 * 10.0 = 1.0

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A More Substantial Example: Sort
¢ Sort set of N random numbers
¢ Multiple possible algorithms

§ Use parallel version of quicksort

¢ Sequential quicksort of set of values X
§ Choose “pivot” p from X
§ Rearrange X into

§ L: Values £ p
§ R: Values ³ p

§ Recursively sort L to get L¢
§ Recursively sort R to get R¢
§ Return L¢ : p : R¢

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•
•
•

L¢

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L¢

•
•
•

R¢

pL¢ R¢

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Quicksort Code

¢ Sort nele elements starting at base
§ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {
 if (nele <= 1)
 return;
 if (nele == 2) {
 if (base[0] > base[1])
 swap(base, base+1);
 return;
 }

 /* Partition returns index of pivot */
 size_t m = partition(base, nele);
 if (m > 1)
 qsort_serial(base, m);
 if (nele-1 > m+1)
 qsort_serial(base+m+1, nele-m-1);
}

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort
¢ Parallel quicksort of set of values X

§ If N £ Nthresh, do sequential quicksort
§ Else

§ Choose “pivot” p from X
§ Rearrange X into

– L: Values £ p
– R: Values ³ p

§ Recursively spawn separate threads
– Sort L to get L¢
– Sort R to get R¢

§ Return L¢ : p : R¢

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p
•
•
•

L¢

•
•
•

R¢p

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread Structure: Sorting Tasks

¢ Task: Sort subrange of data
§ Specify as:

§ base: Starting address
§ nele: Number of elements in subrange

¢ Run as separate thread

X

� � �

Task Threads

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Small Sort Task Operation

¢ Sort subrange using serial quicksort

X

� � �

Task Threads

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Large Sort Task Operation

X

� � �

pL R

X

� � �

pL R

Partition Subrange

Spawn 2 tasks

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Function (Simplified)

¢ Sets up data structures
¢ Calls recursive sort routine
¢ Keeps joining threads until none left
¢ Frees data structures

void tqsort(data_t *base, size_t nele) {
 init_task(nele);
 global_base = base;
 global_end = global_base + nele - 1;
 task_queue_ptr tq = new_task_queue();
 tqsort_helper(base, nele, tq);
 join_tasks(tq);
 free_task_queue(tq);
}

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive sort routine (Simplified)

¢ Small partition: Sort serially
¢ Large partition: Spawn new sort task

/* Multi-threaded quicksort */
static void tqsort_helper(data_t *base, size_t nele,
 task_queue_ptr tq) {
 if (nele <= nele_max_sort_serial) {
 /* Use sequential sort */
 qsort_serial(base, nele);
 return;
 }
 sort_task_t *t = new_task(base, nele, tq);
 spawn_task(tq, sort_thread, (void *) t);
}

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sort task thread (Simplified)

¢ Get task parameters
¢ Perform partitioning step
¢ Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
 sort_task_t *t = (sort_task_t *) vargp;
 data_t *base = t->base;
 size_t nele = t->nele;
 task_queue_ptr tq = t->tq;
 free(vargp);
 size_t m = partition(base, nele);
 if (m > 1)
 tqsort_helper(base, m, tq);
 if (nele-1 > m+1)
 tqsort_helper(base+m+1, nele-m-1, tq);
 return NULL;
}

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

¢ Serial fraction: Fraction of input at which to do serial sort
¢ Sort 227 (134,217,728) random values
¢ Best speedup = 6.84X

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallel Quicksort Performance

¢ Good performance over wide range of fraction values
§ F too small: Not enough parallelism
§ F too large: Thread overhead + run out of thread memory

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law & Parallel Quicksort
¢ Sequential bottleneck

§ Top-level partition: No speedup
§ Second level: £ 2X speedup
§ kth level: £ 2k-1X speedup

¢ Implications
§ Good performance for small-scale parallelism
§ Would need to parallelize partitioning step to get large-scale

parallelism
§ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experience with Parallel Partitioning
¢ Could not obtain speedup
¢ Speculate: Too much data copying

§ Could not do everything within source array
§ Set up temporary space for reassembling partition

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lessons Learned
¢ Must have parallelization strategy

§ Partition into K independent parts
§ Divide-and-conquer

¢ Inner loops must be synchronization free
§ Synchronization operations very expensive

¢ Beware of Amdahl’s Law
§ Serial code can become bottleneck

¢ You can do it!
§ Achieving modest levels of parallelism is not difficult
§ Set up experimental framework and test multiple strategies

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Consistency

¢ What are the possible values printed?
§ Depends on memory consistency model
§ Abstract model of how hardware handles concurrent accesses

¢ Sequential consistency
§ Overall effect consistent with each individual thread
§ Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Consistency Example

¢ Impossible outputs
§ 100, 1 and 1, 100
§ Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200
1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Coherent Cache Scenario
¢ Write-back caches, without

coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 1E

b:100E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Modified Writeable copy

Main Memory
a:1 b:100

Thread1 Cache Thread2 Cache

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

a: 2M

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Snoopy Caches
¢ Tag each cache block with state

Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache
a: 2E

b:200E
print 200

b:200S b:200S
print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

¢ When cache sees request for
one of its E-tagged blocks
¢ Supply value from cache
¢ Set tag to S

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Consistency
¢ Sequentially Consistent:

§ Each thread executes in proper order, any interleaving

¢ To ensure, requires
§ Proper cache/memory behavior
§ Proper intra-thread ordering constraints

¢ Thread ordering constraints
§ Use synchronization to ensure the program is free of data races

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Convener: Prof John Taylor

Australian National University

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Program Optimization

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from
Carnegie Mellon University: https://www.cs.cmu.edu/~213/

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Back in the Good Old Days, when the term "software"
sounded funny and Real Computers were made out of drums
and vacuum tubes, Real Programmers wrote in machine code.
Not FORTRAN. Not RATFOR. Not, even, assembly language.
Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers. Directly.

 — “The Story of Mel, a Real Programmer”
 Ed Nather, 1983

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rear Admiral Grace Hopper
§ First person to find an

actual bug (a moth)
§ Invented first compiler in

1951 (precursor to COBOL)
§ “I decided data processors

ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

John Backus
§ Developed FORTRAN in

1957 for the IBM 704
§ Oldest machine-

independent programming
language still in use today

§ “Much of my work has
come from being lazy. I
didn't like writing
programs, and so, when I
was working on the IBM
701, I started work on a
programming system to
make it easier to write
programs”

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fran Allen
§ Pioneer of many optimizing

compilation techniques
§ Wrote a paper in 1966 that

introduced the concept of
the control flow graph,
which is still central to
compiler theory today

§ First woman to win the
ACM Turing Award

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals of compiler optimization
¢ Minimize number of instructions

§ Don’t do calculations more than once
§ Don’t do unnecessary calculations at all
§ Avoid slow instructions (multiplication, division)

¢ Avoid waiting for memory
§ Keep everything in registers whenever possible
§ Access memory in cache-friendly patterns
§ Load data from memory early, and only once

¢ Avoid branching
§ Don’t make unnecessary decisions at all
§ Make it easier for the CPU to predict branch destinations
§ “Unroll” loops to spread cost of branches over more instructions

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limits to compiler optimization
¢ Generally cannot improve algorithmic complexity

§ Only constant factors, but those can be worth 10x or more…

¢ Must not cause any change in program behavior
§ Programmer may not care about “edge case” behavior,

but compiler does not know that
§ Exception: language may declare some changes acceptable

¢ Often only analyze one function at a time
§ Whole-program analysis (“LTO”) expensive but gaining popularity
§ Exception: inlining merges many functions into one

¢ Tricky to anticipate run-time inputs
§ Profile-guided optimization can help with common case, but…
§ “Worst case” performance can be just as important as “normal”
§ Especially for code exposed to malicious input

(e.g. network servers)

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two kinds of optimizations

¢ Local optimizations
work inside a single
basic block
§ Constant folding,

strength reduction, dead
code elimination, (local)
CSE, …

¢ Global optimizations
process the entire
control flow graph of a
function
§ Loop transformations,

code motion, (global)
CSE, …

setup

Easy?

entry

easy complex

loop

Done?

exit

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next several slides done live…
¢ https://godbolt.org/z/Es5s8qsvj

¢ Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from –O3 to –Og,
etc. to see more or less aggressive optimization).

¢ If you missed class, all of the concepts we explored during
the live demo are explained in the next few slides, so
peek at them and then try playing with the compiler
explorer!

https://godbolt.org/z/Es5s8qsvj

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant folding
¢ Do arithmetic in the compiler

long mask = 0xFF << 8; →
long mask = 0xFF00;

¢ Any expression with constant inputs can be folded
¢ Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dead code elimination
¢ Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

¢ Don’t emit code whose result is overwritten

x = 23;
x = 42;

¢ These may look silly, but...
§ Can be produced by other optimizations
§ Assignments to x might be far apart

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common subexpression elimination
¢ Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
 →
elt = &v[i];
x = elt->x;
y = elt->y;
norm[i] = x*x + y*y;

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code motion
¢ Move calculations out of a loop
¢ Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
 →
long j;
int ni = n*i;
for (j = 0; j < n; j++)
 a[ni+j] = b[j];

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {
 int tmp;
 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

Always true Does nothing Can constant fold

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inlining
¢ Copy body of a function into its caller(s)

§ Can create opportunities for many other optimizations
§ Can make code much bigger and therefore slower

int func(int y) {
 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;
 if (0 == 0) tmp += 0; else tmp += 0 - 1;
 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
 return tmp;
}

int func(int y) {
 int tmp = 0;
 if (y != 0) tmp = y - 1;

 if (y != -1) tmp += y;
 return tmp;

}

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Why couldn’t compiler optimize this away?

movq $0, (%rsi)
 pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 movsd %xmm0, (%rsi)
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

§ Code updates b[i] on every iteration
§ Must consider possibility that these updates will affect program behavior

double A[9] =
 { 0, 1, 2,
 4, 8, 16},
 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
double A[9] =
 { 0, 1, 2,
 0, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 0, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 1, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 8, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 0, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 3, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 6, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 16},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 0},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 32},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 96},
 32, 64, 128};

double A[9] =
 { 0, 1, 2,
 3, 22, 224},
 32, 64, 128};

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

§ Use a local variable for intermediate results
§ Use restrict keyword

§ Tells compiler that this is the “only” pointer to that memory location

pxor %xmm0, %xmm0
.L4:
 addsd (%rdi), %xmm0
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L4
 movsd %xmm0, (%rsi)

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
 }
}

Avoiding Aliasing Penalties

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Move function calls out of loops
void lower_quadratic(char *s) {
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] += 'a' - 'A';
 n = strlen(s);
 }
}

void lower_linear(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
} Lots more examples of this kind of bug:

accidentallyquadratic.tumblr.com

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Can’t move function calls out of loops
void lower_quadratic(char *s) {
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

void lower_still_quadratic(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] += 'a' - 'A’;
 n = strlen(s);
 }
}

void lower_linear(char *s) {
 size_t i, n = strlen(s);
 for (i = 0; i < n; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] += 'a' - 'A';
}

after
each
change

every
iteration

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strength Reduction

¢ x = y * 4 à x = y << 2
¢ Replace expensive operations with cheaper ones

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

404663: mov $0x0,%eax
404668: cmp (%rdi),%rsi
40466b: jge 404685
40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branches Are A Challenge

Executing

Need to know
which way to
branch …

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Guess which way branch will go
§ Begin executing instructions at predicted position
§ But don’t actually modify register or memory data

404663: mov $0x0,%eax
404668: cmp (%rdi),%rsi
40466b: jge 404685
40466d: mov 0x8(%rdi),%rax

. . .

404685: repz retq

Branch Prediction

Predict Taken

Continue
Fetching
Here

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

Branch Prediction Through Loop
401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Read
invalid
location

Executed

Fetched

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
array length = 100

Branch Misprediction Invalidation

Invalidate

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Misprediction Recovery

¢ Performance Cost
§ Multiple clock cycles on modern processor
§ Can be a major performance limiter

401029: mulsd (%rdx),%xmm0,%xmm0
40102d: add $0x8,%rdx
401031: cmp %rax,%rdx
401034: jne 401029
401036: jmp 401040
. . .

401040: movsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Branch Prediction Numbers
¢ A simple heuristic:

§ Backwards branches are often loops, so predict taken
§ Forwards branches are often ifs, so predict not taken
§ >95% prediction accuracy just with this!

¢ Fancier algorithms track behavior of each branch
§ Subject of ongoing research
§ 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-

program.htm): 34.1 mispredictions per 1000 instructions
§ Current research focuses on the remaining handful of

“impossible to predict” branches (strongly data-dependent,
no correlation with history)
§ e.g. https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

¢ Deep Learning https://arxiv.org/abs/2112.14911

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Branch Prediction

¢ Reduce # of branches
§ Transform loops
§ Unroll loops
§ Use conditional moves

§ Not always a good idea

¢ Make branches
predictable
§ Sort data

https://stackoverflow.com/questions/11227809

§ Avoid indirect branches
§ function pointers
§ virtual methods

.Loop:
 movzbl 0(%rbp,%rbx), %edx
 leal -65(%rdx), %ecx
 cmpb $25, %cl
 ja .Lskip
 addl $32, %edx
 movb %dl, 0(%rbp,%rbx)
.Lskip:
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

.Loop:
 movzbl 0(%rbp,%rbx), %edx

movl %edx, %esi
 leal -65(%rdx), %ecx
 addl $32, %edx
 cmpb $25, %cl

cmova %esi, %edx
 movb %dl, 0(%rbp,%rbx)
 addl $1, %rbx
 cmpq %rax, %rbx
 jb .Loop

Memory write
now

unconditional!

https://stackoverflow.com/questions/11227809

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling
¢ Amortize cost of loop condition by duplicating body
¢ Creates opportunities for CSE, code motion, scheduling
¢ Prepares code for vectorization
¢ Can hurt performance by increasing code size

for (size_t i = 0; i < nelts; i++) {
 A[i] = B[i]*k + C[i];
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];

A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

}

When would this change be incorrect?

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scheduling
¢ Rearrange instructions to make it easier for the CPU

to keep all functional units busy
¢ For instance, move all the loads to the top of an

unrolled loop
§ Now maybe it’s more obvious why we need lots of registers

for (size_t i = 0; i < nelts - 4; i += 4) {
B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];

 A[i] = B0*k + C0;
 A[i+1] = B1*k + C1;
 A[i+2] = B2*k + C2;
 A[i+3] = B3*k + C3;
}

for (size_t i = 0; i < nelts - 4; i += 4) {
 A[i] = B[i]*k + C[i];
 A[i+1] = B[i+1]*k + C[i+1];
 A[i+2] = B[i+2]*k + C[i+2];
 A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Principles and goals of compiler optimization
¢ Examples of optimizations
¢ Obstacles to optimization
¢ Machine-dependent optimization
¢ Benchmark example

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{
 size_t len;
 data_t *data;
} vec;

/* retrieve vector element
 and store at val */
int get_vec_element
 (*vec v, size_t idx, data_t *val)
{
 if (idx >= v->len)
 return 0;
 *val = v->data[idx];
 return 1;
}

len
data

0 1 len-1

¢ Data Types
§ Use different declarations

for data_t
§ int
§ long
§ float
§ double

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Computation

¢ Data Types
§ Use different declarations

for data_t
§ int
§ long
§ float
§ double

¢ Operations
§ Use different definitions of

OP and IDENT
§ + / 0
§ * / 1

void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cycles Per Element (CPE)
¢ Convenient way to express performance of program that operates on

vectors or lists
¢ Length = n
¢ In our case: CPE = cycles per OP
¢ Cycles = CPE*n + Overhead

§ CPE is slope of line

0

500

1000

1500

2000

2500

0 50 100 150 200

Cy
cl
es

Elements

psum1
Slope = 9.0

psum2
Slope = 6.0

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Performance
void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Results in CPE (cycles per element)

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Optimizations

¢ Move vec_length out of loop
¢ Avoid bounds check on each cycle
¢ Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Basic Optimizations
void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolling

void unroll2a_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loop Unrolled Assembly
¢ Remember modern CPU designs

§ Multiple functional units

¢ So how many cycles should this loop take to execute?

.L3:
 imulq (%rdx), %rcx
 addq $16, %rdx
 imulq -8(%rdx), %rdi
 cmpq %r8, %rdx
 jne .L3

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 unoptimized 22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

Combine1 –O3 4.5 4.5 6 7.8

Combine4 1.27 3.01 3.01 5.01

Unroll 0.81 1.51 1.51 2.51
Multiple

instructions
every cycle!

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Going Further
¢ Compiler optimizations are an easy gain

§ 20 CPE down to 3-5 CPE

¢ With careful hand tuning and computer architecture
knowledge
§ 4-16 elements per cycle
§ Newest compilers are closing this gap

¢ Use gprof
Ø gcc –Og –pg prog.c –o prog // -pg enables profiling

Ø ./prog file.txt // generates gmon.out

Ø gprof prog. // analysis of gmon.out data

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Getting High Performance
¢ Good compiler and flags
¢ Don’t do anything sub-optimal

§ Watch out for hidden algorithmic inefficiencies
§ Write compiler-friendly code

§ Watch out for optimization blockers:
procedure calls & memory references

§ Look carefully at innermost loops (where most work is done)

¢ Tune code for machine
§ Exploit instruction-level parallelism
§ Avoid unpredictable branches
§ Make code cache friendly

Convener: Prof John Taylor

Australian National University

Course Update

ØCheckpoint 2 – Marking out now

ØAssignment 2 – Released
ØDue Wednesday 30 October
ØStart early!

ØFinal Exam – Closed Book
Ø9am Saturday 9th November

Australian National University

Today

ØAutomating the Build Process
Ømake
Øcmake

Ø Strings and concurrency

ØFinal exam review

Australian National University

Carnegie MellonAustralian National University

4

COMP2310/6310
Automating the build process

Automate the build Process: Make
Make is a build automation tool that uses Makefiles to define build rules.

Ø Configuration: Requires manually written Makefiles.

Ø Build Process:
Ø Compilation: Defines rules to compile source files into object files.
Ø Linking: Specifies how to link object files into executables or libraries.

Ø Pros:
Ø Simple and straightforward for small projects
Ø Widely used and well-documented
Ø Rebuilds only what is needed

Ø Cons:
Ø Manual Makefile maintenance can be error-prone.
Ø Less suitable for large, complex projects.

Australian National University

Automate the build Process: cmake

cmake is a cross-platform build system generator that produces build
files for various tools (e.g., Make, Ninja, Visual Studio)

Ø Uses CMakeLists.txt files to define project structure and build rules

Ø Build Process:
Ø Compilation: Automatically generates Makefiles or other build scripts.
Ø Linking: Simplifies linking with target_link_libraries and other commands

Ø Pros:
Ø Automates build configuration, reducing manual effort
Ø Supports complex projects and multiple platforms
Ø Easier integration with external libraries

Ø Cons:
Ø Learning curve for beginners
Ø Requires cmake installation

Australian National University

Specify the minimum version of CMake required
cmake_minimum_required(VERSION 3.10)

Define the project name and the programming language
project(MyProject C)

Add an executable target
add_executable(MyExecutable main.c)

Specify include directories to search for header file
include_directories(${PROJECT_SOURCE_DIR}/include)

Link libraries (if any)
target_link_libraries(MyExecutable m) # Example: linking
the math library

Set C standard
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED True)

CMakeLists.txt file for a simple C project

Australian National University

Carnegie MellonAustralian National University

8

COMP2310/6310
Strings and concurrency

Combining Linked Lists and Threads

Ø Multiple threads can operate on different parts of a linked list
concurrently

Ø You can use mutexes to protect the linked list during insertions,
deletions, and updates

Ø You can select which region of the list to lock
Ø Whole List Locking: Lock the entire list for any operation - simpler but less efficient
Ø Segment Locking: Divide the list into segments, each protected by a separate mutex -

more efficient if access is close to uniform
Ø Fine-Grained Locking: Lock individual nodes or small groups of nodes – the most

efficient but complex

Ø Proper synchronization can improve performance by allowing more
parallelism while avoiding race conditions

Australian National University

void* update_whole_list(void* arg) {
 int new_availability = *(int*)arg;
 pthread_mutex_lock(&list_mutex);
 Node* current = head;
 while (current != NULL) {
 current->availability = new_availability;
 current = current->next;
 }
 pthread_mutex_unlock(&list_mutex);
 return NULL;
}

Update the list with a single lock

Australian National University

void update_list_individual_elements(int num_threads, int
new_availability) {
 pthread_t threads[num_threads];
 Element elements[num_threads];
 Node* current = head;
 for (int i = 0; i < num_threads && current != NULL; i++) {
 elements[i].node = current;
 elements[i].new_availability = new_availability;
 pthread_create(&threads[i], NULL, update_element,
&elements[i]);
 current = current->next;
 }
 for (int i = 0; i < num_threads; i++) {
 pthread_join(threads[i], NULL);
 }
}

Each thread updates a single element

Australian National University

typedef struct {
 Node* node;
 int new_availability;
} Element;

void* update_element(void* arg) {
 Element* element = (Element*)arg;
 pthread_mutex_lock(&list_mutex);
 element->node->availability = element->new_availability;
 pthread_mutex_unlock(&list_mutex);
 return NULL;
}

Each thread updates a single element

Australian National University

Carnegie MellonAustralian National University

13

COMP2310/6310
The Future

Heterogenous Computing: Another step change

14

CEREBRAS WSE-3

The WSE-3

• 900,000 AI cores onto a single
processor

• Each core on the WSE is
independently programmable

• 44GB on-chip SRAM (21PB/s)
• Optimized for the tensor-

based, sparse linear algebra
operations that underpin
neural network training and
inference for deep learning

• LLM Sparse Llama: 70%
Smaller, 3x Faster, Full
Accuracy

Carnegie MellonAustralian National University

16

COMP2310/6310
Final Exam Review

Final Exam
Ø Everything!

Ø Inclusive of week 12

Ø Every lab

Ø Every slide - covering CS:APP Textbook Chapters

18

Carnegie MellonAustralian National University

Course Topics

Ø C to x86_64
Ø Processes and Signals
Ø Locality and Cache Memories
Ø Disk storage
Ø Linking
Ø Virtual Memory
Ø I/O
Ø Networking
Ø Concurrent programming

19

Carnegie MellonAustralian National University

Final Exam
Ø What to study?

Ø Chapters posted on the course website

Ø How to Study?
Ø Read each chapter many times, work practice problems in

the book and do problems from course website.
Ø The Practice problems allow you to get a feel for the

questions on the the exam

20

Carnegie MellonAustralian National University

Topicsfor Today

Ø Cto x86_64
Ø Virtual Memory
Ø I/O Redirection
Ø Threading
Ø Processes and Signals
Ø Deadlock
Ø Hyperthreading
Ø Sequential consistency

Ø Note: other topics will appear
on the final exam!

Carnegie MellonAustralian National University

Cto x86_64
¢ The following Ccode declares a structure. The declaration embeds one

structure within another, just as arrays can be part of structures, and we can
have arrays within arrays (e.g., two-dimensional arrays). The procedure on the
left operates on the comp2310 structure. We have intentionally omitted some
expressions.

struct comp2310 { void init(struct comp2310 *cp) {
short *p;
struct {

cp->s.y = ;
cp->p = ;

short x;
short y;

cp->next = ;
}

} s;
struct comp2310

};
*next;

21

¢ What are the offsets (in bytes) of the following fields?
■ p
■ s.x
■ s.y
■ next

¢ How many total bytes does the structure require?

Carnegie MellonAustralian National University

Cto x86_64
¢ The compiler generates the following code for init

void init(struct comp2310 *cp)
cp in %rdi
1 init:
2 movl 8(%rdi), %eax
3 movl %eax, 10(%rdi)
4 leaq 10(%rdi), %rax
5 movq %rax, (%rdi)
6 movq %rdi, 12(%rdi)
7 ret

22

¢ Fill in the missing expressions in the Ccode for init based on this information.

23

Carnegie MellonAustralian National University

AssemblyLoops

Ø Recognize common assembly instructions
Ø Know the uses of all registers in 64 bit systems
Ø Understand how different control flow is turned

into assembly
Ø For, while, do, if-else, switch, etc

Ø Be very comfortable with pointers and
dereferencing
Ø The use of parens in mov commands.

Ø %rax vs. (%rax)
Ø The options for memory addressing modes:

Ø R(Rb, Ri, S)
Ø lea vs. mov

Carnegie MellonAustralian National University

Array Access

Ø A suggested method for these problems:
Ø Start with the Ccode
Ø Then look at the assembly Work backwards!
Ø Understand how in assembly, a logical 2D array is implement as a 1D

array, using the width of the array as a multiplier for access

24

25

Carnegie MellonAustralian National University

Caching Concepts
Ø Dimensions: S,E, B

Ø S:Number of sets
Ø E: Associativity – number of lines per set
Ø B: Block size – number of bytes per block (1

block per line)
Ø Given Values for S,E,B,m

Ø Find which address maps to which set
Ø Is it a Hit/Miss? Is there an eviction?
Ø Hit rate/Miss rate

Ø Typesof misses
Ø Which types can be avoided?
Ø What cache parameters affect types/number

of misses?
Ø Understanding of Locality

Carnegie MellonAustralian National University

General CacheOrganization (S, E,B)

E= 2e lines per set

S= 2ssets

set

line

0 1 2 B-1tagv

B= 2b bytes per cache block (the data)

Cache size:
C=SxExBdata bytes

valid bit
26

Carnegie MellonAustralian National University

General CacheOrganization (S, E,B)

E= 2e lines per set

S= 2ssets

set

line

0 1 2 B-1tagv

B= 2b bytes per cache block (the data)

Cache size:
C=SxExBdata bytes

valid bit
27

28

Carnegie MellonAustralian National University

Locality Example
Question: Canyou permute the loops sothat the function scansthe 3-d array
a with a stride-1 reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Carnegie MellonAustralian National University

Caching

29

The machine that you are working on has a 64KB direct mapped cache with 4 byte lines

Carnegie MellonAustralian National University

Virtual Memory

30

Carnegie MellonAustralian National University

31

Carnegie MellonAustralian National University

32

Carnegie MellonAustralian National University

33

Carnegie MellonAustralian National University

HowProcessesShareFiles:fork
¢ Achild process inherits its parent’s open files
¢ After fork:

■ Child’s table sameasparent’s, and +1 to each refcnt

fd 0
fd 1
fd 2
fd 3
fd 4

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access
File size
File type

...

File access
File size
File type

...
Open file table

[shared by all processes]

File A (terminal)

File B(disk)

Descriptor table
[one table per process]

Parent

fd 0
fd 1
fd 2
fd 3
fd 4

Child

34

Carnegie MellonAustralian National University

I/O Redirection
¢ Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

¢ Answer: Bycalling the dup2(oldfd, newfd) function
■ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

35

Carnegie MellonAustralian National University

I/O Redirection

¢ Final Exam Question

36

Carnegie MellonAustralian National University

¢ A. List all outputs of the following code.

37

Carnegie MellonAustralian National University

¢ B. List all outputs of the following code.

38

Carnegie MellonAustralian National University

Threading

¢ Final Exam Question

39

Carnegie MellonAustralian National University

40

Carnegie MellonAustralian National University

Processesand Signals

¢ Final Exam Question

41

Carnegie MellonAustralian National University

42

Carnegie MellonAustralian National University

Sequential Consistency

¢ Consider the execution of the following concurrent processes on two different
processors, and A and B are originally cached by both processors with initial
value of 0.

P1: A = 0
.......
A = 1;
if (B ==0) ...

¢ Under sequential consistency which of the following outcomes are possible?

(A)

(B)

(C)

(D)

P2: B = 0
.......
B = 1;
if (A ==0) ...

NT NT

T T

T NT
NT T

43

Carnegie MellonAustralian National University

Deadlock

¢ Final Exam Question

44

Carnegie MellonAustralian National University

45

46

Carnegie MellonAustralian National University

Questions?

