COMP2310/COMP6310 Systems, Networks, & Concurrency

Convener: Shoaib Akram

Machine-Level Programming I: Basics

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Intel x86 Processors

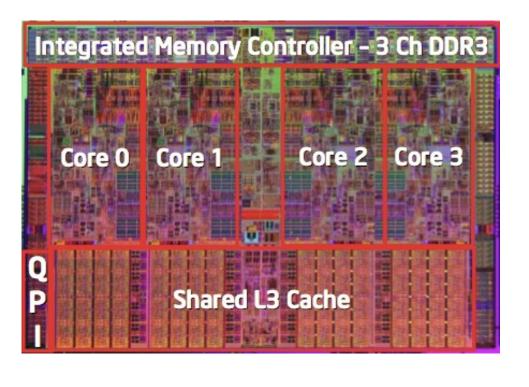
Dominate laptop/desktop/server market

Evolutionary design

- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on
 - Now 3 volumes, about 5,000 pages of documentation

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!
 - In terms of speed. Less so for low power.


Intel x86 Evolution: Milestones

Name	Date	Transistors	MHz
8086	1978	29K	5-10
First 16-bit In	ntel processor. B	asis for IBM PC & DO	OS
1MB address	s space		
386	1985	275K	16-33
First 32 bit Ir	ntel processor, re	eferred to as IA32	
Added "flat a	addressing", capa	able of running Unix	
■ Pentium 4E	2004	125M	2800-3800
First 64-bit In	ntel x86 processo	or, referred to as x86	-64
■ Core 2	2006	291M	1060-3333
First multi-co	ore Intel processo	or	
■ Core i7	2008	731M	1600-4400
Four cores			

Intel x86 Processors, cont.

■ Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2000	42M
Core 2 Duo	2006	291M
Core i7	2008	731M
Core i7 Skylake	2015	1.9B

Added Features

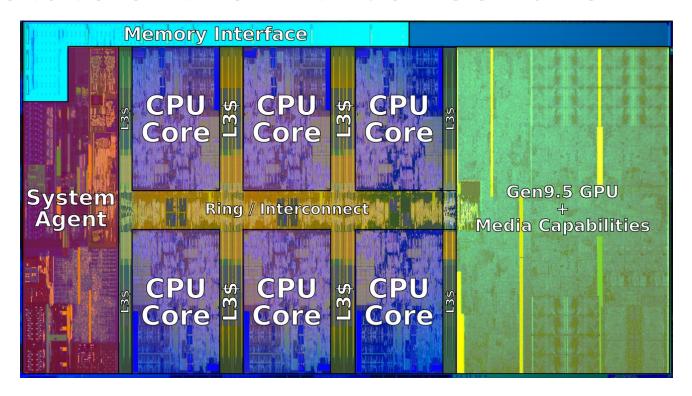
- Instructions to support multimedia operations
- Instructions to enable more efficient conditional operations
- Transition from 32 bits to 64 bits
- More cores

Intel x86 Processors, cont.

■ Past Generations

Process technology

1 st Pentium Pro	1995	600 nm
1 st Pentium III	1999	250 nm
1 st Pentium 4	2000	180 nm
1 st Core 2 Duo	2006	65 nm


■ Recent & Upcoming Generations

Ι.	Nenalem	2008	45 nm
2.	Sandy Bridge	2011	32 nm
3.	Ivy Bridge	2012	22 nm
4.	Haswell	2013	22 nm
5.	Broadwell	2014	14 nm
6.	Skylake	2015	14 nm
7.	Kaby Lake	2016	14 nm
8.	Coffee Lake	2017	14 nm
9.	Cannon Lake	2018	10 nm
10.	Ice Lake	2019	10 nm
11.	Tiger Lake	2020	10 nm
12.	Alder Lake	2022	"intel 7" (10nm+++)

2000

Process technology dimension = width of narrowest wires (10 nm ≈ 100 atoms wide)

2018 State of the Art: Coffee Lake

■ Mobile Model: Core i7

- 2.2-3.2 GHz
- **45** W

Desktop Model: Core i7

- Integrated graphics
- **2.4-4.0** GHz
- **35-95 W**

Server Model: Xeon E

- Integrated graphics
- Multi-socket enabled
- 3.3-3.8 GHz
- **80-95 W**

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

Then

- Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Recent Years

- Intel got its act together
 - 1995-2011: Lead semiconductor "fab" in world
 - 2018: #2 largest by \$\$ (#1 is Samsung)
 - 2019: reclaimed #1
- AMD fell behind: Spun off GlobalFoundaries
- 2019-20: Pulled ahead! Used TSMC for part of fab
- 2022: Intel re-took the lead

Intel's 64-Bit History

- 2001: Intel Attempts Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- 2003: AMD Steps in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- All but low-end x86 processors support x86-64
 - But, lots of code still runs in 32-bit mode

Our Coverage

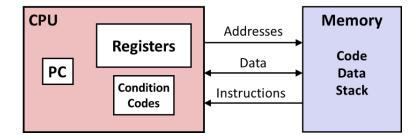
■ x86-64

- The standard
- linux> gcc hello.c
- linux> gcc -m64 hello.c

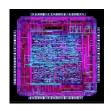
Presentation

- Book covers x86-64
- Web aside on IA32
- We will only cover x86-64

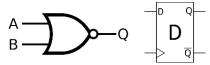
Today: Machine Programming I: Basics


- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Levels of Abstraction


C programmer

```
#include <stdio.h>
int main(){
  int i, n = 10, t1 = 0, t2 = 1, nxt;
  for (i = 1; i <= n; ++i){
    printf("%d, ", t1);
    nxt = t1 + t2;
    t1 = t2;
    t2 = nxt; }
  return 0; }</pre>
```

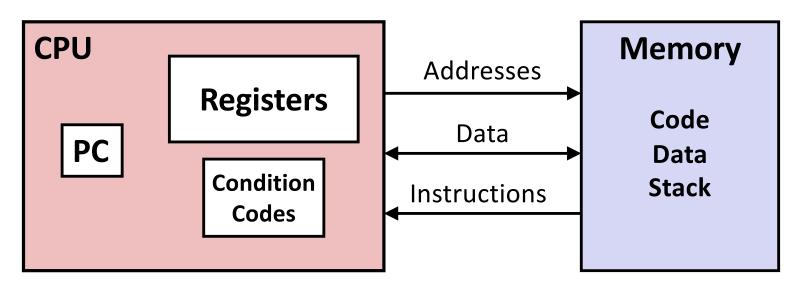

Assembly programmer

Computer Designer

Gates, clocks, circuit layout, ...

Definitions

- Architecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand for writing assembly/machine code.
 - Examples: instruction set specification, registers
- Microarchitecture: Implementation of the architecture
 - Examples: cache sizes and core frequency


Code Forms:

- Machine Code: The byte-level programs that a processor executes
- Assembly Code: A text representation of machine code

Example ISAs:

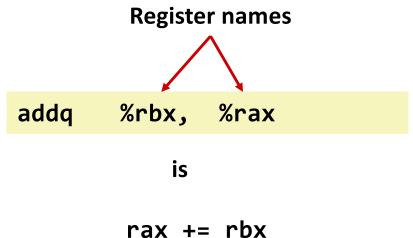
- Intel: x86, IA32, Itanium, x86-64
- ARM: Used in almost all mobile phones
- RISC V: New open-source ISA

Assembly/Machine Code View

Programmer-Visible State

- PC: Program counter
 - Address of next instruction
 - Called "RIP" (x86-64)
- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic or logical operation
 - Used for conditional branching

Memory

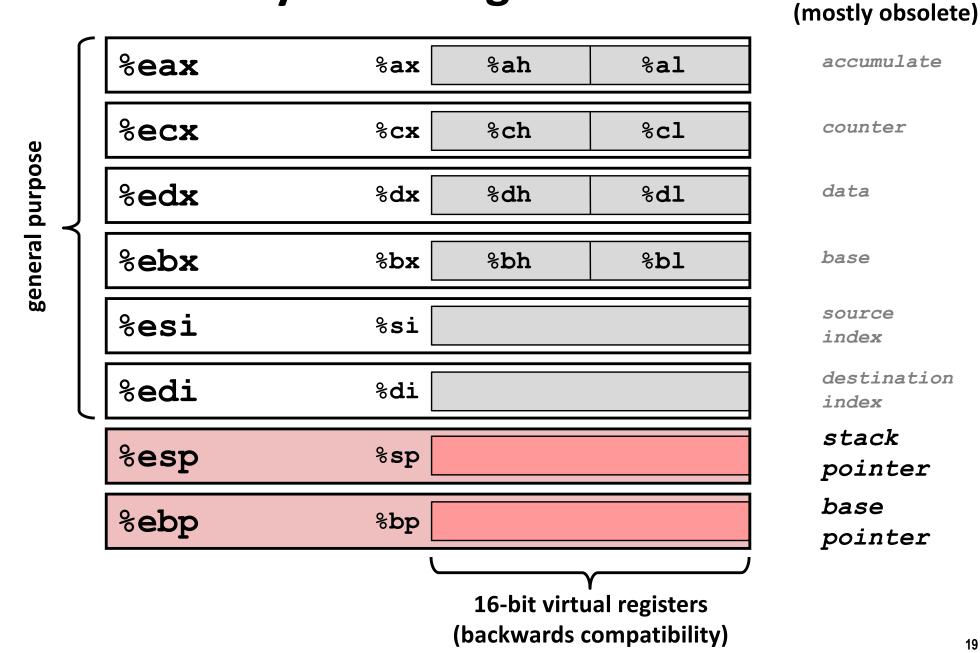

- Byte addressable array
- Code and user data
- Stack to support procedures

Assembly: Data Types

- "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)
- Floating point data of 4, 8, or 10 bytes
- (SIMD vector data types of 8, 16, 32 or 64 bytes)
- Code: Byte sequences encoding series of instructions
- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory

Assembly: Data Types

- "Integer" data of 1, 2, 4, or 8 bytes
 - Data values
 - Addresses (untyped pointers)


These are 64-bit registers, so we know this is a 64-bit add

x86-64 Integer Registers

%rax	%eax	% r8	%r8d
%rbx	%ebx	%r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

- Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
- Not part of memory (or cache)

Some History: IA32 Registers

Origin

Assembly: Operations

- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
- Perform arithmetic function on register or memory data
- Transfer control
 - Unconditional jumps to/from procedures
 - Conditional branches
 - Indirect branches

Moving Data

- Moving Data
 - movq Jource, Dest
- Operand Types
 - Immediate: Constant integer data
 - Example: \$0x400, \$-533
 - Like C constant, but prefixed with `\$'
 - Encoded with 1, 2, or 4 bytes
 - Register: One of 16 integer registers
 - Example: %rax, %r13
 - But %rsp reserved for special use
 - Qthers have special uses for particular instructions
 - Memory 8 consecutive bytes of memory at address given by register
 - Simplest example: (%rax)
 - Various other "addressing modes"

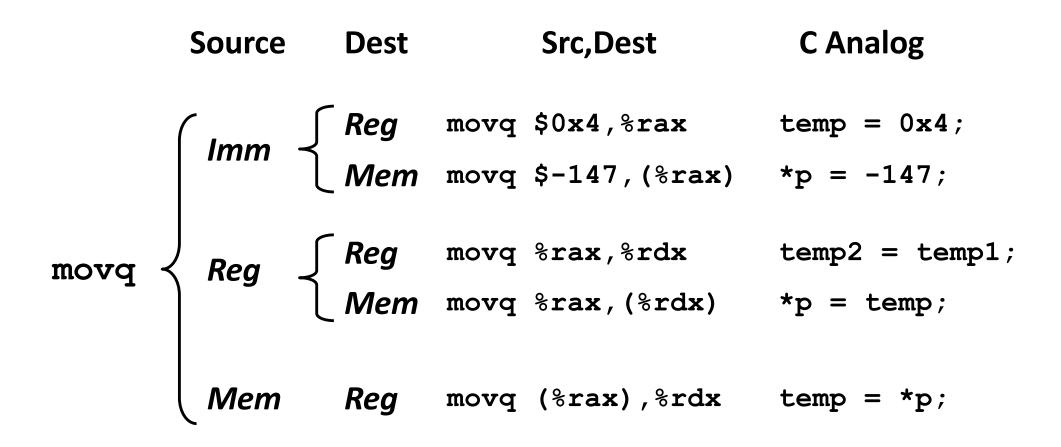
%rax %rcx

%rbx

%rsi

%rdx

%rdi


%rsp

%rbp

%rN

Warning: Intel docs use mov *Dest*, *Source*

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

movq (%rcx),%rax

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

movq 8(%rbp),%rdx

Complete Memory Addressing Modes

Most General Form

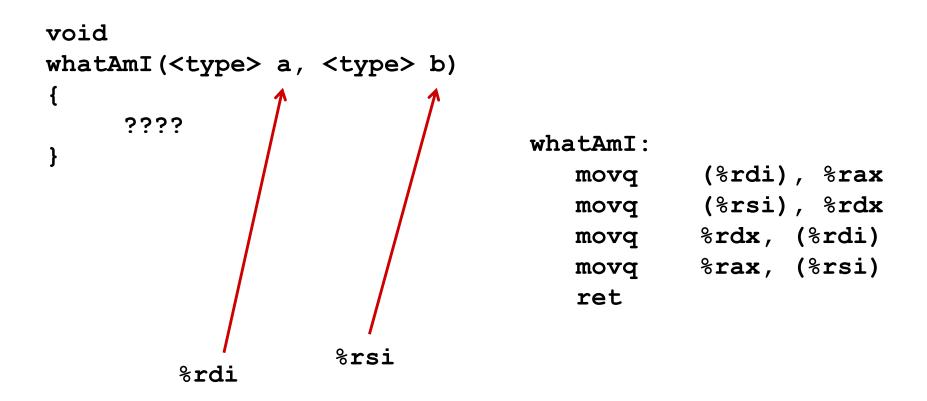
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

■ D: Constant "displacement" 1, 2, or 4 bytes

■ Rb: Base register: Any of 16 integer registers

■ Ri: Index register: Any, except for %rsp

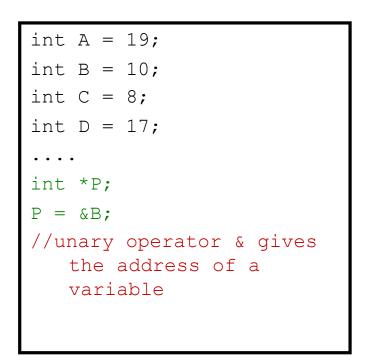
• S: Scale: 1, 2, 4, or 8 (*why these numbers?*)

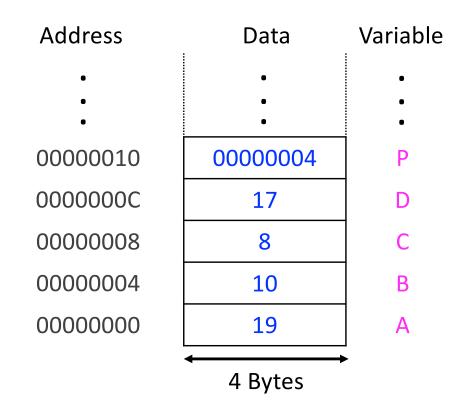

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

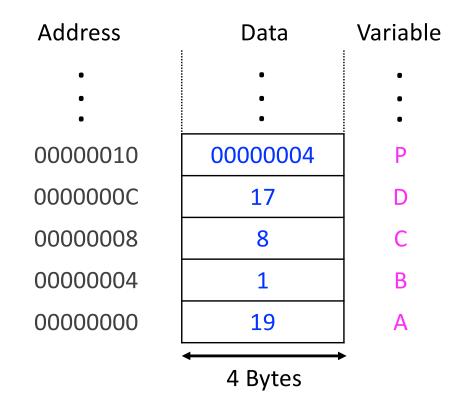

Example of Simple Addressing Modes



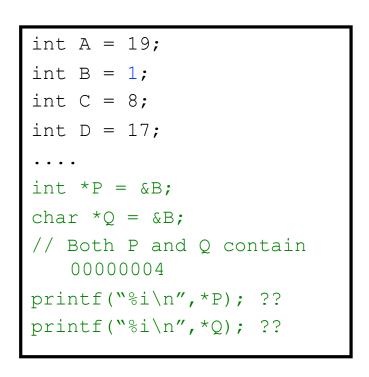
Interlude: Pointers

Pointers: Introduction

 A pointer is a variable that contains the address of another variable

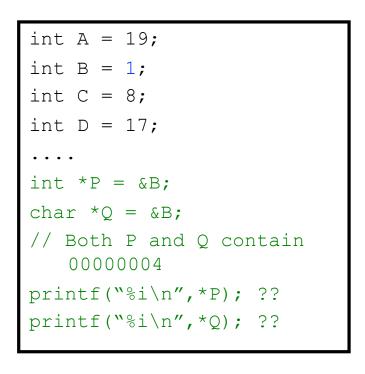


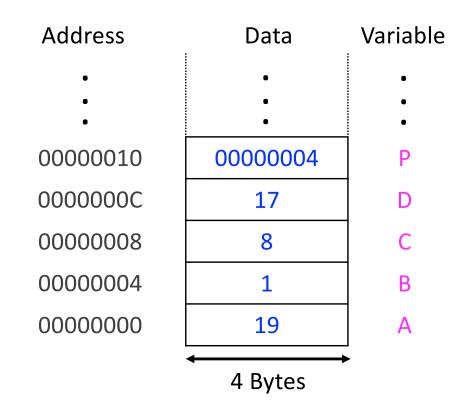
Pointers: Introduction


 Can use the pointer to access the value stored in a memory location

```
int A = 19;
int B = 10;
int C = 8;
int D = 17;
....
int *P;
P = &B;
*P = 1;
//dereferencing or
// indirection operator
//that accesses the value
// stored at address in P
```


Pointers: Example


 A pointer is 4-bytes on a 32-bit system and 8-bytes on a 64bits system & it can be stored on the stack or data segment like ordinary variables



Answer

- printf("%i\n",*P); Output is always 1
- printf("%i\n",*Q); Big Endian: 0, Little Endian: 1

Pointers: Their *Nature*

- A pointer points to a memory location
- Its content is a memory address
- It wears "datatype glasses"

- Wherever it points, it sees through these glasses
- The variable stored at some memory address can be interpreted (via the dereferencing operator *) as character or integer or float, depending on the type of the pointer

Pointer Translation in Action

```
*dest = t;
```

0x40059e: 48 89 03 0100 1 0 0 0 10001011 00 000 011 REX W R X B MOV r->x Mod R M

C

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

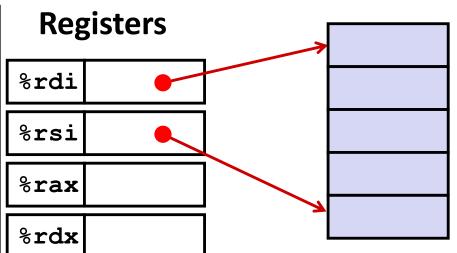
t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Machine

- 3 bytes at address 0x40059e
- Compact representation of the assembly instruction
- (Relatively) easy for hardware to interpret


Back to Simple Addressing Modes

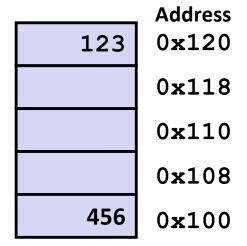
Example of Simple Addressing Modes

```
void swap
   (long *xp, long *yp)
{
   long t0 = *xp;
   long t1 = *yp;
   *xp = t1;
   *yp = t0;
}
```

Understanding Swap()

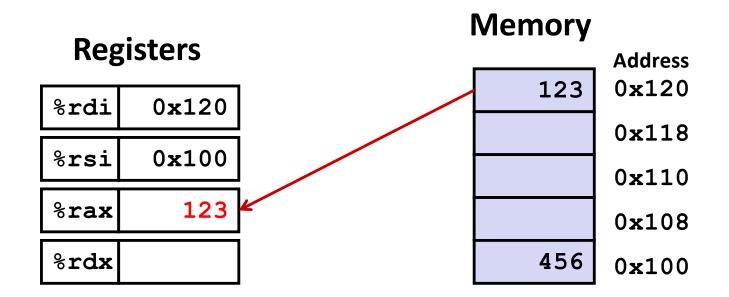
void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0; }

Memory


Register	Value
%rdi	хр
%rsi	ур
%rax	t0
%rdx	t1

Understanding Swap()

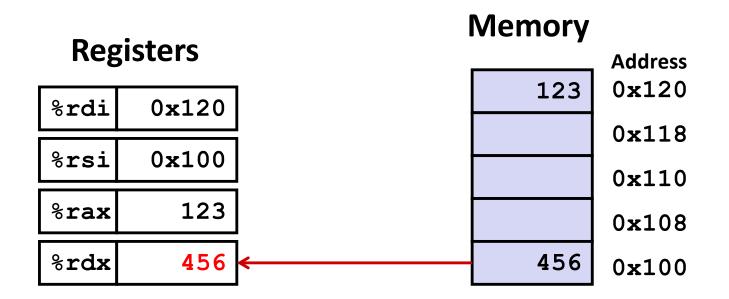
Registers

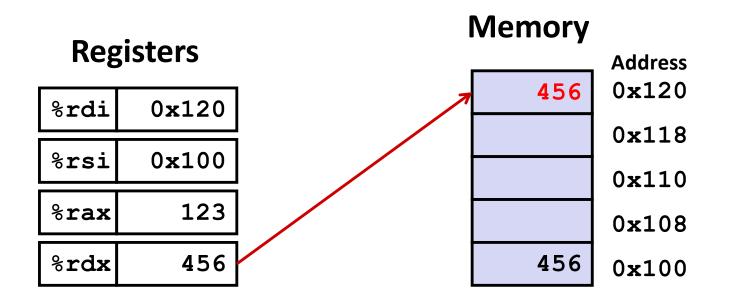

%rdi	0x120
%rsi	0x100
%rax	
%rdx	

Memory

swap:

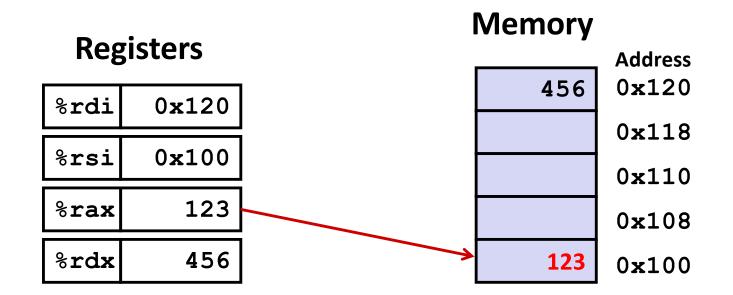
```
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
```



swap: movq (%rdi), %rax # t0 = *xp


ret

```
movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1


movq %rax, (%rsi) # *yp = t0
```


movq

ret


```
swap:
    movq          (%rdi), %rax # t0 = *xp
    movq          (%rsi), %rdx # t1 = *yp
    movq          %rdx, (%rdi) # *xp = t1
```

%rax, (%rsi) # *yp = t0

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address
 - Aha! Pointer dereferencing in C

movq (%rcx),%rax

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

movq 8(%rbp),%rdx

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

D(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]+ D]
------------	---------------------------

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 16 integer registers
- Ri: Index register: Any, except for %rsp
- Scale: 1, 2, 4, or 8 (why these numbers?)

Expression	Address Computation	Address
0x8(%rdx)		
(%rdx,%rcx)		
(%rdx,%rcx,4)		
0x80(,%rdx,2)		

Address Computation Examples

%rdx	0xf000
%rcx	0x0100

Expression	Address Computation	Address
0x8(%rdx)	0xf000 + 0x8	0xf008
(%rdx,%rcx)	0xf000 + 0x100	0xf100
(%rdx,%rcx,4)	0xf000 + 4*0x100	0xf400
0x80(,%rdx,2)	2*0xf000 + 0x80	0x1e080

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Address Computation Instruction

leaq Src, Dst

- Src is address mode expression
- Set Dst to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

Example

```
long m12(long x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2</pre>
```

Some Arithmetic Operations

Two Operand Instructions:

Format	Computation		
addq	Src,Dest	Dest = Dest + Src	
subq	Src,Dest	Dest = Dest – Src	
imulq	Src,Dest	Dest = Dest * Src	
salq	Src,Dest	Dest = Dest << Src	Also called shlq
sarq	Src,Dest	Dest = Dest >> Src	Arithmetic
shrq	Src,Dest	Dest = Dest >> Src	Logical
xorq	Src,Dest	Dest = Dest ^ Src	
andq	Src,Dest	Dest = Dest & Src	
orq	Src,Dest	Dest = Dest Src	

- Watch out for argument order! Src,Dest
 (Warning: Intel docs use "op Dest,Src")
- No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

One Operand Instructions

```
incq Dest Dest = Dest + 1

decq Dest Dest = Dest - 1

negq Dest Dest = - Dest

notq Dest Dest = \simDest
```

See book for more instructions

Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```

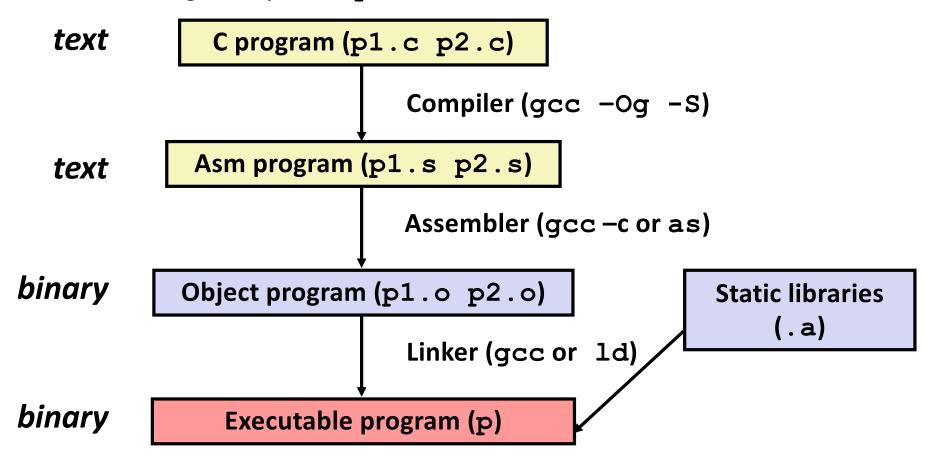
```
arith:
  leaq (%rdi,%rsi), %rax
  addq %rdx, %rax
  leaq (%rsi,%rsi,2), %rdx
  salq $4, %rdx
  leaq 4(%rdi,%rdx), %rcx
  imulq %rcx, %rax
  ret
```

Interesting Instructions

- leaq: address computation
- **salq**: shift
- imulq: multiplication
 - But, only used once

Understanding Arithmetic Expression Example

```
long arith
(long x, long y, long z)
{
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}
```


Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rdx	Argument z,
%rax	t1, t2, rval
%rcx	t5

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- Assembly Basics: Registers, operands, move
- Arithmetic & logical operations
- C, assembly, machine code

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -Og p1.c p2.c -o p
 - Use debugging-friendly optimizations (-Og)
 - Put resulting binary in file p

Compiling Into Assembly

C Code (sum.c)

Generated x86-64 Assembly

```
sumstore:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

Obtain with command

gcc -Og -S sum.c

Produces file sum.s

What it really looks like

```
.qlobl sumstore
       .type sumstore, @function
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi_def_cfa_offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

What it really looks like

.globl sumstore

```
.type sumstore, @function
sumstore:
.LFB35:
       .cfi startproc
       pushq %rbx
       .cfi def cfa offset 16
       .cfi offset 3, -16
       movq %rdx, %rbx
       call plus
       movq %rax, (%rbx)
       popq %rbx
       .cfi def cfa offset 8
       ret
       .cfi endproc
.LFE35:
       .size sumstore, .-sumstore
```

Things that look weird and are preceded by a "are generally directives.

```
sumstore:
  pushq %rbx
  movq %rdx, %rbx
  call plus
  movq %rax, (%rbx)
  popq %rbx
  ret
```

Object Code

Code for sumstore

0x0400595: 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0xff 0xff 0xff 0x48 0x89 • Total of 14 bytes 0x89 • Each instruction

0x03

0x5b

0xc3

1, 3, or 5 bytes

Starts at address

 0×0400595

Assembler

- Translates .s into .o
- Binary encoding of each instruction
- Nearly-complete image of executable code
- Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Machine Instruction Example

0x40059e: 48 89 03

C Code

Store value t where designated by dest

Assembly

- Move 8-byte value to memory
 - Quad words in x86-64 parlance
- Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

Object Code

- 3-byte instruction
- Stored at address 0x40059e

Disassembling Object Code

Disassembled

```
0000000000400595 <sumstore>:
 400595: 53
                                 %rbx
                          push
 400596: 48 89 d3
                          mov
                                 %rdx,%rbx
 400599: e8 f2 ff ff ff callq
                                 400590 <plus>
 40059e: 48 89 03
                                 %rax, (%rbx)
                          mov
 4005a1: 5b
                                 %rbx
                          pop
 4005a2: c3
                          retq
```

Disassembler

```
objdump -d sum
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a .out (complete executable) or .o file

Alternate Disassembly

Disassembled

Within gdb Debugger

Disassemble procedure

```
gdb sum
disassemble sumstore
```

Alternate Disassembly

Object Code

0×0400595 : 0x53 0×48 0x890xd30xe8 0xf20xff 0xff 0xff 0x480x890x030x5b0xc3

Disassembled

Within gdb Debugger

Disassemble procedure

```
gdb sum
```

disassemble sumstore

Examine the 14 bytes starting at sumstore

x/14xb sumstore

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 <.text>:
30001000:
30001001:
               Reverse engineering forbidden by
30001003:
             Microsoft End User License Agreement
30001005:
3000100a:
```

- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source

Machine Programming I: Summary

History of Intel processors and architectures

Evolutionary design leads to many quirks and artifacts

C, assembly, machine code

- New forms of visible state: program counter, registers, ...
- Compiler must transform statements, expressions, procedures into low-level instruction sequences

Assembly Basics: Registers, operands, move

 The x86-64 move instructions cover wide range of data movement forms

Arithmetic

 C compiler will figure out different instruction combinations to carry out computation