COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Shoaib Akram

Australian
=) National
s University

Shoaib Akram

School of Computing, (Jan 2020 —)
Ph.D., 2019

Teaching: Computer Organization & Program Execution (semester 1)
Systems, Network, and Concurrency (semester 2)

Research: Fast analytics over big datasets with a focus on emerging
memories and fast storage devices

175 ZB
data we will

produce in one
year

Quick Logistics

Course webpage: https://comp.anu.edu.au/courses/comp2310/
Lectures (on the website)

= Lecture slides

= |Lecture videos (Echo360)

= 2 hours reserved (some lectures may be shorter, demos etc)

Policies (will be up shortly)
*= General conduct, assignment submissions, support, management,
grading

Resources
= Past exam with solution and rubric (up already)
= Stuff needed to finish the labs and assignments

https://comp.anu.edu.au/courses/comp2310/

Edstem

We will use edstem for all communication
" |fyouignore edstem, you will miss key
announcements
= Drop-in sessions, make-up lectures,
problems, exercises, corrections, lecture -
timing :
" Ask questions on edstem first (most
likely you will receive a response T
quickly)
" Ask instructors private questions on
edstem
= Students are added/dropped automatically

ed COMP2310 - Ed Discussion

eeeeeeee

zzzzzzzz

Course Email

compz2310danu.edu.au

= Do not send me a direct email except for requests:
= Super urgent
= Personal
= EAP-related

Motivation

Recall: How do we make electrons
do the work?

~\\

%’%s |
2) Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices @:

Recall: How do we make electrons
do the work?

= Using a sequence of systematic transformations
= Developed over six decades

" Each step must be studied and improved for the whole
stack to work efficiently

Recall: Transformation Hierarchy

= We call the steps of the process: Levels of transformation OR
Transformation hierarchy

3
= At each level of the stack, we have choices broblem
" Language: Java, Python, Ruby, Scala, C++, C# Algorithm
" ISA: ARM, x86, SPARC, PowerPC, RISC-V R—

= Microarchitecture: Intel, AMD, IBM

Architecture

" |f weignore any of the steps, then we cannot micro-arch
= Make the best use of computer systems circuits
= Build the best system for a set of programs devices

Recall: Transformation Hierarchy & Us

—
Program

Execution

§\\

%533.
2) Problem Statement: “Save the planet”

o=

S ——

The Algorithm

Program in a High-Level Language

2310 Compiler and Third-Party Libraires/Binaries

2310 Operating System Computer
2300 Instruction Set Architecture (ISA) Architecture
2300 Microarchitecture
>._
2300 Circuits
: i Computer
x Devices @: — Organization

Recall: Hardware and Software

§\\

%’3
~7) Problem Statement: “Save the planet”

Software The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

ISA = Hw/Sw Operating System

boundary/interface Instruction Set Architecture (ISA)

Microarchitecture

Circuits

. @
Hardware Devices @)

Recall: Two Recurring Themes

= The notion of abstraction

"= Hardware versus software

Recall: The Notion of Abstraction

= Abstraction: Know components from a high level of detail

No human (programmer) can track
10 billion elements. Computer systems

work because of abstraction!

Apple M1 Chip
Billions of transistors
All working in parallel

Recall: The Notion of Abstraction

Abstraction: View the world from a higher level

Focus on the important aspects nput output
= |nput? Output? X = ADD or MULTIPLY —i X —

Raise the level of abstraction for productivity and efficiency

But what if the world below does not work as expected?
" To deal with it, we need to go below the abstraction layer

Deconstruction: To un-abstract when needed
" Important skill

Recall: The Notion of Abstraction

= We will use this theme a lot!
* Each layer in the transformation

hierarchy is an abstraction layer! 3
Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Recall: Hardware versus Software

COMP2310
= Hardware versus software deepens this

= Hardware: Physical computer knowledge
= Software: Programs, operating systems, compilers

= Oneview: Ok to be an expert at one of these ,i|

= Hw and Sw: Two parts of the computer system
= COMP2300 view: Knowing the capabilities/limitations of
each leads to better overall systems

Requirements

Software A " Hardware
icati « — Systems
Opportunities

Role of Compiler

What does a compiler do?

" Translates high-level code into assembly
More generally, the compilation toolchain generates machine
code in a sequence of stages:

" translate a group of related source files into assembly

" resolve inter-dependencies between source files (linking)

* handle the linking of any external libraries

= perform optimizations (make use of special hardware features)
It is more complex than line-by-line C to assembly translation
Learning the process is important from a performance, efficiency,
security, and hacker perspective

Turning C into Object Code (details later)

text

text

binary

binary

C program (pl.c p2.c)

l Compiler (gcc —-0Og -9)

Asm program (pl.s p2.s)

\ Assembler (gcc —c or as)

Object program (pl.o p2.0) Static libraries

(.2a)

\ Linker (gcc or 1d)

Executable program (p)

Role of Operating System (OS)

= Operating system

Application programs

F
: <« ‘\ y } Software
Operating system A7 (L é

Processor Main memory |/O devices } Hardware

» Enables safe abstractions of hardware resources
= \Virtualizes hardware for use by programs
" Gives each program the illusion that it has the entire
resource for itself
" Manages the hardware resources for efficient and safe working
of the system

COMP2310, Goal # 1

Deepen the understanding of how applications interact with
compiler and OS, and hardware

Today, critical for software to be correct performant efficient,
secure &5 172N I

PERFORMANCE

Demystify how programs are loaded into memory and executed

= What happens when you click an icon to start an
application?

= Ortype the program name into a shell program and press
enter

COMP2310, Goal # 1 (cont’d)

" How are C programs translated into x86-64 assembly?

Compilation and linking fundamentals
Object files, executable formats, etc

Implementation of loops, procedure calls, data
structures (reprise)

Optimizations done (not done) by the compiler

Assembly is Important!

" |ntel x86-64 ISA widely used in server hardware

* Tuning performance
= Understanding optimization done (not done) by the compiler

= Understanding behavior of programs and exploiting choice via
compile-time options
" Writing systems software (device drivers)

" Fighting security vulnerabilities

= Behavior of buggy programs

COMP2310, Goal # 1 (cont’d)

= What does the memory hierarchy of looks like?
" How do caches work in more detail?
= What s their impact on program behavior?
(programmer’s perspective)

" How does main memory differ from a disk drive?

" How does device behavior impact the design of computer
programs?

Memory matters!

= Memory is a limited resource O e e
= Must be carefully managed /

" Memory bugs are hard to detect

% of Infrastructure
N
()]

" Understanding pointers and g
memory allocators helps
= Memory performance is not always Meta datacenters, 2022
uniform

= Caches, virtual memory effects
need to understood

Memory matters!

void copyij(int src[2048] [2048], void copyji(int src[2048] [2048],
int dst[2048][2048]) int dst[2048][2048])
{ {
int i,j; int i,j;
for (i = 0; i < 2048; i++) for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) &L for (i = 0; i < 2048; i++)
dst[i][]J] = src[i][]]; dst[i] [J] = src[i][]];
} }
4.3ms 31.8ms

2.0 GHz Intel Core i7 Haswell

= Hierarchical memory organization
= Performance depends on access patterns
® Including how step through multi-dimensional array

emory Hierarchy

L1 cache holds cache lines retrieved

L2 cache holds cache lines
retrieved from L3 cache

L3 cache holds cache lines
retrieved from memory.

Main memory holds disk
blocks retrieved from local
disks.

Local disks hold files

retrieved from disks on
remote network servers.

Smaller, CPU registers hold words retrieved from
faster, cache memory.
and L1: L1 cache
costlier (S RAM)
(‘;‘fgrzgg) from the L2 cache.
devices L2: I‘(é ;aAﬁa)e
L3: L3 cache
(SRAM)
Larger,
slower, 3 .
and L4: Main memory
cheaper (DRAM)
(per byte)
storage
devices
L5 Local secondary storage
(local disks)
v
L6: Remote secondary storage

(distributed file systems, Web servers)

COMP2310, Goal # 1 (cont’d)

" How does the operating system abstract hardware resources
for use by application programs?
" Processes
= Virtual memory
= Files

= All these are abstractions the OS uses to isolate computer
programs from each other
= Qur focusis NOT on (re)building these “mechanisms” but
write programs to use them

COMP2310, Goal # 2

= Understand how applications use the operating system
(OS) and the C standard library for writing real-world
applications

= Search engines

= Databases

= Android memory manager

COMP2310, Goal # 2

Write low-level code that interfaces with the operating system
kernel and C library

What interface (and interesting system calls) does the
operating system provide?

Learn to

= Implement memory allocators, read/write from/to storage
disks and SSDs

= Communicate with the outside world (networking), and
manage concurrently running processes and applications

User Code vs. Kernel Code

OS manages the hardware, interposed b/w the program
and hardware

Application programs Software
Operating system

Processor Main memory |/O devices } Hardware

Application code that runs on top of OS or any resource
manager in general is user code (or user program)

The code that manages the hardware is kernel code
CPU is either in user mode or kernel mode

What is OS kernel?

= Core component of OS that manages the hardware
= Device management (keyboard, mouse, display, etc)
= Memory (RAM) management
= Network management
" Storage management
" Filesystem code

= Whatelseisin the OS?
= Shell
= GUI
= Utilities

What does an OS do?

= Manages the hardware, interposed b/w the program and
hardware

= Qur high-level view of system (no network for simplicity)

Main Memory Storage

Few years / |

1
— @ 5
I
« ”
|

= (OS manages CPU (processor), memory (RAM), input/output (I/0)
devices (keyboard, disk, display, network), and files on disk

How do applications use the OS?

= OS provides services to be accessed by user programs

" Programs can make use of “system calls” on Linux and
Windows application programming interface (“API1”)
= Allocate memory for me
= Read “N” bytes from file F into memory location “M”
= Write “N” bytes from memory location “M” into file F
= Establish a network connection to www.anu.edu.au

= Write “N” bytes to the network connection
" Putmetosleep

http://www.anu.edu.au/

How applications use the OS?

OS provides an interface for applications to use

" Programs access hardware/device capabilities
through this interface

= Different hardware = Same interface

" [nterface is constant, its implementation is OS specific

We need to learn this interface to write

interesting applications

" Learning “just enough” details of the implementation
to write correct, efficient, secure programs

Goal # 3, Systems Programming

= All these aspects will help you become a systems programmer
= Systems programmers

= write low-level tools such as compilers, operating systems, and
debuggers

" they must have an acute awareness of the environment, e.g.,
Linux versus Windows

" they must use system calls for the specific OS

= contrast with Python, Ruby, Java programs for business or ML
= high-level libraries abstract OS and hardware details

= Clibrary abstracts OS/hardware but many Linux C programs
interface with the kernel API

Example of Pure User-Level C Program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LEN 10000000

// struct of arrays = Wl“ nOt CraSh YOUI' maChlne if YOU did

// all 1 po%nts are stored ?n a s@ngle cont?guous array .

8 10 ' Dutlsts see (etorad din s fslng e Cuntdgtous ek something wrong

struct pointarray3d { = Programmer’s creativity is more critical in
int i[LEN];
T solving the problem

};

struct pointarray3D points;

= Can get by not knowing how array looks
int sum_l.((struct pointarray3D *points) { |Ike In memory
return san;. = Uses a C library function for printing to the
screen

}

int main() {

o into.iiian o 1p e = Clibrary takes care of making it happen for the
points.jlidx] = 1;
) points.k[idx] = 1; programmer

int sum = sum_k(&points);
printf("sum of all k points is %i \n", sum);

return 0;

Example of Pure System-Level C Program

= Device driver code

= Most likely crash your machine if you did
something wrong

= Requires intricate knowledge of the hardware
for which driver is being written

= Uses Linux kernel sources to reuse
functionality

= Even “printf()” is not available

= No Clibrary

Example of User-Space System-Level C Program

Focus of this course!

7 char ptype[10];
5 int main()

2w {

int size (int);

void *addr = mmap(©, size, PROT_READ | PROT_WRITE, MAP_SHARED

("Mapped at : ", addr);

int “shared = addr;
pid_t fork_return = fork();
(fork_return)

shared[@]
shared[1]

2
(ptype, "Parent");

int status;
waitpid(-1, &status, @);

sleep(1);
("Child : shared[@] =
shared[1]
(ptype, "Child ");
}

(s : shared[@] :
{& : shared[1] :
munmap (addr, size);

', ptype, shared[2]);
', ptype, shared[1]);

MAP_ANONYMOUS,

', shared[©], shared[1]);

Won’t crash your machine
= But program is likely to
crash if something is wrong
Uses system call wrappers
provided by C library
Uses “interesting” system calls
= fork() spawnhanew
virtual CPU
" mmap () instantiates a
region in the process’
address space

CPU Trends

Main Memory Storage

 §
e

Few years

:c;- w “‘ @ \ o

S {
< “..‘ z ‘ ‘/ & Y
e -

(

Moore’s Law: The number of transistors on microchips doubles every two years [SURWE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

in Data

S0,000,000,000 GC2 IPU QAMD Epyc Rome
72-core Xeon Phj Centriq 2400 "¢y € AWS Graviton2
BM 2151 Sg/\RC ?{17 $ 32-core AMD Epyc
z orage Controller App\e A12X Bionic
10,000,000,000 18-core Xeon Haswell-E5 \ :L;S)‘\hqu f\\;;whzl?]g igjpro)
ple T
5,000,000,000 Xboone man i?% 8 . @AND Ryzen 7 3700
12-core POWERS 8 < HiSilicon Kirin 710
8-core Xeon Nehalem-EXsg 8 gc?ugx?rgT%f?r&gpﬁ‘r;’géﬁ@”gﬁ[
Dual m?éﬁ@%ﬁé%"” 7400 3 ol)ual core + GPU Iris Core i7 Broadwell- U
L4 Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 Pentium D Presler WERG g -4 3 Quwd core + GPU Core i7 Haswell
A le A7 (dual-core ARMé64 "mobile SoC")
SO0,000,000 [hmum Z \?/\tho\ ¢ °Cor9 i7 (Quad) op
. ° [tanium 2 de\son 6M° gégf”e)2Kﬂ>8<§‘Wgﬁfq'F M3
r‘a n S I S 0 rS C I Pentium D Smithfield, . $8Core 2.Du0 Conroe
Itanium 2 McKinley € © Cell Core 2 Duo Wolfdale 3M
100 OOO OOO Pentium 4 Prescott-2M € \oCore 2 Duo Allendale
Pentium 4 Cedar Mill
! ! AMD K8 € °Penhum 4 Prescott
oo @very two years
Pentium 4 W\Hametteo -3 QAtom
Pentium Il Mobile Dixon. Peatm Il fualabn
AMD K7 opermum Il Coppermine OARM Cortex-A9
AMD Ké6-
10,000,000 _
. TS
5,000,000 Pentium Prog, _ petiu |
lamath
Pemmm° AMD K 5
SA-110
Intel 80484
1,000,000 o %o
Tl Expl 32-bit,
500’000 L\sﬁpn?g?l();v (h«‘po AR&OO
Intel 803860 \‘52%0 QARM 3
Motorola 68020 ©
DEC WRL
100,000 | ‘g MultiTitan ©
Motarola R0 ARM
68001 9TDOMI
50,000 ® emneisoss
Intel 808¢€p €Y Intel 8088 QARM 2 AF& 6
°/—\RM 1
L &
i Motarola 65C816 i
10,000 s 1000 Ziogz8o 6609 0. Novix
- 5C0O7
5,000 RCA1802 Qieigogs 702
Intel 800G, c\ntc\ 8080
/ MOS Technology
8. “ege ¢
Intel 4004
1,000
D x 3 X D
G2 Y A A A0 o ol oh P qcéb O v o G0 G P TP PP PP
NCOONTONTNTNTNT N NN N L i D S D D) D R Y

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip w
OurWorldinData.org - Research and data to make progress against the world's largest problems.

as first introduced

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

End of Dennard Scaling

" Dennard scaling: As transistors get smaller, their
density stays constant

" |n every technology generation, the area and power
consumption of individual transistors is halved
= With twice the number of transistors, power consumption
still stays the same

Dennard scaling broke down b/w 2005-2007
—> As we add more transistors, power consumption for
for a chip with the same area increases

End of Dennard Scaling

Implication: Frequency cannot increase any
further because that would make the power
problem even worst - Industry shifted to

multicores!

https://silvanogai.github.io/posts/dennard/

https://www.maketecheasier.com/why-cpu-
clock-speed-isnt-increasing/

Uni-Processor Performance

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)

ISA h mon
S ege o y Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)]

F - ZX Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
req galn < Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz Sboost to 3.6 GHz) 49,935
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) ﬁ 49.870
31,99¢

100,000

Intel Core fff Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

ntel Core Duo Extreme 2 cores, 3.0 GHz 21,871 2 =" 40,967 49,935
0.000 InteRCore 2 Extreme 2 cores, 2.9 GHz b 5i -12‘9' 34,967
N rTrywem _ AMD Athlon 64, 2.8 GHz ————————*——
10, intel xe MR Athion, 2.6 GHz i1 387 19,484
o iy@egfBBT 7,108

Intel DBSOEMVR motherboard (3.06 GHz ¢

itium 4 processor with HyperYhreading Technology) 6,043
Powerd, 1.3 GHz @~° 4,195

. . m /3,016
ISA diversity 21264 L ¥ 177
1000 —+——-—=————-———-————f— Digtal AlphaServer 8400 6/575. 575 MHzfi264 7565_1;2_6_7____________ i
100X in freq AlphaServer 4000 5/600, 600 MHz 2jf64 649
. -c481
gains %580 23%/year 12%lyear 3.5%lyear
183
100 +——-———————- DT ——
technology
52%lyear

Performance relative to
VAX-11/780, 5 MHz

breakdown

i T ;s:‘ngé‘i ““““““““““““““““““““““““““““““““ = multicore
| - technology: 35%
AX-11/780, 5 MHz

S5%/year uarch: 17%

1 5 I ! T I T T I T T T I T ! I T I T I I

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Modern System

Processor O Processor 1

L1 Cache || L1 Cache L1 Cache | L1 Cache
L2 Cache L2 Cache

System Bus

¢

= Software must exploit parallelism for performance

Concurrency and Parallelism

Concurrency: When the execution of two programs
overlap in time

"= Concurrency has always been important
= Multiple users time-sharing a uniprocessor system
" Process an incoming request from the network,
while the user is watching a video recording

Parallelism: When two programs use dedicated resources

(e.g., two separate CPUs) to run at the same time

" Multicores have made parallelism critical to get more
performance out of modern hardware

Concurrency and Parallelism
Real-Life Example

LR LI
%%HHV'

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Parallel: 2 queues, 2 vending machines

Managing System Resources

= Many interesting debates in computer systems

RISC vs. CISC
Compiler vs. hardware exploitation of ILP
Manual (C++) vs. automatic memory management (Java)

= (One more debate

Should “certain” hardware features be exposed to user-level
application or not?

One camp: User-level programmer possesses better knowledge
of application logic than hardware or compiler or OS

" They can “tune” the feature to make the optimal use of it
Other camp: They may also do something wrong

" |Leave it to the hardware or compiler or OS

Managing System Resources: Examples

CPU registers are exposed to software (OS and user-level)

CPU caches are managed by hardware
= We say caches are transparent to software

A feature X is exposed to software, but OS utilizes the feature and
user-level code has no way to access it

= Feature X is transparent to user-level code

= Feature X is visible to OS, or X is exposed to OS

= Physical memory is an example (what? that’s why 2310 exists!)

Modern NUMA System

I/O
Some memories are

closer to the CPU,
while others are far - :n n:

iiaeeea
away. Wrong data
ieeesa

placement can hurt - :u n:
performance.

I/O
Controller

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Modern NUMA System

I/O
Controller

ns = nanoseconds =

1 billionth of a

] /0
second (10
seconds)

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Another system (cell phones)
ARM big.LITTLE

Cluster Cluster

core core
b , o .

Interconnect for Coherency

Power-hungry Energy-efficient

Performance-driven background tasks
mission-critical tasks

Why learn systems programming?

= Key takeaway: As a systems programmer, you can
advise the OS (or any resource manager) to make the
best use of the underlying hardware

= We will teach you how you can build applications that
hook up with the kernel and do just that and other

interesting things

= We won’t build: CPU, OS, compiler, here

More Examples of System Features

. NUMA

= Heterogeneous multicore processors (e.g., big.LITTLE)

= Persistent memory (e.g., Intel Optane Persistent memory)
= CPU-FPGA platforms

= Computational storage devices (CSD)

= Programmable network interface cards

= Hyperthreading

= Turbo boosting, low-power modes

= Single Instruction Multiple Data (SIMD) instructions

= ML accelerators

= Some recent additions to ISA for hardware cache mgmt.
= Dynamic voltage and frequency scaling (DVFS)

= Processing in Memory (PIM)

= Heterogeneous-ISA multicore processors

= Remote memory

= Single-ISA multicore processors

= Intel Cache Allocation and Monitoring Technology

= Memory-semantic solid-state drives (SSDs)

= CXL-based memory expansion

= Software defined storage

Networking

" Web, social media, email, online games, all use
the networking

= We will learn the basics of client-server model

= Writing simple networking applications in C

COMP2310: Holistic View of
Computer System

CPU chip

Register file

PC

[ALU

JC

Bus interface

System bus

Memory bus

|

—2

I/O
bridge

e L
memory

ﬁ}

Expansion slots

<

<

J

USB Graphics
controller adapter
Mouse Keyboard Monitor

I/0 bus

Disk Network
controller adapter
S

[Network }

Course Perspective

" Most systems courses are Builder-Centric
= Computer Organization (COMP2300), Microarchitecture
" Build a CPU. Implement an ISA

= QOperating Systems (COMP3300, Alwen Tiu)
" |mplement portions of operating system

= Compilers (COMP3710, Tony Hosking)
= Write compiler for a simple language

= Computer Networks (COMP3310)
" Implement and simulate network protocols

Course Perspective

= COMP2310 is programmer-centric

" By knowing more about the underlying system, you can be
more effective as a programmer

" Enableyouto
= Write programs that are more reliable and efficient
" |ncorporate features that require hooks into OS

= E.g., concurrency, sighal handlers

= Things you will not see elsewhere or are required background
knowledge

" Not a course for dedicated hackers
= We aim to bring the hidden hacker inside you!

Role within CS Curriculum

COMP1100

\ 4

COMP2300

\ 4

COMP2310
Note: Not a pre-req for all courses by ANU policy

\

= Software Security

= Operating Systems

= Compilers

= Computer Networks

= High Performance and Scientific Computing
= Parallel Systems

= Computer Graphics

= Algorithms

= Databases

Content & Topics

58

Primary Textbook

= Textbook really matters for the course (problems, lectures, labs)
" Textbook is not “just” a recommendation
= Warning: Paperback international version has “some” errors

THIRD EDITION

COMPUTER SYSTEMS

Ko V1, X3 s ’ /a

Computer Systems
- AProgrammer’s Perspective

"L ""Vﬁ«do:oﬁton,._ :

" Randal E Boyanc» David R, O'Halaron |

BRYANT ¢ O'HALLARON

ALWAYS LEARNING PEARSON

Useful Books on C (optional)

Kernighan & Ritchie, The C Programming
Language, 2nd Edition

* “ANSI” (old-school) C P —
* Not too serious about things we now THE
Slightly advanced consider critical
more practical advice,
.
modern

EFFECTIVEC

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Textbook: Electronic edition available for ANU students

olb@oviensEREeEale~00O0HERODGG @ :BOGHEON Elojadl¢|e[¢[0/o/He|w ee(0dm 0D oD v DD - «elanzenREOD B s x + v

> Cc a prog virtual.anu.edu, i i =5893751 b % O**0@ :
;‘1?0“:1; Central™ Search Bookshelf Settings~ @ ign In
Keyword, Author, ISBN, and more Advanced Search Browse Subjects Australian National University

Computer Systems: a Programmer's Perspective, Global Edition
Randal Bryant, David O'Hallaron, Randal Bryant, David O'Hallaron, Randal Bryant, David O'Hallaron, Randal Bryant, and David O'Hallaron

Availability Book Details

Computer Systems
Apogorers g,

Your institution has access to 3 copies of this book. TITLE

Computer Systems

MR Read Online pages remaining for copy (o 7) comon
& Download Book pages remaining for PDF 3

B Resd oniine & Download PDF Chapter print/chapter download s AUTHORS
Getupto 57 pages,use any POF software, docs nct

Randal Bryant,

¥
G exire. David OHallaron,
& Download Book Randal Bryant,
David O'Hallaron,
Randal Bryant,
Description David OHallaron,

Randal Bryant,
For courses in Computer Science and Programming Computer systems: A Programmers Perspective explains and David O'Hallaron

common among all computer systems and how they application
performance. Written from the programmer's perspective, this book strives to teach students how

%4 Add to Bookshelf

@ share Link to Book

UsLISHER
B3 cite Book
Show more Show more

Table of Contents

Tags
Front Cover) Downioad PDF Ml Read Oniine
pp 45 pages e e
angneetng | camputrscience aptems
Dedication {8 Download PDF MMl Read Online.
PP 56;2 pages Browse Tags
Contents {8 Download PDF MMl Read Online.
PP 7-18; 12 pages. Enrichment by
Syndetics Unbound
Preface {8 Download PDF MMl Read Online.
PR 19:34;16 pages
About the Authors &) Download PDF Ml Read Online.
PP 35:36;2 pages
Chapter 1: A Tour of Computer Systems &) Download PDF Ml Read Online
PP 37:64;28 pages
* Show Subsections
Part I: Program Structure and Execution Download PDF M Read Oniine
PP 65702 638 pages What can | do?
* Show Subsections
Part Il: Running Programs on @ System Download PDF Bl Read Oniine
pp 703922 220 pages What can| do?
* Show Subsections
Part Ill: Interaction and Communication Download PDF B Read Online

between Programs Whatcantdo?
op5231076;154 pages

» Show Subsections

CMU 213

Authors of the book at the Carnegie Mellon University created a
course to accompany with the book

Lecture slides, problem sets, exams, labs, etc
(Acknowledgement) We use the material from the course

= We encourage you to explore the CMU course website

Note: Their course combines aspects of COMP2300 and
COMP2310 into one course

Their starting point: COMP2300 starting point

Their CPU coverage is limited (programmer’s perspective)

Key Point: Do not ignore COMP2310 & blindly follow CMU213

CMU 213

olb@ov o EREe b al6~00O0HER- | ¢HE - EOCOHDO Do(E 2| ea oloal¢[e|#|0/=He|wee0® D00 Eu DB - e s eBEOD LB« x +

<« C @ cscmuedu/~213/ e % O+ x0@
Autt..

Schedule 15-213/15-513 Introduction to Computer Systems (ICS)

Labs

Summer 2023
Assignments

Exom « 15-213 Pittsburgh: Tue, Wed, Thu, Fri 12:30 PM-01:50 PM, POS 152, Brian Railing
Course Syllabus

Staff 12 units
— The ICS course provides a programmer’s view of how computer Systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture,
Resources where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation.
Style Guideline
. SIEARED Course Syllabus
FAQ
Academic Integrity,
Your Well Being What's New?
. S - First day of class is Tuesday, May 16th.
Lecture Videos
g Help
Autolab
Git server Piazza Piazza
Piazza Email Please use Piazza for help, instead of email. Posts to Piazza are private by default.
. Canvas Tutoring TBD

Office Hours TA office hours use an online queue for both in-person and remote office hours.

« In person: Please specify a room number when adding yourself to the queue
« Remote: Please specify a Zoom meeting ID and select the REMOTE tag in the queue.
« If you are remote but do not select the tag, we reserve the right to kick you from the queue as we cannot filter your question to the remote TA's.

Faculty office hours will be at the locations and times listed at the bottom of this page.
Course Materials

Schedule Lecture schedule, slides, recitation notes, readings, and code
Labs Details of the labs, due dates, and policies
Assignments Details of the written assignments, due dates, and policies
Exam Information about the final exam
Lab Machines Instructions for using the lab machines

Resources Additional course resources
Course Information

For details See the course syllabus for details (below is just a few overview bits).

Lectures See above

Textbooks Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective, Third Edition, Pearson, 2016

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition, Prentice Hall, 1988

Credit 12 units
Grading Composed from total lab performance (50%), total written assignment performance (20%) and final exam performance (30%).
Labs There are 8 labs (L0-L7), not evenly weighted. See the labs page for the breakdown.
Exam There is a final exam, held during exam week, closed book.
Home https://www.cs.cmu.edu/~213
ns Piazza, office hours

Que:
Canvas Canvas will be used (i) to handin written assignments, (ii) to post lecture videos, and (iii) to conduct ungraded, in-class quizzes. Your grading information will be kept up to date in Autolab, not in Canvas.
Course Directory /afs/cs/academic/class/15213-523/

Instructors

Name Brian Railing
Contact bpr@cs.cmu.edu
Office GHC 6005
Office Hours After lecture 02:00 PM-03:00 PM, GHC 6005

High-Level to Low-Level Translation

= Cprogramming to x86-64 assembly
= Compilation steps

= Array allocation and access

= Heterogenous data structures

= Optimizations

= Security vulnerabilities

COMP2310 is not a C Programming Course

" Emphasisis on program transformation
" How does high-level code look in assembly?
= Do compilers always do the right thing?

" Programmers WILL write more efficient code if they have insight
into transformation steps

" The power to reverse engineer object code and binaries
= A.k.a. hackers! Security professionals’ bread and butter

Qualified Answers to C Questions

* What are pros and cons of programming in C?

= Why should you NEVER use Cin 20227 Why should everyone
learn C (and then program in whatever language they like?

= Whyis Cinsecure and what can be done about that?

= Why is Linux OS written in C? And many other datacenter
software stacks?

= Whyis Cdominant in the embedded domain?

Exceptional Control Flow

= Processes
" The illusion that each program has the entire CPU for its
own use even though many programs might be co-running
= Exceptions and signals
= Address spaces

= How does Unix-like systems enable the process abstraction

= Linux APl and its use. (Key idea: not implementation of API)

Memory Hierarchy

1cycle On CPU

Registers .
Primary

~10 cycles Storage

Caches

Faster Access,
Higher Cost 3
Main Memory 100 cycles B

Slower Access,
Lower Cost

~1 M cycles
Flash Disk

Secondary

10 M cycles Storage

Traditional Disk

! / Remote Secondary Storage (e.g., Internet) \

The Memory Hierarchy

Storage Capacity

Linking

= The process of collecting and combining various pieces of
code and data into a single file that can be loaded (copied)
into memory executed

= Topics
= Static and dynamic linking
" QObject files, relocatable code
= Symbols, symbol resolution, symbol tables
" Position independent code
" Library interpositioning

Virtual Memory

= [llusion that a program has the entire physical address space for
its own use even though many programs may be co-running

= Topics
= Address translation
" Translation-lookaside buffers
" Page tables and page fault
" Dynamic storage allocation
" Garbage collection

System-Level I/O

= Managing storage device (e.g., disk) as a reliable and easy-to-
use persistent storage resource

= Topics
" How to use the Linux filesystem API
= Not a course for learning to implement filesystems
= Appropriate APl usage is an art in its own right!
= System call and memory-mapped |/O
" [ncludes aspects of virtual memory

Network Programming

= High-level and low-level I/O contd., with extension to network
programming

= \Very similar API for storage and networking I/O

= |nternet services, web servers

Concurrent Programming

Concurrent server design

Threaded server versus process-based server
" Lastyear’s assignment’s key theme

/0 multiplexing with select

Some aspects of parallel programming
= Stepping-stone to parallel systems course

Java Virtual Machine (JVM)

" Java programming language has an entire
runtime to deliver on its key promises
" Memory safety + portability
" Nothing comes for free in systems!

= We will cover fundamentals of JVM
internals

= Willinform us why Java is slower than C
and what can be done about that
" Virtual machines is a powerful idea!

Big Data Frameworks

Big data frameworks today process very large datasets

They stress every aspect of key COMP2310 topics
= Memory

= Storage

= CPU

" Concurrency and networking

We will study a selection of datacenter frameworks
" Lucene search engine, RocksDB key-value store, Redis
cache, Spark for machine learning analytics

Big Data Frameworks

= Typical data processing framework you can aim to implement
after COMP2310
i
API
| In-memory +-r
' (_af_he_ requests
‘ (___14:" (:T[t { Application code Loync — _
. "T" data is cached N \\ . \\
| It [*— y | Fulktext —— | Message
\ cach b: | | index —— | que
— _—
changes v_.'l
\L - S
'Outsid:2 world"
Figure 1-1. One possible architecture for a data system that combines several
components.
|

From book: Designing Data Intensive Applications, Page 5

Assessment

77

Checkpoint 1

= Reverse engineering x86-64 object code

" Proficient in low-level C programming
" pointers, string manipulation, etc

Assignment 1

= |mplementing a memory allocator or malloc() from scratch

= (Open-ended extensions on top of a base spec

Checkpoint 2

= Concurrency fundamentals

" Pthread synchronization

Assignment 2

= Related to networking with aspects of concurrency
= Last year assighment was a web proxy with a user-level cache

= Some changes this year but similar in inspiration

Quiz 1

" Processes and signals
m Tests first four weeks of content

= Lab # 4 content is assessed indirectly by the first quiz

Quiz 2

" Memory allocation, virtual memory, cache, storage, some
database concepts

= Tests weeks 4 — 7 content

= Lab # 6 content is assessed indirectly by the first quiz

Final Exam

= Everything!
eve rything § Similar and opposite words Usage examples

Dictionary Translate to Choose language

Definitions from Oxford Languages - Learn more

© everything
pronoun /
1. all things.

"they did everything together"

Similar: every single thing v

2. the current situation; life in general.
"how's everything?"

= |nclusive of week 12
= Everylab

= Everyslide

Assessment Schedule

2-week window to attempt quizzes
8 — 9 days for checkpoints
~ 2 weeks for assignments

Checkpoint 1

Quiz 1

Assignment 1

Quiz 2

Checkpoint 2

Assignment 2

Release Due
Aug 6 Aug 14
Aug 14 Aug 28
Aug 23 Sep 6
Sep 18 Oct 2
Sep 27 Oct 6
Oct 10 Oct 25

Breakdown

= Checkpoint 1 (5%)
= Checkpoint 2 (5%)

= Quiz1(2.5%)
= Quiz 2 (2.5%)

= Assignment 1 (20%)
= Assignment 1 (20%)

= Final Exam (45%)

Admin & Logistics

Succeeding in this course

= Pay attention to lecture content
= Finish all labs
= Read the textbook

= Submit all assessments

Assessment Difficulty

= Assignments are manageable if you start early
" Possibly the most “adventurous” exam of your ANU journey
= Check out the past year’s exam and rubric on the website

= |f you spend many hours finishing the first two labs and struggle
with checkpoint 1
" Make sure you finish COMP2300 first
" Reconsider taking this course if it’s not compulsory
" Focus on the key points in the last slide

2022 Exam

[Australian
==/ National Q
=7 University

Home Lectures Labs Assessments Resources Problems Policies Help

COMP2310 / Problem Sets and Exams / Practice Exams

Practice Exams

Exams

Past Exams

e 2022 Exam
e 2022 Exam (Solution/Rubric)

Readings: Book Chapters

1 COMP2300 Recommended
2 COMP2300 Not required

3 Weeks 1 -2 Full except 3.11
4 COMP2300 Not Required
5 Weeks 1 -2 Selected

6 Week 3 Full

7 Week 12 Full

8 Week 4 Full

9 Weeks 5 -6 Full

10 Week 7 Full

11 Week 9-10 Full

12 Week 11 Full

Practice Problems

Try practice questions in book (answers in the book)

U 1> @ amam— n,d then WIITE LIE 1ESULL DACK to o g
oy

W d operamn
hen the second Op! T,
A ,g&

from memory, perform U

Lé

Practice Problem 3.8 (solution p2
Assume the following values are S
registers:

Address Value

0x100
0x108 0xAB
0x110 0x13
0x118 0x11

Fill in
in terms of t

1 the lfollowmg Instruction
L be updated and s

LICY WULK, Wo vrass vess
ou w!
hits and misses. It will also become clear to'y ny programs with 800]

ith poor locality. Nonetheless, k “t«
typically run faster than programs wi il
glance at a source code and getting a high- -level feel for the 10Cﬂlny intheg: h(
is a useful and important skill for a programmer to master.

Practice Problem 6.7 (solution ’
Permute the loops in the followmg

Cheating/Plagiarism

= Copying code, retyping by looking at a file
= Describing a solution to someone else so they can then type
= Searching the web for solutions to quiz or assignment
= Lastyear’s iteration of COMP2310, other universities’
solutions in English or another language

= Copying from a github repository with minor or no modification

= Use of Al to generate your code

Cheating/Plagiarism

= Helping others by supplying code
= Debugging their code

= Telling them how to put together different code snippets to reach
a working solution

Not Cheating

= Explaining how to use a tool
= GDB, GCC, Valgrind, Editor, VSCode, Shell

" High level discussions
= Not pseudo-code, not specific algorithms

= Using code supplied with the book
= Using Linux manpages

= Do notdothis: COMP2310 malloc solution 2022

Cheating Consequences

= Action to uphold integrity begins at the time of discovery (not at
the end of course)

= Lastyear, | read all submitted code from every student (but we
will use automated tools as well)

= Some students were unable to pass the course due to academic
Integrity

= Bottomline: We want you to get the experience of dealing with
systems programming issues from scratch!

Tutorlals/ Labs

Labs are a critical component of this course (one every week)
= Handout will be posted on the website “Labs” before each lab
= First 2 labs

= Becoming comfortable in C: pointers, bit-level manipulation,malloc () /free () 7))

= Lab 3 is assessed as the first checkpoint (no help from tutors) =

Q

= |ab4)
= Process APl and signal handling ‘;.

" lab5-6 "’

= We will teach you to write a basic memory allocator, i.e., implementation of malloc ()
= Lab 6 (assighment 1 week)

= lab7

= Storagel/O
= lab8

= Concurrency fundamentals
= lab9

= Concurrency & Networking (sockets API)
= Labs 10, 11
= Assignment 2, threads & concurrency (pthreads)

Networking
&
concurrency

Foundation

Assignment Submission

= Extensions will be granted on a per-request basis
" Via the extension app

= Assignment submissions are handled via Gitlab
" You will learn more about it in the labs
"= Make a habit of using Git properly
" Push often, always pull the latest

Each student submits their own work. No groups.

Note that: Student + Al = Group

Rough Plan for Lectures

Overview and x86 assembly

Optimizations and security implications (x86 as a vehicle)
Memory hierarchy

Processes and signals (abstraction for CPU, memory, 1/0)
Virtual Memory (abstraction for main memory)

Dynamic memory allocation (memory allocator design)
Big data frameworks that are memory and I/O intensive
Storage and File |/O (abstraction for |/O devices)
Networking

10 Concurrency

11. Linking

12. Revision (time permitting!)

O 0N UL WNE

Course Organization (1)

" First 6 weeks lay the foundation of systems programming
" They deal with CPU and memory virtualization
" CPU and memory as a raw resource is not safe for multi-
user systems and real programs

Processes
| “Instruction set | -
' architecture Virtual memory
! ! A !
OS abstractions ! Y Files \
i i i AL i
1 1 1 /d N

hardware | Operating system Processor Main memory I/O devices

Course Organization (2)

= Next week deals with abstraction for storage I/O devices
= Without storage and files, no serious application can work
= Next week: puts everything together to discuss real-life big
data processing frameworks

OS abstractions

hardware

Processes
| “Instruction set | -
' architecture Virtual memory
| : A |
: . Y)
! ! ! Files !
: : : A :
1 1 1 f \q
Operating system Processor Main memory I/0 devices

Course Organization (3)

And finally, every system must communicate with other systems
(world wide web)
= We move to networking

= Networking is also I/O so an extension of storage 1/0 &

consumers of information
" |n comes concurrency!

Finally, we end the course with linking (how large programs that
use external libraries are compiled efficiently and safely)
= |deally fits in week 4, but we need to approach memory early

Welcome and Have Fun!

