
Convener: Shoaib Akram

Shoaib Akram
School of Computing, (Jan 2020 –)
Ph.D., 2019
Teaching: Computer Organization & Program Execution (semester 1)
 Systems, Network, and Concurrency (semester 2)
Research: Fast analytics over big datasets with a focus on emerging
memories and fast storage devices

data we will
produce in one
year

Quick Logistics
Course webpage: https://comp.anu.edu.au/courses/comp2310/
Lectures (on the website)

§ Lecture slides
§ Lecture videos (Echo360)
§ 2 hours reserved (some lectures may be shorter, demos etc)

Policies (will be up shortly)
§ General conduct, assignment submissions, support, management,

grading

Resources
§ Past exam with solution and rubric (up already)
§ Stuff needed to finish the labs and assignments

https://comp.anu.edu.au/courses/comp2310/

Edstem
We will use edstem for all communication

§ If you ignore edstem, you will miss key
announcements
§ Drop-in sessions, make-up lectures,

problems, exercises, corrections, lecture
timing

§ Ask questions on edstem first (most
likely you will receive a response
quickly)

§ Ask instructors private questions on
edstem

§ Students are added/dropped automatically

Course Email

comp2310@anu.edu.au

§ Do not send me a direct email except for requests:
§ Super urgent
§ Personal
§ EAP-related

Motivation

5

Recall: How do we make electrons
do the work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Recall: How do we make electrons
do the work?
§ Using a sequence of systematic transformations

§ Developed over six decades

§ Each step must be studied and improved for the whole
stack to work efficiently

§ We call the steps of the process: Levels of transformation OR
Transformation hierarchy

§ At each level of the stack, we have choices
§ Language: Java, Python, Ruby, Scala, C++, C#
§ ISA: ARM, x86, SPARC, PowerPC, RISC-V
§ Microarchitecture: Intel, AMD, IBM

§ If we ignore any of the steps, then we cannot
§ Make the best use of computer systems
§ Build the best system for a set of programs

Recall: Transformation Hierarchy

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Program
Execution

Computer
Organization

Computer
Architecture2300

2300

2300

❌

2310

2310

Recall: Transformation Hierarchy & Us

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Recall: Hardware and Software

Hardware

Software

ISA = Hw/Sw
boundary/interface

§ The notion of abstraction

§ Hardware versus software

Recall: Two Recurring Themes

Recall: The Notion of Abstraction
§ Abstraction: Know components from a high level of detail

Apple M1 Chip
Billions of transistors
All working in parallel

No human (programmer) can track
10 billion elements. Computer systems
work because of abstraction!

Recall: The Notion of Abstraction
§ Abstraction: View the world from a higher level

§ Focus on the important aspects
§ Input? Output? X = ADD or MULTIPLY

§ Raise the level of abstraction for productivity and efficiency

§ But what if the world below does not work as expected?
§ To deal with it, we need to go below the abstraction layer

§ Deconstruction: To un-abstract when needed
§ Important skill

X
input output

Recall: The Notion of Abstraction
§ We will use this theme a lot!

§ Each layer in the transformation
hierarchy is an abstraction layer!

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

Recall: Hardware versus Software
§ Hardware versus software

§ Hardware: Physical computer
§ Software: Programs, operating systems, compilers

§ One view: Ok to be an expert at one of these

§ Hw and Sw: Two parts of the computer system
§ COMP2300 view: Knowing the capabilities/limitations of

each leads to better overall systems

Software
Applications

Hardware
Systems

Requirements

Opportunities

COMP2310
deepens this
knowledge

Role of Compiler
§ What does a compiler do?

§ Translates high-level code into assembly
§ More generally, the compilation toolchain generates machine

code in a sequence of stages:
§ translate a group of related source files into assembly
§ resolve inter-dependencies between source files (linking)
§ handle the linking of any external libraries
§ perform optimizations (make use of special hardware features)

§ It is more complex than line-by-line C to assembly translation
§ Learning the process is important from a performance, efficiency,

security, and hacker perspective

Turning C into Object Code (details later)
text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc –c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Role of Operating System (OS)
§ Operating system

§ Enables safe abstractions of hardware resources
§ Virtualizes hardware for use by programs

§ Gives each program the illusion that it has the entire
resource for itself

§ Manages the hardware resources for efficient and safe working
of the system

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

COMP2310, Goal # 1
§ Deepen the understanding of how applications interact with

compiler and OS, and hardware

§ Today, critical for software to be correct, performant, efficient,
secure

§ Demystify how programs are loaded into memory and executed
§ What happens when you click an icon to start an

application?
§ Or type the program name into a shell program and press

enter

COMP2310, Goal # 1 (cont’d)
§ How are C programs translated into x86-64 assembly?

§ Compilation and linking fundamentals

§ Object files, executable formats, etc

§ Implementation of loops, procedure calls, data
structures (reprise)

§ Optimizations done (not done) by the compiler

Assembly is Important!
§ Intel x86-64 ISA widely used in server hardware

§ Tuning performance

§ Understanding optimization done (not done) by the compiler
§ Understanding behavior of programs and exploiting choice via

compile-time options

§ Writing systems software (device drivers)

§ Fighting security vulnerabilities

§ Behavior of buggy programs

COMP2310, Goal # 1 (cont’d)
§ What does the memory hierarchy of looks like?

§ How do caches work in more detail?
§ What is their impact on program behavior?

(programmer’s perspective)

§ How does main memory differ from a disk drive?

§ How does device behavior impact the design of computer
programs?

Memory matters!

Meta datacenters, 2022

§ Memory is a limited resource
§ Must be carefully managed

§ Memory bugs are hard to detect
§ Understanding pointers and

memory allocators helps
§ Memory performance is not always

uniform
§ Caches, virtual memory effects

need to understood

Memory matters!
void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms4.3ms 2.0 GHz Intel Core i7 Haswell
§ Hierarchical memory organization
§ Performance depends on access patterns

§ Including how step through multi-dimensional array

Memory Hierarchy

COMP2310, Goal # 1 (cont’d)
§ How does the operating system abstract hardware resources

for use by application programs?
§ Processes
§ Virtual memory
§ Files

§ All these are abstractions the OS uses to isolate computer
programs from each other
§ Our focus is NOT on (re)building these “mechanisms” but

write programs to use them

COMP2310, Goal # 2
§ Understand how applications use the operating system

(OS) and the C standard library for writing real-world
applications

§ Search engines

§ Databases

§ Android memory manager

COMP2310, Goal # 2
§ Write low-level code that interfaces with the operating system

kernel and C library

§ What interface (and interesting system calls) does the
operating system provide?

§ Learn to
§ Implement memory allocators, read/write from/to storage

disks and SSDs
§ Communicate with the outside world (networking), and

manage concurrently running processes and applications

User Code vs. Kernel Code
§ OS manages the hardware, interposed b/w the program

and hardware

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

§ Application code that runs on top of OS or any resource
manager in general is user code (or user program)

§ The code that manages the hardware is kernel code
§ CPU is either in user mode or kernel mode

What is OS kernel?
§ Core component of OS that manages the hardware

§ Device management (keyboard, mouse, display, etc)
§ Memory (RAM) management
§ Network management
§ Storage management
§ Filesystem code

§ What else is in the OS?
§ Shell
§ GUI
§ Utilities

What does an OS do?
§ Manages the hardware, interposed b/w the program and

hardware
§ Our high-level view of system (no network for simplicity)

§ OS manages CPU (processor), memory (RAM), input/output (I/O)
devices (keyboard, disk, display, network), and files on disk

Main Memory Storage

1
da

y

Few years

How do applications use the OS?
§ OS provides services to be accessed by user programs
§ Programs can make use of “system calls” on Linux and

Windows application programming interface (“API”)
§ Allocate memory for me
§ Read “N” bytes from file F into memory location “M”
§ Write “N” bytes from memory location “M” into file F
§ Establish a network connection to www.anu.edu.au
§ Write “N” bytes to the network connection
§ Put me to sleep

http://www.anu.edu.au/

How applications use the OS?
§ OS provides an interface for applications to use

§ Programs access hardware/device capabilities
through this interface

§ Different hardware à Same interface
§ Interface is constant, its implementation is OS specific

§ We need to learn this interface to write
interesting applications
§ Learning “just enough” details of the implementation

to write correct, efficient, secure programs

Goal # 3, Systems Programming
§ All these aspects will help you become a systems programmer
§ Systems programmers

§ write low-level tools such as compilers, operating systems, and
debuggers

§ they must have an acute awareness of the environment, e.g.,
Linux versus Windows

§ they must use system calls for the specific OS
§ contrast with Python, Ruby, Java programs for business or ML

§ high-level libraries abstract OS and hardware details
§ C library abstracts OS/hardware but many Linux C programs

interface with the kernel API

Example of Pure User-Level C Program

§ Will not crash your machine if you did
something wrong

§ Programmer’s creativity is more critical in
solving the problem
§ Can get by not knowing how array looks

like in memory
§ Uses a C library function for printing to the

screen
§ C library takes care of making it happen for the

programmer

Example of Pure System-Level C Program

§ Device driver code
§ Most likely crash your machine if you did

something wrong
§ Requires intricate knowledge of the hardware

for which driver is being written
§ Uses Linux kernel sources to reuse

functionality
§ Even “printf()” is not available
§ No C library

Example of User-Space System-Level C Program

§ Won’t crash your machine
§ But program is likely to

crash if something is wrong
§ Uses system call wrappers

provided by C library
§ Uses “interesting” system calls

§ fork() spawn a new
virtual CPU

§ mmap() instantiates a
region in the process’
address space

Focus of this course!

CPU Trends

Main Memory Storage
1

da
y

Few years

2X transistors/chip
every two years

§ Dennard scaling: As transistors get smaller, their power
density stays constant

§ In every technology generation, the area and power
consumption of individual transistors is halved
§ With twice the number of transistors, power consumption

still stays the same

Dennard scaling broke down b/w 2005-2007
 → As we add more transistors, power consumption for
 for a chip with the same area increases

End of Dennard Scaling

Implication: Frequency cannot increase any
further because that would make the power
problem even worst → Industry shifted to
multicores!

End of Dennard Scaling

https://silvanogai.github.io/posts/dennard/

https://www.maketecheasier.com/why-cpu-
clock-speed-isnt-increasing/

Uni-Processor Performance

technology: 35%
uarch: 17%

technology
breakdown
→ multicore

ISA diversity
100X in freq
gains

ISA hegemony
Freq gain < 2X

Pe
rf

or
m

an
ce

 re
la

tiv
e

to

VA
X-

11
/7

80
, 5

 M
H

z

Modern System

§ Software must exploit parallelism for performance

Concurrency and Parallelism
§ Concurrency: When the execution of two programs

overlap in time
§ Concurrency has always been important

§ Multiple users time-sharing a uniprocessor system
§ Process an incoming request from the network,

while the user is watching a video recording

§ Parallelism: When two programs use dedicated resources
(e.g., two separate CPUs) to run at the same time
§ Multicores have made parallelism critical to get more

performance out of modern hardware

Concurrency and Parallelism
Real-Life Example

Managing System Resources
§ Many interesting debates in computer systems

§ RISC vs. CISC
§ Compiler vs. hardware exploitation of ILP
§ Manual (C++) vs. automatic memory management (Java)

§ One more debate
§ Should “certain” hardware features be exposed to user-level

application or not?
§ One camp: User-level programmer possesses better knowledge

of application logic than hardware or compiler or OS
§ They can “tune” the feature to make the optimal use of it

§ Other camp: They may also do something wrong
§ Leave it to the hardware or compiler or OS

Managing System Resources: Examples
§ CPU registers are exposed to software (OS and user-level)

§ CPU caches are managed by hardware
§ We say caches are transparent to software

§ A feature X is exposed to software, but OS utilizes the feature and
user-level code has no way to access it
§ Feature X is transparent to user-level code
§ Feature X is visible to OS, or X is exposed to OS
§ Physical memory is an example (what? that’s why 2310 exists!)

Modern NUMA System

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Some memories are
closer to the CPU,
while others are far
away. Wrong data
placement can hurt
performance.

Modern NUMA System

200 ns300 ns

100 ns

ns = nanoseconds =
1 billionth of a
second (10-9
seconds)

User-space software must be aware of Non-Uniform Memory
Access (NUMA) architectures (one view)

Another system (cell phones)

Energy-efficientPower-hungry
Performance-driven

ARM big.LITTLE

background tasks
mission-critical tasks

Why learn systems programming?
§ Key takeaway: As a systems programmer, you can

advise the OS (or any resource manager) to make the
best use of the underlying hardware

§ We will teach you how you can build applications that
hook up with the kernel and do just that and other
interesting things

§ We won’t build: CPU, OS, compiler, here

More Examples of System Features
§ NUMA
§ Heterogeneous multicore processors (e.g., big.LITTLE)
§ Persistent memory (e.g., Intel Optane Persistent memory)
§ CPU-FPGA platforms
§ Computational storage devices (CSD)
§ Programmable network interface cards
§ Hyperthreading
§ Turbo boosting, low-power modes
§ Single Instruction Multiple Data (SIMD) instructions
§ ML accelerators
§ Some recent additions to ISA for hardware cache mgmt.
§ Dynamic voltage and frequency scaling (DVFS)
§ Processing in Memory (PIM)
§ Heterogeneous-ISA multicore processors
§ Remote memory
§ Single-ISA multicore processors
§ Intel Cache Allocation and Monitoring Technology
§ Memory-semantic solid-state drives (SSDs)
§ CXL-based memory expansion
§ Software defined storage

Networking

§ Web, social media, email, online games, all use
the networking

§ We will learn the basics of client-server model

§ Writing simple networking applications in C

COMP2310: Holistic View of
Computer System

Course Perspective
§ Most systems courses are Builder-Centric

§ Computer Organization (COMP2300), Microarchitecture
§ Build a CPU. Implement an ISA

§ Operating Systems (COMP3300, Alwen Tiu)
§ Implement portions of operating system

§ Compilers (COMP3710, Tony Hosking)
§ Write compiler for a simple language

§ Computer Networks (COMP3310)
§ Implement and simulate network protocols

Course Perspective
§ COMP2310 is programmer-centric

§ By knowing more about the underlying system, you can be
more effective as a programmer

§ Enable you to
§ Write programs that are more reliable and efficient
§ Incorporate features that require hooks into OS

§ E.g., concurrency, signal handlers
§ Things you will not see elsewhere or are required background

knowledge
§ Not a course for dedicated hackers

§ We aim to bring the hidden hacker inside you!

Role within CS Curriculum

COMP2310

COMP2300

COMP1100

§ Software Security
§ Operating Systems
§ Compilers
§ Computer Networks
§ High Performance and Scientific Computing
§ Parallel Systems
§ Computer Graphics
§ Algorithms
§ Databases

Note: Not a pre-req for all courses by ANU policy

Content & Topics

58

Primary Textbook
§ Textbook really matters for the course (problems, lectures, labs)

§ Textbook is not “just” a recommendation
§ Warning: Paperback international version has “some” errors

Useful Books on C (optional)
Kernighan & Ritchie, The C Programming
Language, 2nd Edition
• “ANSI” (old-school) C
• Not too serious about things we now

consider criticalSlightly advanced,
more practical advice,
modern

Textbook: Electronic edition available for ANU students

CMU 213
§ Authors of the book at the Carnegie Mellon University created a

course to accompany with the book
§ Lecture slides, problem sets, exams, labs, etc
§ (Acknowledgement) We use the material from the course

§ We encourage you to explore the CMU course website
§ Note: Their course combines aspects of COMP2300 and

COMP2310 into one course
§ Their starting point: COMP2300 starting point
§ Their CPU coverage is limited (programmer’s perspective)
§ Key Point: Do not ignore COMP2310 & blindly follow CMU213

CMU 213
§ Authors of the book at the Carnegie Mellon University created a

course to accompany with the book
§ Lecture slides, problem sets, exams, labs, etc
§ (Acknowledgement) We use the material from the course
§ We encourage you to explore CMU website

High-Level to Low-Level Translation
§ C programming to x86-64 assembly

§ Compilation steps

§ Array allocation and access

§ Heterogenous data structures

§ Optimizations

§ Security vulnerabilities

COMP2310 is not a C Programming Course
§ Emphasis is on program transformation

§ How does high-level code look in assembly?

§ Do compilers always do the right thing?

§ Programmers WILL write more efficient code if they have insight
into transformation steps

§ The power to reverse engineer object code and binaries
§ A.k.a. hackers! Security professionals’ bread and butter

Qualified Answers to C Questions
§ What are pros and cons of programming in C?

§ Why should you NEVER use C in 2022? Why should everyone
learn C (and then program in whatever language they like?

§ Why is C insecure and what can be done about that?

§ Why is Linux OS written in C? And many other datacenter
software stacks?

§ Why is C dominant in the embedded domain?

Exceptional Control Flow
§ Processes

§ The illusion that each program has the entire CPU for its
own use even though many programs might be co-running

§ Exceptions and signals

§ Address spaces

§ How does Unix-like systems enable the process abstraction

§ Linux API and its use. (Key idea: not implementation of API)

Memory Hierarchy

Linking
§ The process of collecting and combining various pieces of

code and data into a single file that can be loaded (copied)
into memory executed

§ Topics
§ Static and dynamic linking
§ Object files, relocatable code
§ Symbols, symbol resolution, symbol tables
§ Position independent code
§ Library interpositioning

Virtual Memory
§ Illusion that a program has the entire physical address space for

its own use even though many programs may be co-running

§ Topics
§ Address translation
§ Translation-lookaside buffers
§ Page tables and page fault
§ Dynamic storage allocation
§ Garbage collection

System-Level I/O
§ Managing storage device (e.g., disk) as a reliable and easy-to-

use persistent storage resource

§ Topics
§ How to use the Linux filesystem API

§ Not a course for learning to implement filesystems
§ Appropriate API usage is an art in its own right!

§ System call and memory-mapped I/O
§ Includes aspects of virtual memory

Network Programming
§ High-level and low-level I/O contd., with extension to network

programming

§ Very similar API for storage and networking I/O

§ Internet services, web servers

Concurrent Programming
§ Concurrent server design

§ Threaded server versus process-based server
§ Last year’s assignment’s key theme

§ I/O multiplexing with select

§ Some aspects of parallel programming
§ Stepping-stone to parallel systems course

Java Virtual Machine (JVM)
§ Java programming language has an entire

runtime to deliver on its key promises
§ Memory safety + portability
§ Nothing comes for free in systems!

§ We will cover fundamentals of JVM
internals

§ Will inform us why Java is slower than C
and what can be done about that
§ Virtual machines is a powerful idea!

Big Data Frameworks
§ Big data frameworks today process very large datasets

§ They stress every aspect of key COMP2310 topics
§ Memory
§ Storage
§ CPU
§ Concurrency and networking

§ We will study a selection of datacenter frameworks
§ Lucene search engine, RocksDB key-value store, Redis

cache, Spark for machine learning analytics

Big Data Frameworks
§ Typical data processing framework you can aim to implement

after COMP2310

§ From book: Designing Data Intensive Applications, Page 5

Assessment

77

Checkpoint 1
§ Reverse engineering x86-64 object code

§ Proficient in low-level C programming
§ pointers, string manipulation, etc

Assignment 1
§ Implementing a memory allocator or malloc() from scratch

§ Open-ended extensions on top of a base spec

Checkpoint 2
§ Concurrency fundamentals

§ Pthread synchronization

Assignment 2
§ Related to networking with aspects of concurrency

§ Last year assignment was a web proxy with a user-level cache

§ Some changes this year but similar in inspiration

Quiz 1
§ Processes and signals

§ Tests first four weeks of content

§ Lab # 4 content is assessed indirectly by the first quiz

Quiz 2
§ Memory allocation, virtual memory, cache, storage, some

database concepts

§ Tests weeks 4 – 7 content

§ Lab # 6 content is assessed indirectly by the first quiz

Final Exam
§ Everything!

§ Inclusive of week 12

§ Every lab

§ Every slide

Assessment Schedule

Release Due

Checkpoint 1 Aug 6 Aug 14

Quiz 1 Aug 14 Aug 28

Assignment 1 Aug 23 Sep 6

Quiz 2 Sep 18 Oct 2

Checkpoint 2 Sep 27 Oct 6

Assignment 2 Oct 10 Oct 25

§ 2-week window to attempt quizzes
§ 8 – 9 days for checkpoints
§ ~ 2 weeks for assignments

Breakdown
§ Checkpoint 1 (5%)
§ Checkpoint 2 (5%)

§ Quiz 1 (2.5%)
§ Quiz 2 (2.5%)

§ Assignment 1 (20%)
§ Assignment 1 (20%)

§ Final Exam (45%)

Admin & Logistics

87

Succeeding in this course
§ Pay attention to lecture content

§ Finish all labs

§ Read the textbook

§ Submit all assessments

Assessment Difficulty
§ Assignments are manageable if you start early

§ Possibly the most “adventurous” exam of your ANU journey

§ Check out the past year’s exam and rubric on the website

§ If you spend many hours finishing the first two labs and struggle
with checkpoint 1
§ Make sure you finish COMP2300 first
§ Reconsider taking this course if it’s not compulsory
§ Focus on the key points in the last slide

2022 Exam

Readings: Book Chapters
Chapters Topics/Weeks 2310 Coverage

1 COMP2300 Recommended

2 COMP2300 Not required

3 Weeks 1 – 2 Full except 3.11

4 COMP2300 Not Required

5 Weeks 1 – 2 Selected

6 Week 3 Full

7 Week 12 Full

8 Week 4 Full

9 Weeks 5 – 6 Full

10 Week 7 Full

11 Week 9 – 10 Full

12 Week 11 Full

Practice Problems
§ Try practice questions in book (answers in the book)

Cheating/Plagiarism
§ Copying code, retyping by looking at a file

§ Describing a solution to someone else so they can then type

§ Searching the web for solutions to quiz or assignment
§ Last year’s iteration of COMP2310, other universities’

solutions in English or another language

§ Copying from a github repository with minor or no modification

§ Use of AI to generate your code

§ Helping others by supplying code

§ Debugging their code

§ Telling them how to put together different code snippets to reach
a working solution

Cheating/Plagiarism

§ Explaining how to use a tool
§ GDB, GCC, Valgrind, Editor, VSCode, Shell

§ High level discussions
§ Not pseudo-code, not specific algorithms

§ Using code supplied with the book

§ Using Linux manpages

§ Do not do this: COMP2310 malloc solution 2022

Not Cheating

§ Action to uphold integrity begins at the time of discovery (not at
the end of course)

§ Last year, I read all submitted code from every student (but we
will use automated tools as well)

§ Some students were unable to pass the course due to academic
integrity

§ Bottomline: We want you to get the experience of dealing with
systems programming issues from scratch!

Cheating Consequences

Tutorials/Labs
§ Labs are a critical component of this course (one every week)
§ Handout will be posted on the website “Labs” before each lab
§ First 2 labs

§ Becoming comfortable in C: pointers, bit-level manipulation, malloc()/free()
§ Lab 3 is assessed as the first checkpoint (no help from tutors)

§ Lab 4
§ Process API and signal handling

§ Lab 5 – 6
§ We will teach you to write a basic memory allocator, i.e., implementation of malloc()

§ Lab 6 (assignment 1 week)
§ Lab 7

§ Storage I/O
§ Lab 8

§ Concurrency fundamentals
§ Lab 9

§ Concurrency & Networking (sockets API)
§ Labs 10, 11

§ Assignment 2, threads & concurrency (pthreads)

Sy
st

em
s

Fo
un

da
tio

n

N
et

w
or

ki
ng

&

co

nc
ur

re
nc

y

Assignment Submission
§ Extensions will be granted on a per-request basis

§ Via the extension app

§ Assignment submissions are handled via Gitlab
§ You will learn more about it in the labs
§ Make a habit of using Git properly
§ Push often, always pull the latest

Each student submits their own work. No groups.

Note that: Student + AI = Group

Rough Plan for Lectures
1. Overview and x86 assembly
2. Optimizations and security implications (x86 as a vehicle)
3. Memory hierarchy
4. Processes and signals (abstraction for CPU, memory, I/O)
5. Virtual Memory (abstraction for main memory)
6. Dynamic memory allocation (memory allocator design)
7. Big data frameworks that are memory and I/O intensive
8. Storage and File I/O (abstraction for I/O devices)
9. Networking
10. Concurrency
11. Linking
12. Revision (time permitting!)

Course Organization (1)

Processor Main memory I/O devices

Processes

Files

Virtual memory

Operating system

Instruction set
architecture

hardware

OS abstractions

§ First 6 weeks lay the foundation of systems programming
§ They deal with CPU and memory virtualization
§ CPU and memory as a raw resource is not safe for multi-

user systems and real programs

Course Organization (2)

Processor Main memory I/O devices

Processes

Files

Virtual memory

Operating system

Instruction set
architecture

hardware

OS abstractions

§ Next week deals with abstraction for storage I/O devices
§ Without storage and files, no serious application can work

§ Next week: puts everything together to discuss real-life big
data processing frameworks

Course Organization (3)
§ And finally, every system must communicate with other systems

(world wide web)
§ We move to networking
§ Networking is also I/O so an extension of storage I/O

§ A networked application must deal with multiple producers and
consumers of information
§ In comes concurrency!

§ Finally, we end the course with linking (how large programs that
use external libraries are compiled efficiently and safely)
§ Ideally fits in week 4, but we need to approach memory early

Welcome and Have Fun!

