Australian National Universit

COMP2310/COMP6310
Systems, Networks, & Concurrency

Convener: Prof John Taylor

Australian National University

Course Update

» Checkpoint 2 — Marking out
» Quiz 2 — Marks out end of the week
» Assignment 2 — Released
» Due 2"4 November 11:59pm
» Recommend that you start early!
» Final Exam — Closed Book
»Wednesday 12/11/2025 2-5:15pm
»Melville Hall

»SELT Survey available

Australian National University

Today

» Automating the Build Process
» make

> cmake

» Strings and concurrency

> The Future

> Final exam review

Australian National University

COMP2310/6310
Automating the build process

Australian National University

Automate the build Process: Make
Make is a build automation tool that uses Makefiles to define build rules.
» Configuration: Requires manually written Makefiles.

» Build Process:
» Compilation: Defines rules to compile source files into object files.
» Linking: Specifies how to link object files into executables or libraries.

> Pros:
» Simple and straightforward for small projects
» Widely used and well-documented
» Rebuilds only what is needed

» Cons:
» Manual Makefile maintenance can be error-prone.
» Less suitable for large, complex projects.

Australian National University

Automate the build Process: cmake

cmake is a cross-platform build system generator that produces build
files for various tools (e.g., Make, Ninja, Visual Studio)

> Uses CMakelLists.txt files to define project structure and build rules

» Build Process:
» Compilation: Automatically generates Makefiles or other build scripts.
» Linking: Simplifies linking with target_link_libraries and other commands

> Pros:
» Automates build configuration, reducing manual effort
» Supports complex projects and multiple platforms
» Easier integration with external libraries

> Cons:

» Learning curve for beginners
» Requires cmake installation

Australian National University

CMakelLists.txt file for a simple C project

Specify the minimum version of CMake required
cmake minimum required(VERSION 3.10)

Define the project name and the programming language
project (MyProject C)

Add an executable target
add executable (MyExecutable main.c)

Specify include directories to search for header file
include directories (${PROJECT SOURCE DIR}/include)

Link libraries (if any)
target link libraries (MyExecutable m) # Example: linking
the math library

Set C standard
set (CMAKE C STANDARD 99)
Set(CMAKE_C_STANDARD_REQUIRED True)

Australian National University

COMP2310/6310
Strings and concurrency

Australian National University

Combining Linked Lists and Threads

» Multiple threads can operate on different parts of a linked list
concurrently

» You can use mutexes to protect the linked list during insertions,
deletions, and updates

» You can select which region of the list to lock
» Whole List Locking: Lock the entire list for any operation - simpler but less efficient
» Segment Locking: Divide the list into segments, each protected by a separate mutex -
more efficient if access is close to uniform
» Fine-Grained Locking: Lock individual nodes or small groups of nodes — the most
efficient but complex

» Proper synchronization can improve performance by allowing more
parallelism while avoiding race conditions

Australian National University

Update the list with a single lock

volid* update whole list (void* arg) {

int new availlability = *(int*)arg;

pthread mutex lock(&list mutex);

Node* current = head;

while (current != NULL) {
current->availability = new availlability;
current = current->next;

J

pthread mutex unlock(&list mutex);

return NULL;

Australian National University

Each thread updates a single element

void update list individual elements (int num threads, int
new availability) {

pthread t threads[num threads];

Element elements[num threads];

Node* current = head;

for (int 1 = 0; 1 < num threads && current != NULL; 1i++)
elements[i] .node = current;
elements[1i] .new availability = new availability;

pthread create(&threads[i], NULL, update element,

&elements|[i]) ;
current = current->next;
}
for (int 1 = 0; 1 < num threads; 1i++) {
pthread join(threads[i], NULL) ;

{

Australian National University

Each thread updates a single element

typedef struct {

Node* node;

int new availability;
} Element;

void* update element (void* arg)
Element* element = (Element*)arg;
pthread mutex lock(&list mutex) ;
element->node->availabillity = element->new availability;
pthread mutex unlock (&list mutex);
return NULL;

Australian National University

COMP2310/6310
The Future

Heterogenous Computing: Another step change

()
Ll
Ll
ol
N~
I—
O
=k

16x PCle-5

NVIDIA Grace Hopper Superchip

——

Hardware ConSIStency

CPU LPDDR5X GPU HBM3
<512 GB < 96 GB HBM3

T I IR <3000 GB/5

A

»
»
»
»
»
»
>
»
>
»
>
»
»
»

N4
4
%
L
i
e
<
—
=
=

4x GRACE HOPPER

Hll

18x NVLINK 4
900 GB/s

512 GB/s

< 256 GPUs

AAAAAAAAL

VYYVVYYY

CPU LPDDR5X GPU HBM3
<512 GB < 96 GB HBM3

14

CEREBRAS WSE-3

The WSE-3

e 900,000 Al cores onto a single
processor

 Each core on the WSE is
independently programmable

* 44GB on-chip SRAM (21PB/s)

* Optimized for the tensor-
based, sparse linear algebra
operations that underpin
neural network training and
inference for deep learning

e LLM Sparse Llama: 70%
Smaller, 3x Faster, Full

Accuracy © —o——
CEREBRAS WSE-3 LARGEST GPU
46,225mm? Silicon 826mm? Silicon

4 Trillion transistors 80 Billion transistors

Transformative Impact of Al

* OS-level Al features for automation, predictive
maintenance, and adaptive resource management are
emerging.

* Self-healing networks using Al/ML for predictive
analytics, anomaly detection, and traffic optimization.

* Heterogeneous Computing combining CPUs, GPUs, and
accelerators for Al and HPC workloads.

Australian National University

COMP2310/6310
Final Exam Review

Final Exam

» Everything!
eve ryth | ng H Similar and opposite words Usage examples

Dictionary Translate to Choose language
itions from

Definitiol
© everything
pronoun

1. all things.

"they did everything together"

Similar: every single thing

2. the current situation; life in general.
"how's everything?"

> Inclusive of week 12
» Every lab

» Every slide - covering CS:APP Textbook Chapters

Australian National University

Course Topics

Ctox86_64

Processes and Signals

Locality and Cache Memories
Disk storage

Linking

Virtual Memory

/O

Networking

Concurrent programming

vV Vv YV V¥V VvV VY V VYV VY V

Scientific debugging

19

Australian National University
Final Exam

> What to study?

» Chapters posted on the course website

> How to Study?
» Read each chapter many times, work practice problems in
the book and do problems from course website.

» The Practice problems allow you to get a feel for the
questions on the the exam

Topics for Today

Cto x86_64

Virtual Memory

I/O Redirection
Threading

Processes and Signals
Deadlock
Hyperthreading
Sequential consistency

v Vv Vv Vv VYV VYV V V

> Note: other topics will appear
on the final exam!

Cto x86_64

m The following Ccode declares a structure. The declaration embeds one
structure within another, just as arrays can be part of structures, and we can
have arrays within arrays (e.g., two-dimensional arrays). The procedure on the
left operates on the comp2310 structure. We have intentionally omitted some
expressions.

struct comp2310 { vold init (struct comp2310 *cp) {
short *p; cp->s.y = ;
struct { Cp->p = ;
short x; cp—->next = ;
short vy; }

} s
struct comp2310 *next;

Y

m What are the offsets (in bytes) of the following fields?
mp
B S.X
m Sy
m next

m How many total bytes does the structure require?

22

Australian National University

Cto x86_64

m The compiler generates the following code for init

void init (struct comp2310 *cp)
cp in %rdi

1 init:

movl 8 (%rdi), %eax

movl %eax, 10 (%rdi)

leag 10(%rdi), %rax

movqg %rax, (%rdi)

movqg %srdi, 12 (%rdi)

ret

~ o O b w N

m Fillin the missing expressions in the Ccode for init based on this information.

23

Australian National University

Assembly Loops

» Recognize common assembly instructions

> Know the uses of all registers in 64 bit systems

> Understand how different control flow is turned
into assembly
» For, while, do, if-else, switch, etc
> Be very comfortable with pointers and
dereferencing
» The use of parens in mov commands.
> Yraxvs. (%rax)
» The options for memory addressing modes:
> R(Rb, Ri, S)
» lea vs. mov

24

Australian National University
Array Access

> A suggested method for these problems:
» Start with the Ccode
» Then look at the assembly Work backwards!

» Understand how in assembly, a logical 2D array is implement as a 1D
array, using the width of the array as a multiplier for access

[0][0o] = [0] | [O][1] = [1] | [O][2] = [2] | [OI[3] = [3]
[1](0] = [4] | [1][1] = [5] | [1][2] = [6] | [1][3] = [7]
[2][0] = [8] | [2][1] = [9] | [2][2]=[10] | [2][3]=[11]

[0][2]=0*4+2=2
[1]3]=1*4+3=7
[2][1]=2%*4+1=9

[i]1[j] =i * width of array +j

Australian National University

Caching Concepts

> Dimensions: S, E, B
» S:Number of sets
» E: Associativity — number of lines per set

» B: Block size — number of bytes per block (1
block per line)

> Given Values for S,E,B,m

» Find which address maps to which set
> Isit a Hit/Miss? Is there an eviction?
> Hit rate/Miss rate

> Types of misses
» Which types can be avoided?

» What cache parameters affect types/number
of misses?

> Understanding of Locality

26

Australian National University

General Cache Organization (S, E, B)

E=2¢ lines per set

r -)
(- set
000 1\\ |Iﬂe
S=2SSGtS< eooo
\.
Cache size:
C=Sx Ex Bdata bytes
v tag 0112 - B-1
! — —

valid bit B = 2° bytes per cache block (the data)

27

Locality Example

Question: Can you permute the loops so that the function scans the 3-d array
a with a stride-1 reference pattern (and thus has good spatial locality)?

int sum array 3d(int a[M] [N] [N])
{

int i, 3, k, sum = 0;

for (1 = 0; 1 < N; 1i++)
for (3 = 0; j < N; Jj++)
for (k = 0; k < M; k++)
sum += alk][1][]];
return sum;

28

Australian National University
Caching

The machine that you are working on has a 64KB direct mapped cache with 4 byte lines

A. What percentage of the writes in the following code will miss in the cache?

for (Jj=0; j < 640; j++) {
for (i=0; i < 480; i++){
buffer[i][]j].r = 0;
buffer[i][]j]l.g = 0;
buffer[i][j].b = 0;
buffer[i][j].a = 0;

Miss rate for writes to buffer: %

29

Virtual Memory

Problem 9. (12 points):

Address translation. This problem concerns the way virtual addresses are translated into physical addresses.
Imagine a system has the following parameters:

Virtual addresses are 20 bits wide.

Physical addresses are 18 bits wide.

The page size is 1024 bytes.

The TLB is 2-way set associative with 16 total entries.

The contents of the TLB and the first 32 entries of the page table are shown as follows. All numbers are
given in hexadecimal.

TLB Page Table

Index || Tag PPN Valid VPN PPN Valid| VPN PPN Valid
0 03 C3 1 000 71 1 010 60 0
01 71 0 001 28 1 011 57 0

1 00 28 1 002 93 1 012 68 1
01 35 1 003 AB 0 | 013 30 1

2 02 68 1 004 D6 0 | 014 0D 0
3A F1 0 005 53 1 015 2B 0

3 03 12 1 006 IF 1 016 O9F 0
02 30 1 007 80 1 017 62 0

4 7F 05 0 008 02 0 | 018 (C3 1
01 Al 0 009 35 1 019 04 0

5 00 53 1 00A 41 0 |01A FI 1
03 4E 1 00B 86 1 |0IB 12 1

6 1B 34 0 00C Al 1 01C 30 0
00 IF 1 00D D5 1 |0ID 4E 1

7 03 38 1 0OE 8E 0 |OIE 57 1
32 09 0 00F D4 0 0OIF 38 1

30

Australian National University

Part 1

1. The diagram below shows the format of a virtual address. Please indicate the following fields by
labeling the diagram:

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index

TLBT The TLB tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. The diagram below shows the format of a physical address. Please indicate the following fields by
labeling the diagram:

PPO The physical page offset
PPN The physical page number

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31

Australian National University

Part 2

For the given virtual addresses, please indicate the TLB entry accessed and the physical address. Indicate
whether the TLB misses and whether a page fault occurs. If there is a page fault, enter “-” for “PPN"™ and
leave the physical address blank.

Virtual address: 078E6

1. Virtual address (one bit per box)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[N N I I

2. Address translation

| Parameter | Value || Parameter | Value
VPN 0Ox TLB Hit? (Y/N)
TLB Index | Ox Page Fault? (Y/N)
TLB Tag | Ox PPN Ox
3. Physical address(one bit per box)
17 16 15 14 13 12 11 10 9 8 7 6 5

Australian National University

Virtual address: 04AA4

1. Virtual address (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. Address translation

| Parameter | Value || Parameter | Value
VPN Ox TLB Hit? (Y/N)
TLB Index | Ox Page Fault? (Y/N)
TLB Tag | Ox PPN Ox

3. Physical address(one bit per box)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[N N N D I

33

m A child process inherits its parent’s open files
m After fork:

m Child's table same as parent’s, and +1 to each refcnt

Descriptor table
[one table per process]

fd 0
fd 1
fd 2
fd 3
fd 4

Parent

_File A (terminal)

Open file table
[shared by all processes] [shared by all processes]

P

—

File pos

refcnt=2

File B (disk)

—

File pos

refcnt=2

Australian National University

How Processes Share Files: fork

v-node table

File access

File size

File type

File access

File size

File type

1/O Redirection

m Question: How does a shell implement I/O redirection?
linux> 1ls > foo.txt

m Answer: By calling the dup2 (o1dfd, newfd) function
m Copies (per-process) descriptor table entry o1d£d to entry newfd

Descriptor table Descriptor table
before dup?2 (4, 1) after dup?2 (4, 1)
fd 0 fd 0

fd1]a fd1|b

fd 2 fd 2

fd 3 fd 3

fd4|Db fd4 Db

35

/0O Redirection

m Final Exam Question

Problem 6. (10 points):

File I/O

The following problems refer to a file called numbers . t xt, with contents the ASCII string 01234567809.

You may assume calls to read() are atomic with respect to each other. The following file, read_and_print _one.h,
is compiled with each of the following code files.

#ifndef READ_AND_PRINT_ONE
#define READ_AND_PRINT_ONE
#include <stdio.h>
#include <unistd.h>

static inline void read_and_print_one(int fd) {
char c¢;

read (fd, &c, 1);

printf ("%c", c); fflush(stdout);
}
#ENDIF

36

Australian National University

m A List all outputs of the following code.

#include "read_and_print_one.h"
#include <stdlib.h>
#include <fcntl.h>

int main() {
int filel = open("numbers.txt"™, O_RDONLY);
int file2;
int file3 = open("numbers.txt", O_RDONLY);
file2 = dup2(file3, file2);

read_and_print_one(filel);
read_and_print_one(file2);
read_and_print_one(file3);
read_and_print_one(file2);
read_and_print_one(filel});
read_and_print_one(file3);

return 0;

37

Australian National University

m B. List all outputs of the following code.

#include "read_and_print_one.h"
#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/wait.h>

int main() {
int filel;
int file2;
int file3;

int pid;

filel = open("numbers.txt", O_RDONLY);
file3 = open("numbers.txt", O_RDONLY);
fileZ2 = dup2(file3, file2);

read_and_print_one(filel);
read_and_print_one(file2);

pid = fork();

if (!pid) {
read_and_print_one(file3);
close(file3);
file3 = open("numbers.txt", O_RDONLY);
read_and_print_one(file3);
} else {
wait (NULL);
read_and_print_one(file3);
read_and_print_one(file2);
read_and_print_one(filel);
}

read_and_print_one(file3);

return 0;

38

Australian National University
Threading

m Final Exam Question

Problem 10. (10 points):

Concurrency, races, and synchronization. Consider a simple concurrent program with the following spec-
ification: The main thread creates two peer threads, passing each peer thread a unique integer thread ID
(either 0 or 1), and then waits for each thread to terminate. Each peer thread prints its thread ID and then
terminates.

Each of the following programs attempts to implement this specification. However, some are incorrect
because they contain a race on the value of my i d that makes it possible for one or more peer threads to print
an incorrect thread ID. Except for the race, each program is otherwise correct.

You are to indicate whether or not each of the following programs contains such a race on the value of
myid. You will be graded on each subproblem as follows:

39

Australian National University

A. Does the following program contain a race on the value of myid? Yes No

void =foo(void +vargp) |
int myid;
myid = « ((int «)vargp);
Free(vargp);
printf ("Thread %d\n", myid);

int main() {
pthread_t tid[2];
int i, e«ptr;

for (i .= 0z 3 £ 22 34+¥F) 4

ptr = Malloc(sizeof(int));

sptr = i;

Pthread_create(&tid[i], 0, foo, ptr);
}
Pthread_join(tid([0], 0);
Pthread_join(tid[1l], 0);

40

Australian National University
Processes and Signals

m Final Exam Question
Problem 8. (10 points):

Exceptional control flow. Consider the following C program. (For space reasons, we are not checking error
return codes, so assume that all functions return normally.)

int main|()

{

int val = 2;

printf ("%d", 0);
fflush(stdout);

if (fork() == 0) {
val++;
printf ("%d", val);
fflush(stdout);

}

else {
val=-;
printf ("%d", wval);
fflush(stdout);
wait (NULL) ;

}

val++;

printf ("%d", wval);

fflush(stdout);

exit (0);

M

Australian National University

For each of the following strings, circle whether (Y) or not (N) this string is a possible output of the program.
You will be graded on each sub-problem as follows:

e If you circle no answer, you get 0 points.
e If you circle the right answer, you get 2 points.

e If you circle the wrong answer, you get —1 points (so don’t just guess wildly).

A. 01432 X N
B. 01342 Y N
C. 03142 X N
D. 01234 Y N
E. 03412 X N

42

Australian National University

Sequential Consistency

m Consider the execution of the following concurrent processes on two different
processors, and A and B are originally cached by both processors with initial

value of 0.

P1l: A =0 P2: B =0
A = 1; B = 1;
if (B ==0) if (A ==0)

43

Australian National University
Deadlock

m Final Exam Question

Problem 7. (14 points):

Deadlocks and Dreadlocks

Two threads (X and Y) access shared variables A and B protected by mutex_a and mutex_b respectively.
Assume all variable are declared and initialized correctly.

Thread X Thread Y
P (&mutex_a); P (&mutex_b);
A += 10; B += 10;
P (&mutex_Db); P (a&mutex_a);
B += 20; A += 20;
V(&mutex_b); V(&mutex_a);
A += 30; B += 30;
V(&mutex_a); V(&mutex_Db);

A. Show an execution of the threads resulting in a deadlock. Show the execution steps as follows

Thread X Thread Y
P(&mutex_a)
A+=10

P(&mutex b)

P(&mutex_b)

Answer:

Australian National University

B. There are different approaches to solve the deadlock problem. Modify the code above to show two
approaches to prevent deadlocks. You can declare new mutex variables if required. Do not change
the order or amount of the increments to A and B. Rather, change the locking behavior around them.
The final values of A and B must still be guaranteed to be incremented by 60.

Answer:

45

Australian National University

Thank you for participating in COMP2310!

Cluster

CPU # CPU « CPU

Core I 'Core I Core '
Big core

|BRingyAlnte ngoninect s ° |k

PERFORMANCE

(@[>V] i CPU @ CPU .
Core ~| Core - Core -

Example Memory
Hierarchy L°

CPU registers hold words

Smaller, leeis retrieved from the L1 cache.

faster, :

and (SRAM) L1 cache holds cache lines
costlier L2 cache retrieved from the L2 cache.
(per byte) L2:

storage (SRAM) L2 cache holds cache lines

devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines

Big core

Cluster

Little Little
core core

Interconnect for Coherency

SECOND EDITION

THE

cheaper disk blocks retrieved

(per byte) from local disks.
storage | 5. Local secondary storage
devices (local disks)
| Local disks hol¢
(X v retrieved from d
‘ on remote serve¢
Fod, RN Wb | L6: Remote secondary storage
(e.g., Web servers)
Bryant a Computer Systeme: A 'y iy, Third Edition

Larger retrieved from main y.
= e PROGRAMMING
e (D) Main memory holds

LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

46

