
Convener: Prof John Taylor

Australian National University

Course Update
Ø Checkpoint 2 – Marking out
Ø Quiz 2 – Marks out end of the week
Ø Assignment 2 – Released

Ø Due 2nd November 11:59pm
Ø Recommend that you start early!

Ø Final Exam – Closed Book
ØWednesday 12/11/2025 2-5:15pm
ØMelville Hall

ØSELT Survey available

Australian National University

Today

ØAutomating the Build Process
Ømake
Øcmake

Ø Strings and concurrency

ØThe Future

ØFinal exam review

Australian National University

Carnegie MellonAustralian National University

4

COMP2310/6310
Automating the build process

Automate the build Process: Make
Make is a build automation tool that uses Makefiles to define build rules.

Ø Configuration: Requires manually written Makefiles.

Ø Build Process:
Ø Compilation: Defines rules to compile source files into object files.
Ø Linking: Specifies how to link object files into executables or libraries.

Ø Pros:
Ø Simple and straightforward for small projects
Ø Widely used and well-documented
Ø Rebuilds only what is needed

Ø Cons:
Ø Manual Makefile maintenance can be error-prone.
Ø Less suitable for large, complex projects.

Australian National University

Automate the build Process: cmake

cmake is a cross-platform build system generator that produces build
files for various tools (e.g., Make, Ninja, Visual Studio)

Ø Uses CMakeLists.txt files to define project structure and build rules

Ø Build Process:
Ø Compilation: Automatically generates Makefiles or other build scripts.
Ø Linking: Simplifies linking with target_link_libraries and other commands

Ø Pros:
Ø Automates build configuration, reducing manual effort
Ø Supports complex projects and multiple platforms
Ø Easier integration with external libraries

Ø Cons:
Ø Learning curve for beginners
Ø Requires cmake installation

Australian National University

Specify the minimum version of CMake required
cmake_minimum_required(VERSION 3.10)

Define the project name and the programming language
project(MyProject C)

Add an executable target
add_executable(MyExecutable main.c)

Specify include directories to search for header file
include_directories(${PROJECT_SOURCE_DIR}/include)

Link libraries (if any)
target_link_libraries(MyExecutable m) # Example: linking
the math library

Set C standard
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED True)

CMakeLists.txt file for a simple C project

Australian National University

Carnegie MellonAustralian National University

8

COMP2310/6310
Strings and concurrency

Combining Linked Lists and Threads

Ø Multiple threads can operate on different parts of a linked list
concurrently

Ø You can use mutexes to protect the linked list during insertions,
deletions, and updates

Ø You can select which region of the list to lock
Ø Whole List Locking: Lock the entire list for any operation - simpler but less efficient
Ø Segment Locking: Divide the list into segments, each protected by a separate mutex -

more efficient if access is close to uniform
Ø Fine-Grained Locking: Lock individual nodes or small groups of nodes – the most

efficient but complex

Ø Proper synchronization can improve performance by allowing more
parallelism while avoiding race conditions

Australian National University

void* update_whole_list(void* arg) {
 int new_availability = *(int*)arg;
 pthread_mutex_lock(&list_mutex);
 Node* current = head;
 while (current != NULL) {
 current->availability = new_availability;
 current = current->next;
 }
 pthread_mutex_unlock(&list_mutex);
 return NULL;
}

Update the list with a single lock

Australian National University

void update_list_individual_elements(int num_threads, int
new_availability) {
 pthread_t threads[num_threads];
 Element elements[num_threads];
 Node* current = head;
 for (int i = 0; i < num_threads && current != NULL; i++) {
 elements[i].node = current;
 elements[i].new_availability = new_availability;
 pthread_create(&threads[i], NULL, update_element,
&elements[i]);
 current = current->next;
 }
 for (int i = 0; i < num_threads; i++) {
 pthread_join(threads[i], NULL);
 }
}

Each thread updates a single element

Australian National University

typedef struct {
 Node* node;
 int new_availability;
} Element;

void* update_element(void* arg) {
 Element* element = (Element*)arg;
 pthread_mutex_lock(&list_mutex);
 element->node->availability = element->new_availability;
 pthread_mutex_unlock(&list_mutex);
 return NULL;
}

Each thread updates a single element

Australian National University

Carnegie MellonAustralian National University

13

COMP2310/6310
The Future

Heterogenous Computing: Another step change

14

CEREBRAS WSE-3

The WSE-3

• 900,000 AI cores onto a single
processor

• Each core on the WSE is
independently programmable

• 44GB on-chip SRAM (21PB/s)
• Optimized for the tensor-

based, sparse linear algebra
operations that underpin
neural network training and
inference for deep learning

• LLM Sparse Llama: 70%
Smaller, 3x Faster, Full
Accuracy

Transformative Impact of AI
• OS-level AI features for automation, predictive

maintenance, and adaptive resource management are
emerging.

• Self-healing networks using AI/ML for predictive
analytics, anomaly detection, and traffic optimization.

• Heterogeneous Computing combining CPUs, GPUs, and
accelerators for AI and HPC workloads.

Carnegie MellonAustralian National University

17

COMP2310/6310
Final Exam Review

Final Exam
Ø Everything!

Ø Inclusive of week 12

Ø Every lab

Ø Every slide - covering CS:APP Textbook Chapters

19

Carnegie MellonAustralian National University

Course Topics

Ø C to x86_64
Ø Processes and Signals
Ø Locality and Cache Memories
Ø Disk storage
Ø Linking
Ø Virtual Memory
Ø I/O
Ø Networking
Ø Concurrent programming
Ø Scientific debugging

20

Carnegie MellonAustralian National University

Final Exam
Ø What to study?

Ø Chapters posted on the course website

Ø How to Study?
Ø Read each chapter many times, work practice problems in

the book and do problems from course website.
Ø The Practice problems allow you to get a feel for the

questions on the the exam

21

Carnegie MellonAustralian National University

Topicsfor Today

Ø Cto x86_64
Ø Virtual Memory
Ø I/O Redirection
Ø Threading
Ø Processes and Signals
Ø Deadlock
Ø Hyperthreading
Ø Sequential consistency

Ø Note: other topics will appear
on the final exam!

Carnegie MellonAustralian National University

Cto x86_64
¢ The following Ccode declares a structure. The declaration embeds one

structure within another, just as arrays can be part of structures, and we can
have arrays within arrays (e.g., two-dimensional arrays). The procedure on the
left operates on the comp2310 structure. We have intentionally omitted some
expressions.

struct comp2310 { void init(struct comp2310 *cp) {
short *p;
struct {

cp->s.y = ;
cp->p = ;

short x;
short y;

cp->next = ;
}

} s;
struct comp2310

};
*next;

22

¢ What are the offsets (in bytes) of the following fields?
■ p
■ s.x
■ s.y
■ next

¢ How many total bytes does the structure require?

Carnegie MellonAustralian National University

Cto x86_64
¢ The compiler generates the following code for init

void init(struct comp2310 *cp)
cp in %rdi
1 init:
2 movl 8(%rdi), %eax
3 movl %eax, 10(%rdi)
4 leaq 10(%rdi), %rax
5 movq %rax, (%rdi)
6 movq %rdi, 12(%rdi)
7 ret

23

¢ Fill in the missing expressions in the Ccode for init based on this information.

24

Carnegie MellonAustralian National University

AssemblyLoops

Ø Recognize common assembly instructions
Ø Know the uses of all registers in 64 bit systems
Ø Understand how different control flow is turned

into assembly
Ø For, while, do, if-else, switch, etc

Ø Be very comfortable with pointers and
dereferencing
Ø The use of parens in mov commands.

Ø %rax vs. (%rax)
Ø The options for memory addressing modes:

Ø R(Rb, Ri, S)
Ø lea vs. mov

Carnegie MellonAustralian National University

Array Access

Ø A suggested method for these problems:
Ø Start with the Ccode
Ø Then look at the assembly Work backwards!
Ø Understand how in assembly, a logical 2D array is implement as a 1D

array, using the width of the array as a multiplier for access

25

26

Carnegie MellonAustralian National University

Caching Concepts
Ø Dimensions: S,E, B

Ø S: Number of sets
Ø E: Associativity – number of lines per set
Ø B: Block size – number of bytes per block (1

block per line)
Ø Given Values for S,E,B,m

Ø Find which address maps to which set
Ø Is it a Hit/Miss? Is there an eviction?
Ø Hit rate/Miss rate

Ø Typesof misses
Ø Which types can be avoided?
Ø What cache parameters affect types/number

of misses?
Ø Understanding of Locality

Carnegie MellonAustralian National University

General CacheOrganization (S, E,B)

E= 2e lines per set

S= 2s sets

set

line

0 1 2 B-1tagv

B= 2b bytes per cache block (the data)

Cache size:
C=SxExBdata bytes

valid bit
27

28

Carnegie MellonAustralian National University

Locality Example
Question: Can you permute the loops sothat the function scansthe 3-d array
a with a stride-1 reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Carnegie MellonAustralian National University

Caching

29

The machine that you are working on has a 64KB direct mapped cache with 4 byte lines

Carnegie MellonAustralian National University

Virtual Memory

30

Carnegie MellonAustralian National University

31

Carnegie MellonAustralian National University

32

Carnegie MellonAustralian National University

33

Carnegie MellonAustralian National University

HowProcessesShareFiles:fork
¢ Achild process inherits its parent’s open files
¢ After fork:

■ Child’s table same asparent’s, and +1 to each refcnt

fd 0
fd 1
fd 2
fd 3
fd 4

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access
File size
File type

...

File access
File size
File type

...
Open file table

[shared by all processes]

File A (terminal)

File B(disk)

Descriptor table
[one table per process]

Parent

fd 0
fd 1
fd 2
fd 3
fd 4

Child

34

Carnegie MellonAustralian National University

I/O Redirection
¢ Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

¢ Answer: By calling the dup2(oldfd, newfd) function
■ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

35

Carnegie MellonAustralian National University

I/O Redirection

¢ Final Exam Question

36

Carnegie MellonAustralian National University

¢ A. List all outputs of the following code.

37

Carnegie MellonAustralian National University

¢ B. List all outputs of the following code.

38

Carnegie MellonAustralian National University

Threading

¢ Final Exam Question

39

Carnegie MellonAustralian National University

40

Carnegie MellonAustralian National University

Processesand Signals

¢ Final Exam Question

41

Carnegie MellonAustralian National University

42

Carnegie MellonAustralian National University

Sequential Consistency

¢ Consider the execution of the following concurrent processes on two different
processors, and A and B are originally cached by both processors with initial
value of 0.

P1: A = 0
.......
A = 1;
if (B ==0) ...

¢ Under sequential consistency which of the following outcomes are possible?

(A)

(B)

(C)

(D)

P2: B = 0
.......
B = 1;
if (A ==0) ...

NT NT

T T
T NT
NT T

43

Carnegie MellonAustralian National University

Deadlock

¢ Final Exam Question

44

Carnegie MellonAustralian National University

45

46

Carnegie MellonAustralian National University

Thank you for participating in COMP2310 !

