
Convener: Shoaib Akram

§ To make your understanding of memory and storage more
concrete
§ Not a lecture on databases or big data analytics

§ Memory
§ Accessed via load/store instructions
§ Fast random-access latency

§ Storage
§ Accessed via filesystem calls or mmio (both require kernel support)
§ Fast sequential access and slow random access

§ To some degree the sequential-random gap is true even for
solid-state drives that use semiconductor non-volatile memory
(e.g., Flash memory) nature of block accesses

Intention of these slides

§ Many online services today are data-intensive

§ CPU power is often not a limiting factor

§ Key reason
§ Today, it is much easier to produce data than to efficiently store

and retrieve it
§ Storage and retrieval are the new bottlenecks

§ Sources of data
§ Transactions, mobile messaging, social media, web documents,

DNA sequencing, weather records, sensors in automobiles and
airplanes, etc

Data Intensive Applications

§ Velocity
§ Tweets per second, Likes per second, items added to Amazon

buckets per second, new jobs appearing on Linkedin per second,
CCTV records, Netflix views, IMDB lookups, Whatsapp, new items
on shelves at Coles

§ Variety
§ CSV, Email, JSON, JPEG, PDF, strings, MPEG

§ Volume
§ Many sources of easily producing new data leads to high volume
§ How much data did you produce today?

Properties of Big Data

§ Service
§ Point lookups
§ How many items do Amazon has? How many web pages do

Google manages?
§ How long do you want to wait for a query?

§ Insight
§ To gain a competitive edge
§ To learn patterns and behavior
§ To exploit the interaction of online services and human

behavior for profit

What do organizations do with data?

§ Having data is not the critical part. Not all data is useful (at any point in time)

§ To be able to serve and gain insight in a timely manner is key to survival

§ Long-running (slow or tail) queries are often discarded as lost revenue

§ Must keep 99.99999% of clients happy for long-term survival
§ Everyone is optimizing for tail latency (past: average latency)

§ Key realization: Generating insight from data has a deadline

§ Problem: Need efficient mechanisms to lookup data as fast as possible and to
analyze it as efficiently as possible given hardware limitations
§ Answer: Keep meta-data (typically in memory) to reach data fast

Discussion: Data vs. Meta-Data

§ Billions of webpages and many terabytes of social media content
on the web

§ Searching for “land rover”

§ If the service infrastructure:
§ stores all data on disk
§ performs a sequential search (e.g., grep)
§
§
§ no one will use the service!

Meta-Data: Motivation

§ Solution: Index

§ Let’s look at example index used by search engines

Meta-Data: Motivation

§ Another type of index used by key-value databases

Meta-Data: Motivation

Source: Designing Data-Intensive Applications by Martin Kleppmann

§ Hash tables and indices typically reside in main memory

§ The data they index reside on storage

§ Main memory is capacity limited. What can be done about it?
§ move meta-data to storage

§ what is the problem with storing hash maps on disk?
§ find indexing structures that reduce main memory

requirements of meta-data
§ find DRAM alternatives (phase-change memory, nanotubes,

Spin-Torque Transfer memory à difficult uptake)

Discussion: Hardware Limitations

Typical Data Intensive System

Databases
§ Database is an organized collection of data

§ Relational databases
§ Organizes data into rows and columns with a well-defined

structure (schema)
§ Tables are related to each other
§ Built on relational algebra
§ Required SQL queries to retrieve information

§ NoSQL databases
§ Everything else! But typically, key-value store (database)

Example: Relational Databases

Key-Value Database
§ Non-relational database that stores a collection of key-value pairs

§ Keys and values can be anything (strings, arrays)
§ Keys are typically strings
§ Values can be strings or data structures
§ RocksDB, MemCached, Redis

§ Suitable for modern services
§ Ease of scaling to billions of users
§ Ease of adding new “types” of data
§ No strict adherence to a pre-defined schema

Key-Value Database: Example

source: https://redis.com/nosql/key-value-databases/

Hash Index
§ Suppose our data storage consists of only appending updates to a

file (it is called a append-only sequential log)

§ Indexing strategy
§ Keep an in-memory hash table (map) where every key is

mapped to a byte offset in the data file (the location at which
the value can be found)

§ Writes/Updates: Append the database file and update the hash
entry

§ Reads: ?

Hash Index

Discussion
§ Read performance

§ Good if there is only a single log segment

§ Write performance
§ Append is the fastest way to perform updates in systems

§ Drawbacks
§ Log segments incur a space overhead due to duplicates

Compaction
§ Limit the size of each log segment

§ Make the segment read-only (immutable) once it reaches a
threshold size

§ Periodically compact the segments

§ Idea: Can compact and merge multiple segments at a time
§ Eliminate internal and external fragmentation

§ Such compaction can happen in the background by a different
CPU core (thread or process)

Compaction

Compaction & Merging

Limitations of Hash Indices
§ Hash table must fit in memory

§ As data grows on disk, the size of the hash table grows
proportionally
§ Memory requirements proportional to data growth is a

disaster

§ Range queries are not efficient
§ Searching all keys between kitty0000 and kitty9999 requires

looking up each individual key in the hash map

SSTables and LSM-Trees
§ So far, each log segment is a sequence of key-value pairs

§ These pairs appear in the order they are written
§ Later values for the same key are more important
§ Otherwise, there is not order

§ Let’s change the format of our segment files
§ sequence of KV pairs are sorted by key

§ can we still do sequential writes?
§ This format is called Sorted String Table or SSTable

Think!
§ Merging segments is simple if each segment is already sorted by

key
§ Simple merge sort algorithm
§ Segments can be much bigger than memory

§ Read the input files side by side, look at the first key in each file,
copy the lowest key (sort order) to the output file

§ This produces a new merged segment file, also sorted by key

§ What is the same key appears in several input segments?

Merging SSTables

Advantages of SSTables
§ Merging segments that are much larger than memory is efficient

due to the resulting sequential access pattern during merging

§ No need to keep an index of all the keys in memory
§ Why is that?

§ Still need an index to store the offsets of some of the keys but this
index can be sparse

SSTable with an In-Memory Index

Constructing and Maintaining SSTables
§ How do you keep the segments sorted?

§ Use an in-memory data structure for ingesting (absorbing) fresh
updates
§ This data structure is called a memtable (think of it as an in-memory

segment)

§ Memtable format
§ Option # 1: Red-black tree, AVL tree, skip list
§ Option # 2: Hash table

§ In this approach, memtable is sorted when it is made
immutable

§ We can now make our storage engine work as follows:
§ Writes

§ When a write comes in, add it to the memtable
§ When memtable gets bigger than some threshold—typically a few

megabytes, write it out to disk (flush) as an SSTable file
§ This can be done efficiently if the tree already maintains the key-value pairs

sorted by key (otherwise sort during flush)
§ The new SSTable file becomes the most recent segment of the database
§ While the SSTable is being written out to disk, writes can continue to a new

memtable instance
§ Reads

§ In order to serve a read request, first try to find the key in the memtable,
then in the most recent on-disk segment, then in the next-older segment, etc.

§ From time to time, run a merging and compaction process in the background
to combine segment files and to discard overwritten or deleted values

Working of an LSM Engine

Working of an LSM Engine

Discussion
§ Write performance

§ Nothing beats an update to an in-memory data structure such as
memtable

§ Read performance
§ Not as good as some alternatives because must perform lookups across all

segments one by one

§ Many optimizations to enhance read performance
§ Bloom filters to preclude segment search
§ Efficient merging strategies

§ Alternative indexing structure is a B+ tree (out of scope)

Case Study: How Search Indices Work?

