

COMP2310/COMP6310

Systems, Networks, & Concurrency

Convenor: Prof John Taylor

Course Update

- **Assignment 1 – Marking now**
- **Checkpoint 2 – Next week**
 - Attend same lab for Checkpoint 2 as per Checkpoint 1
- **Final Exam – Closed Book**
 - Wednesday 12/11/2025 2-5:15pm
 - Melville Hall

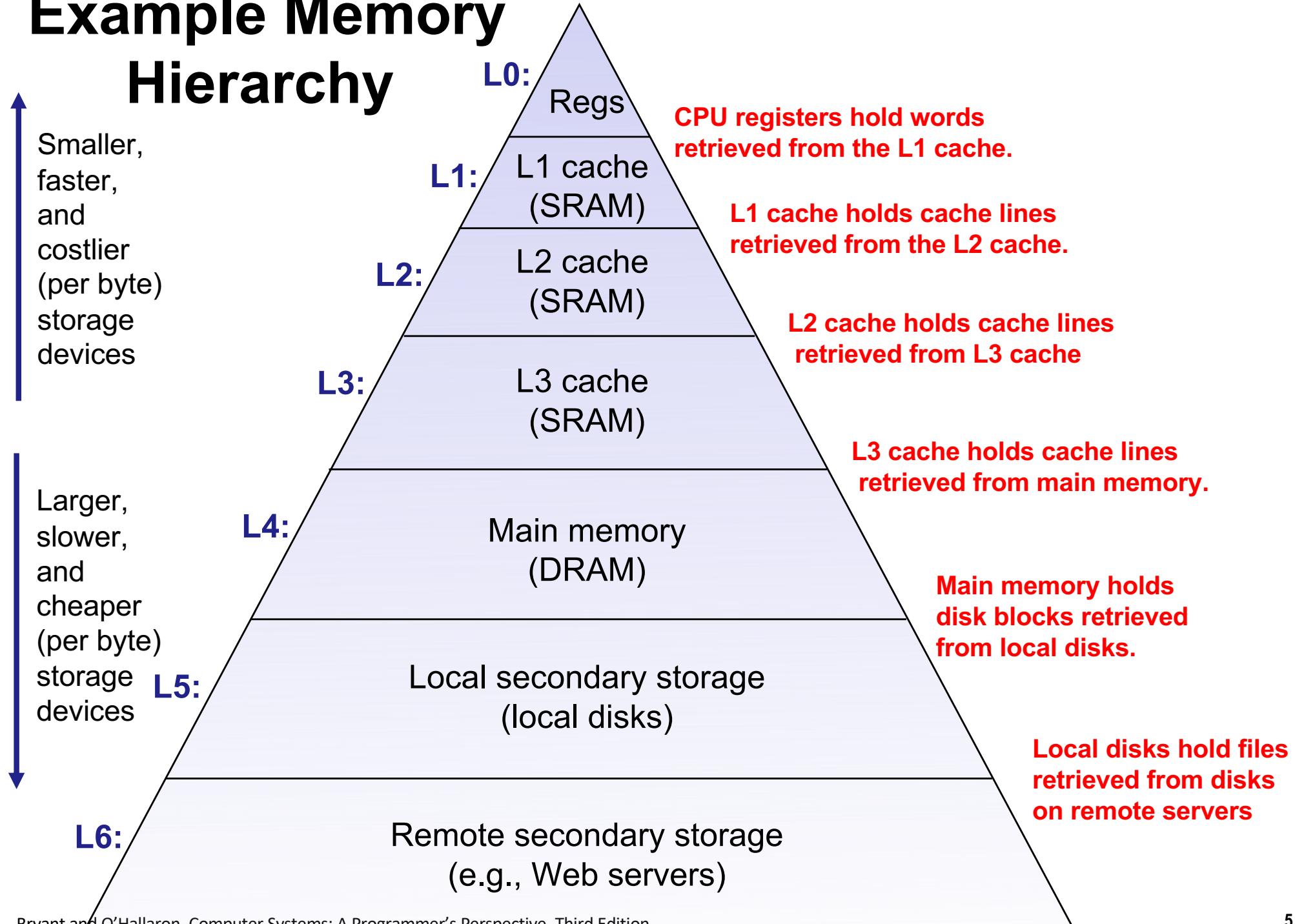
Cache Memories

Acknowledgement of material: With changes suited to ANU needs, the slides are obtained from Carnegie Mellon University: <https://www.cs.cmu.edu/~213/>

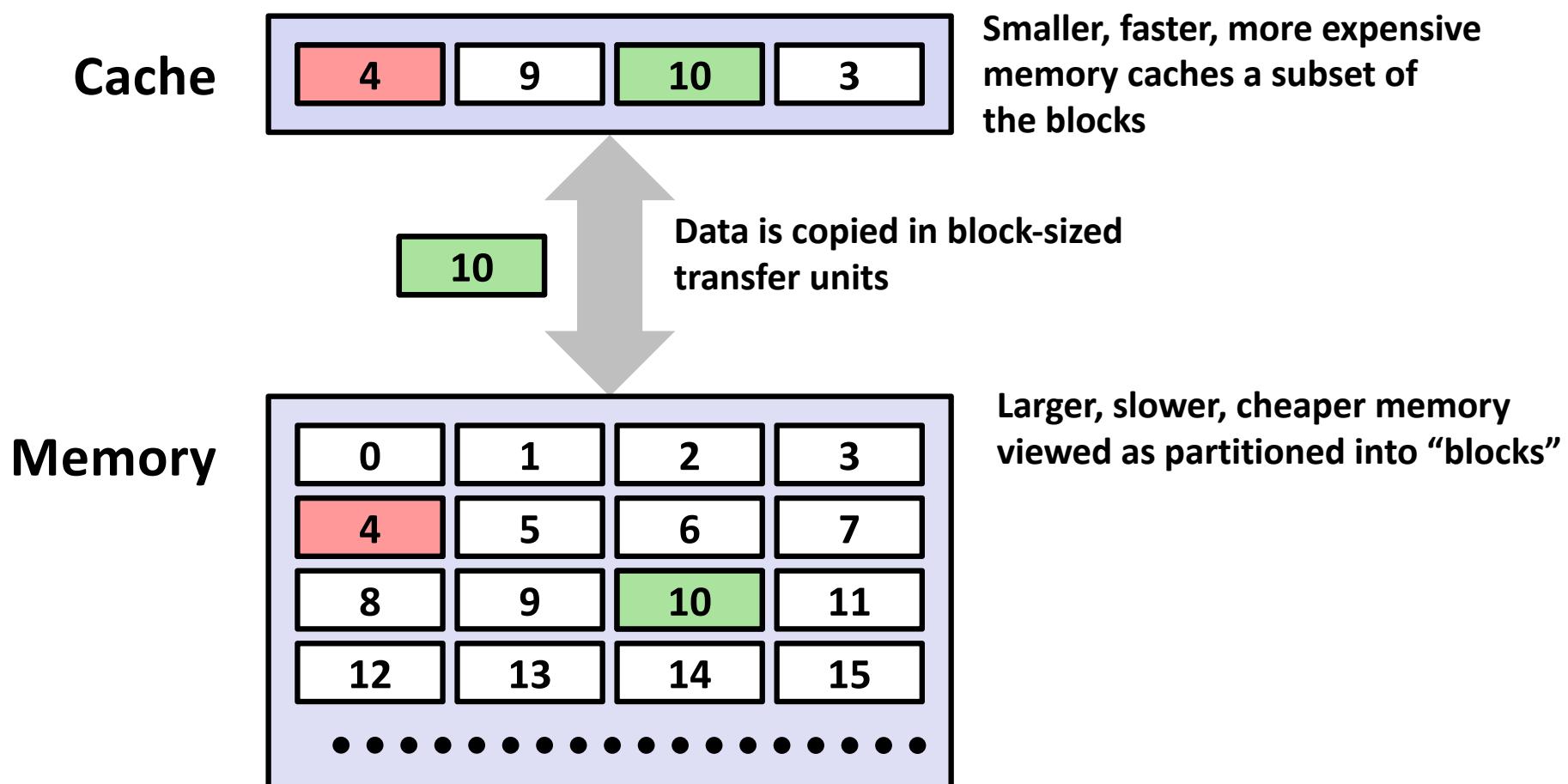
Today

- **Cache memory organization and operation**
- **Performance impact of caches**
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example Memory Hierarchy

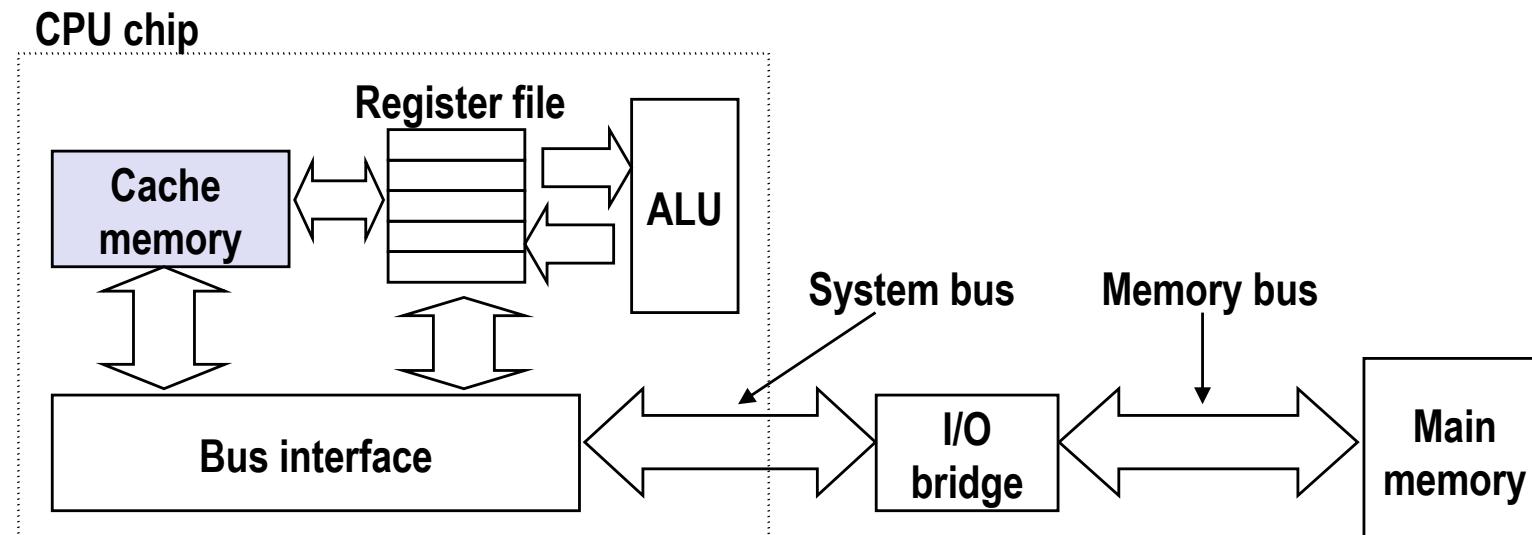


General Cache Concept

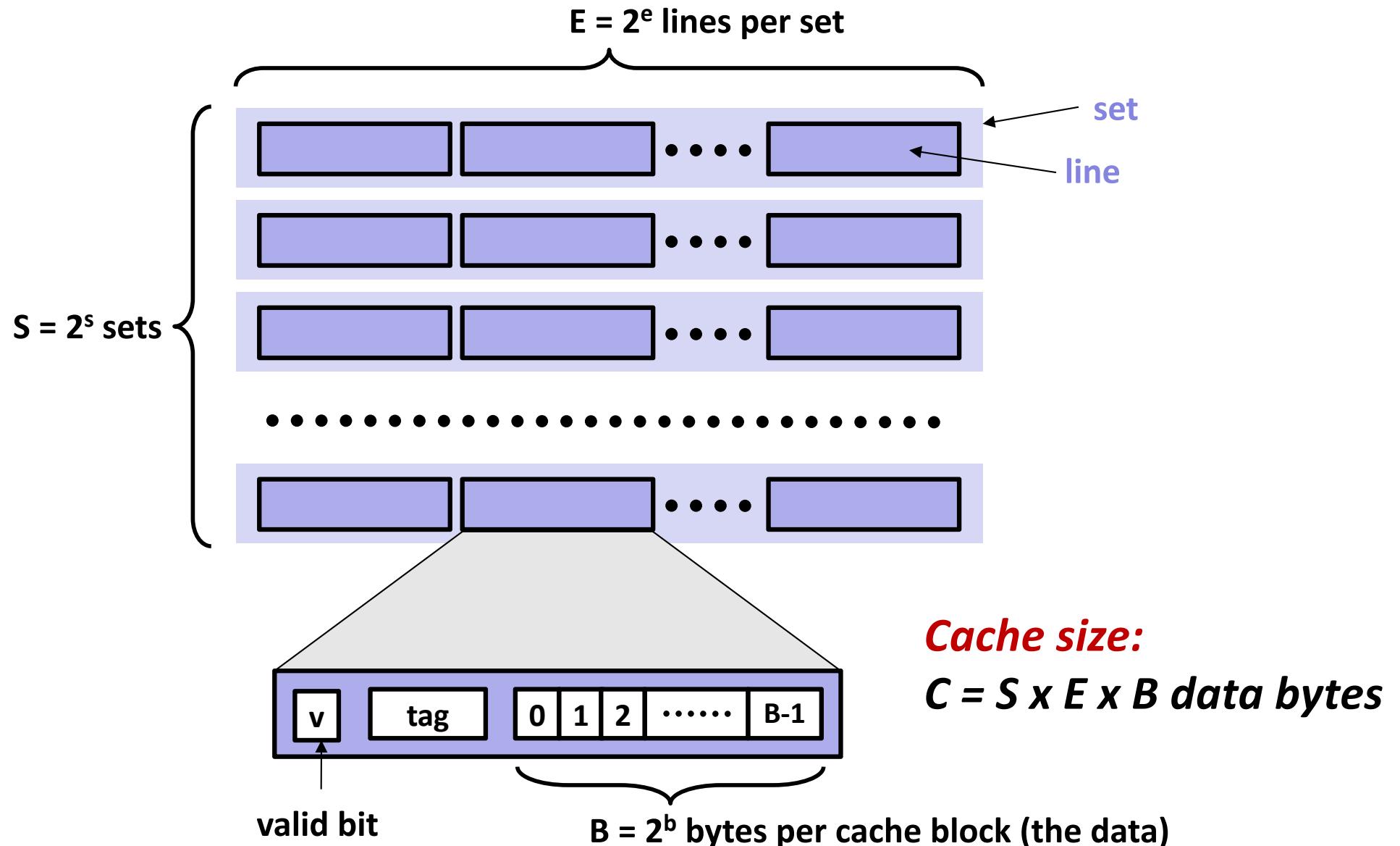


Cache Memories

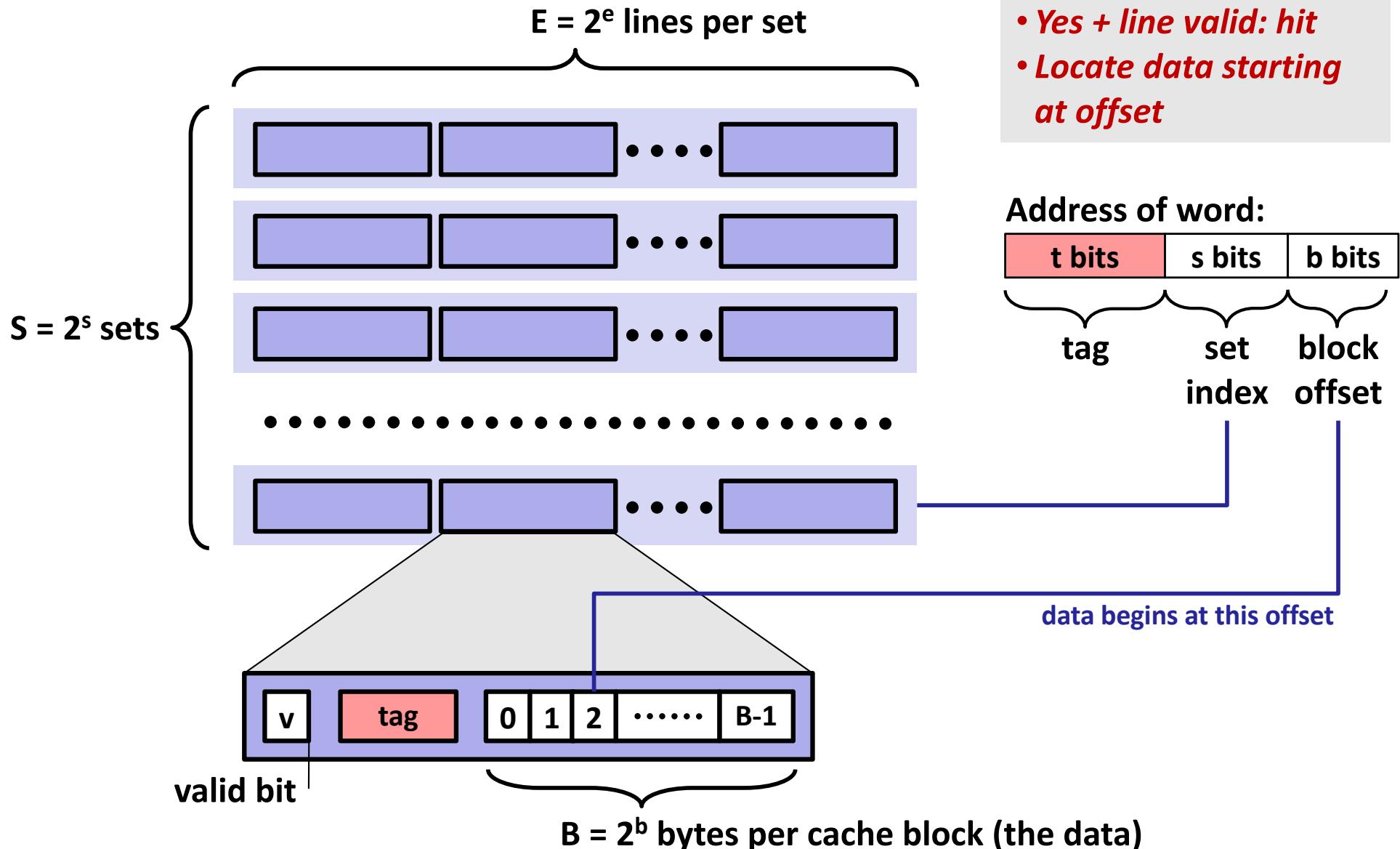
- Cache memories are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache
- Typical system structure:



General Cache Organization (S, E, B)



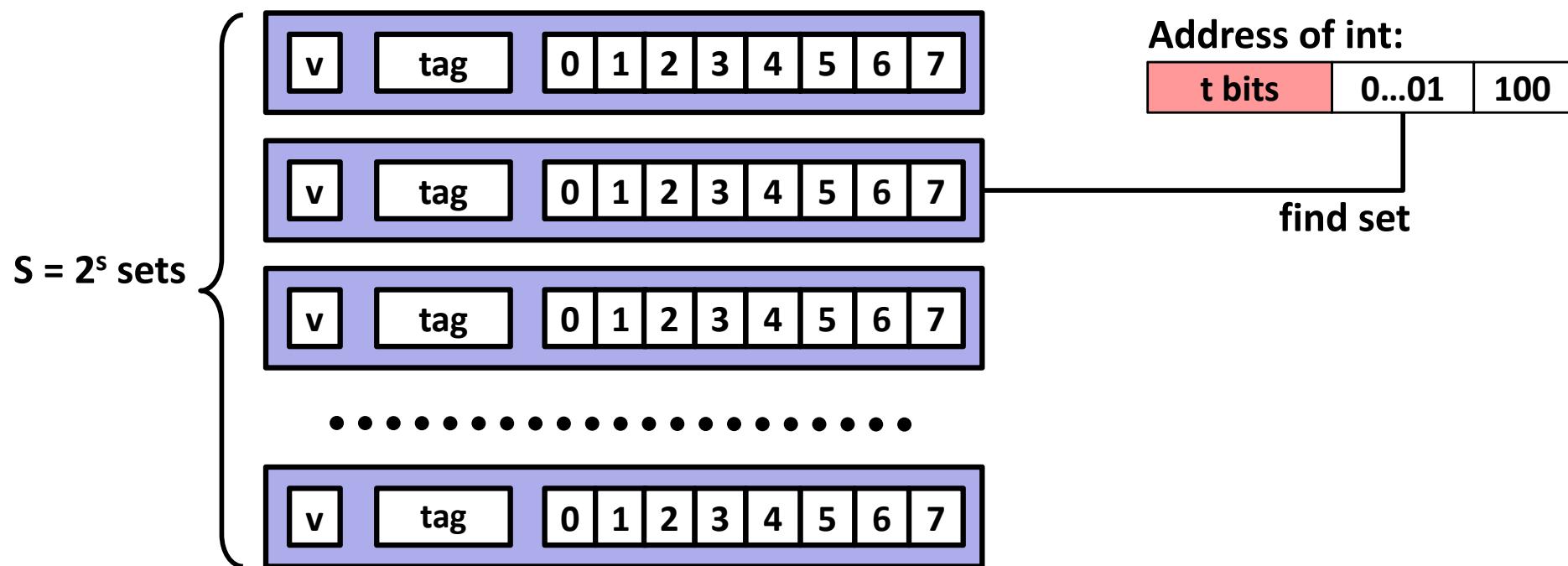
Cache Read



Example: Direct Mapped Cache ($E = 1$)

Direct mapped: One line per set

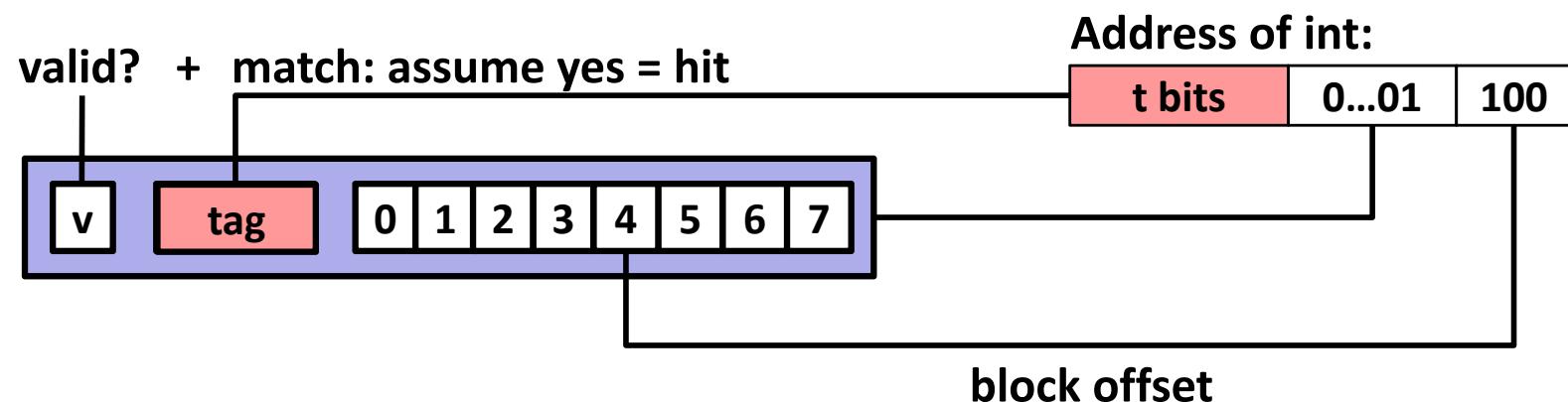
Assume: cache block size 8 bytes



Example: Direct Mapped Cache ($E = 1$)

Direct mapped: One line per set

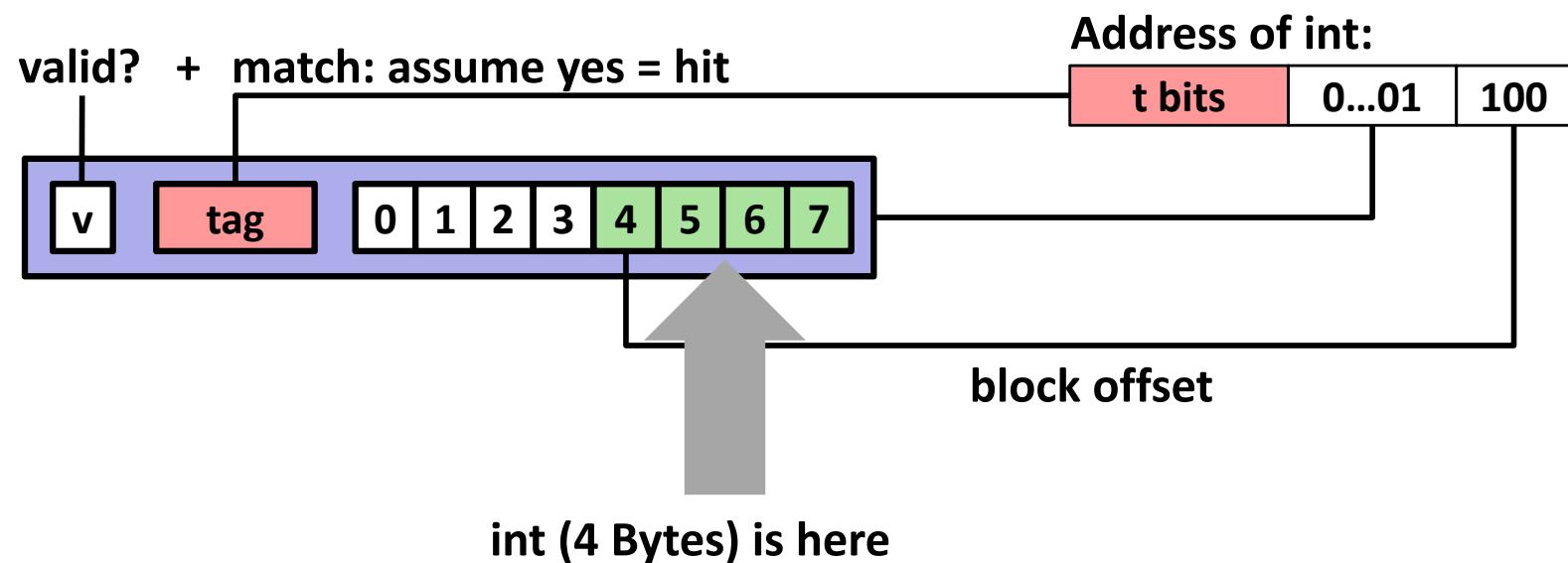
Assume: cache block size 8 bytes



Example: Direct Mapped Cache ($E = 1$)

Direct mapped: One line per set

Assume: cache block size 8 bytes



If tag doesn't match: old line is evicted and replaced

Direct-Mapped Cache Simulation

$t=1$	$s=2$	$b=1$
x	xx	x

$M=16$ bytes (4-bit addresses), $B=2$ bytes/block,
 $S=4$ sets, $E=1$ Blocks/set

Address trace (reads, one byte per read):

0	$[0000_2]$	miss
1	$[0001_2]$	hit
7	$[0111_2]$	miss
8	$[1000_2]$	miss
0	$[0000_2]$	miss

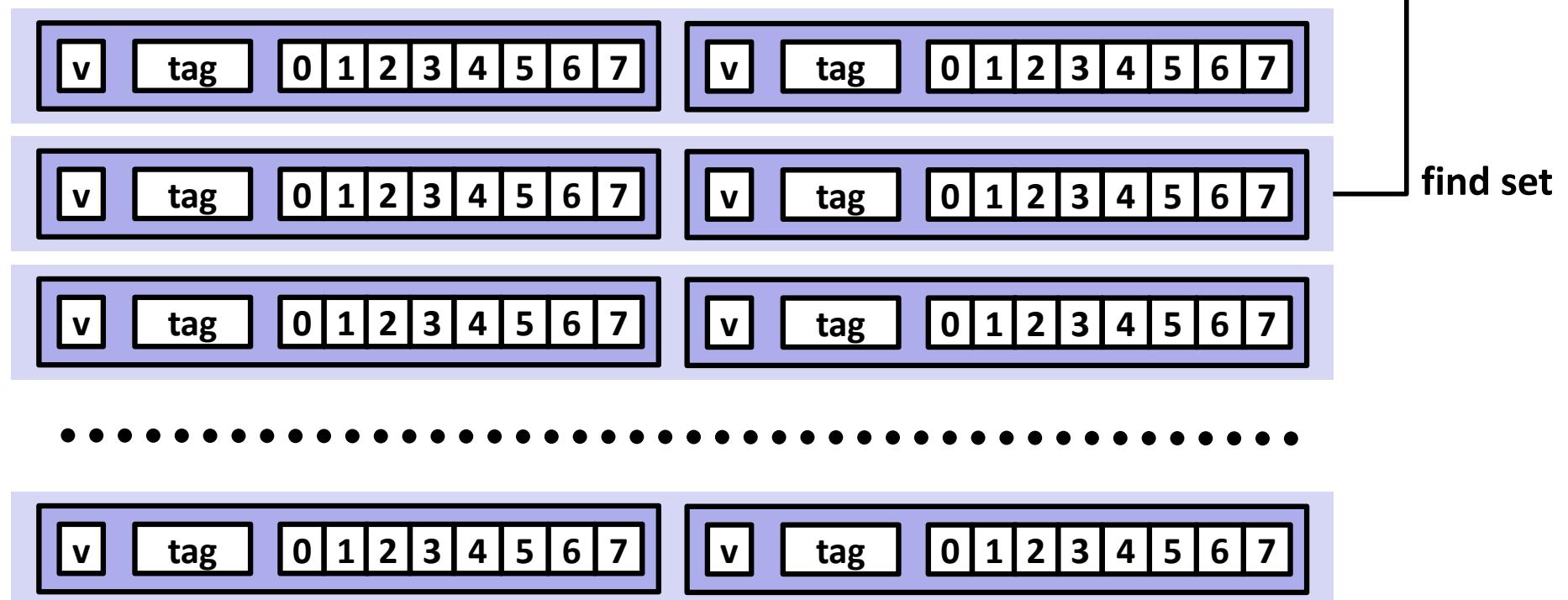
	v	Tag	Block
Set 0	1	0	$M[0-1]$
Set 1			
Set 2			
Set 3	1	0	$M[6-7]$

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

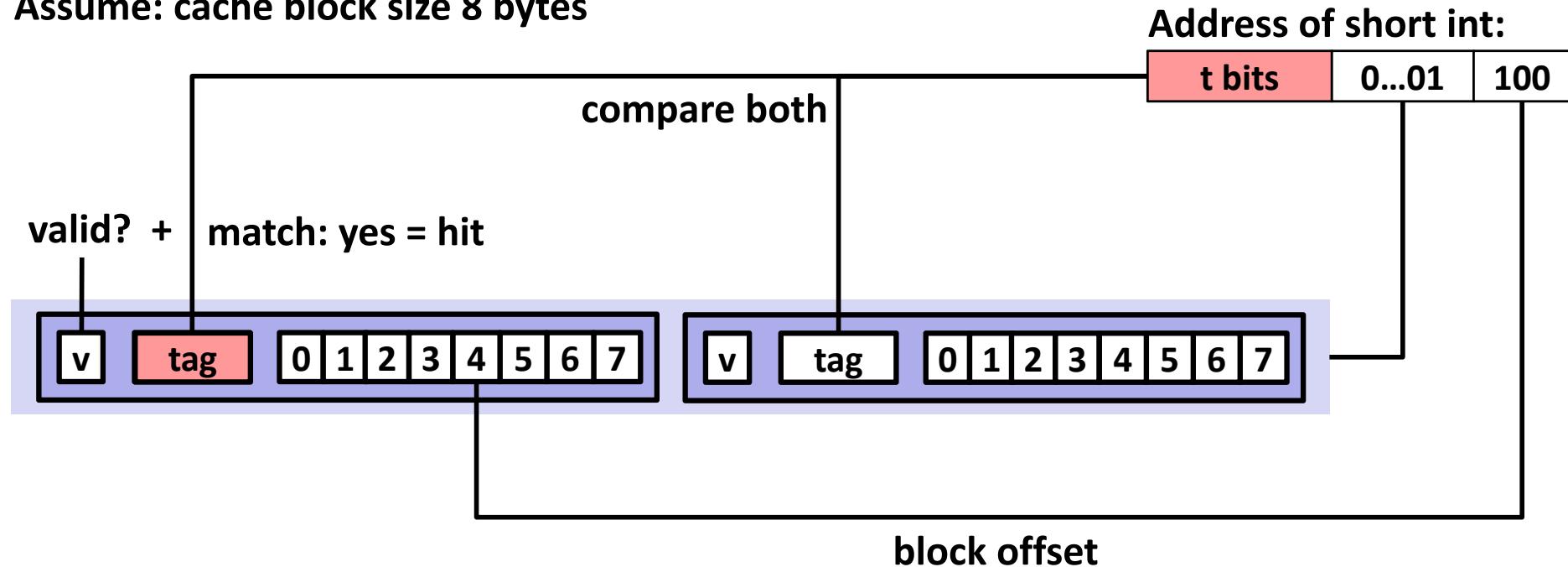
Address of short int:



E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

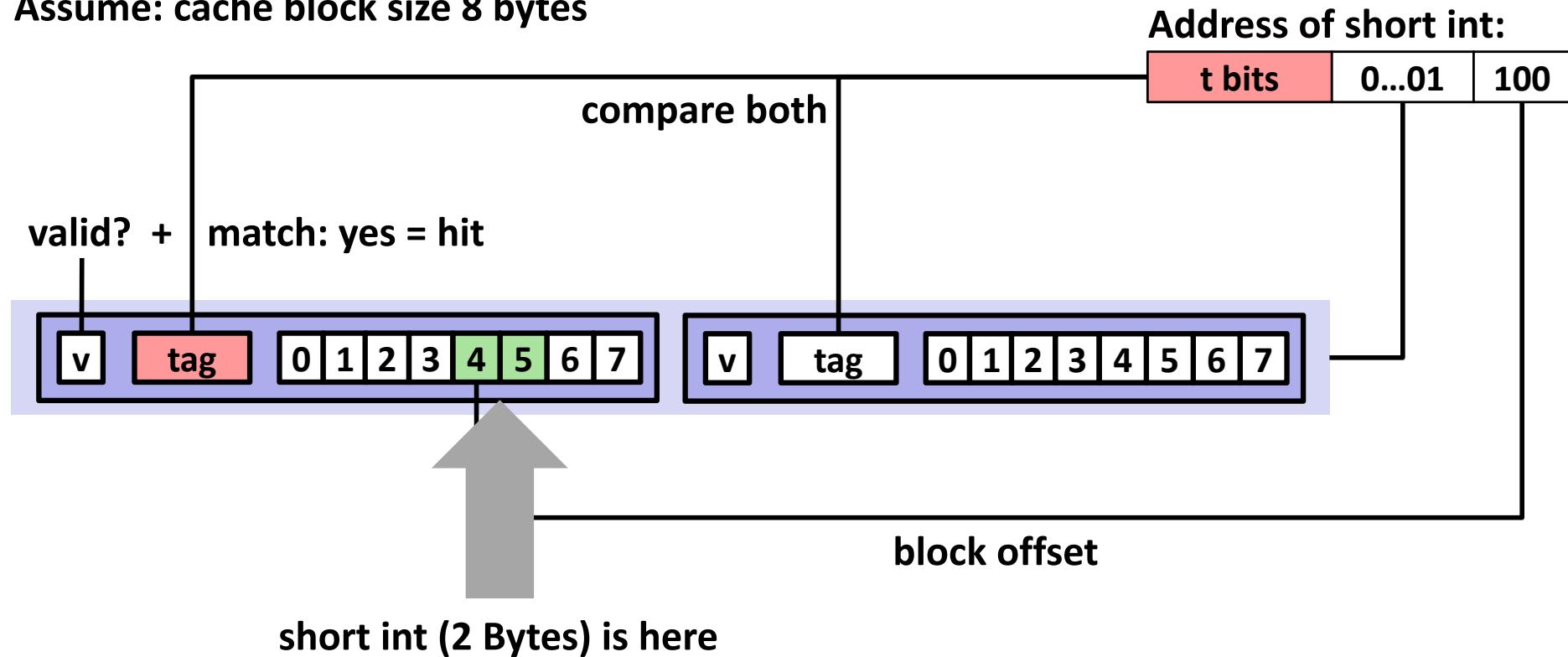
Assume: cache block size 8 bytes



E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes



No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

$t=2$ $s=1$ $b=1$

xx	x	x
----	---	---

$M=16$ byte (4-bit addresses), $B=2$ bytes/block,
 $S=2$ sets, $E=2$ blocks/set

Address trace (reads, one byte per read):

0	$[0000_2]$,	miss
1	$[0001_2]$,	hit
7	$[0111_2]$,	miss
8	$[1000_2]$,	miss
0	$[0000_2]$	hit

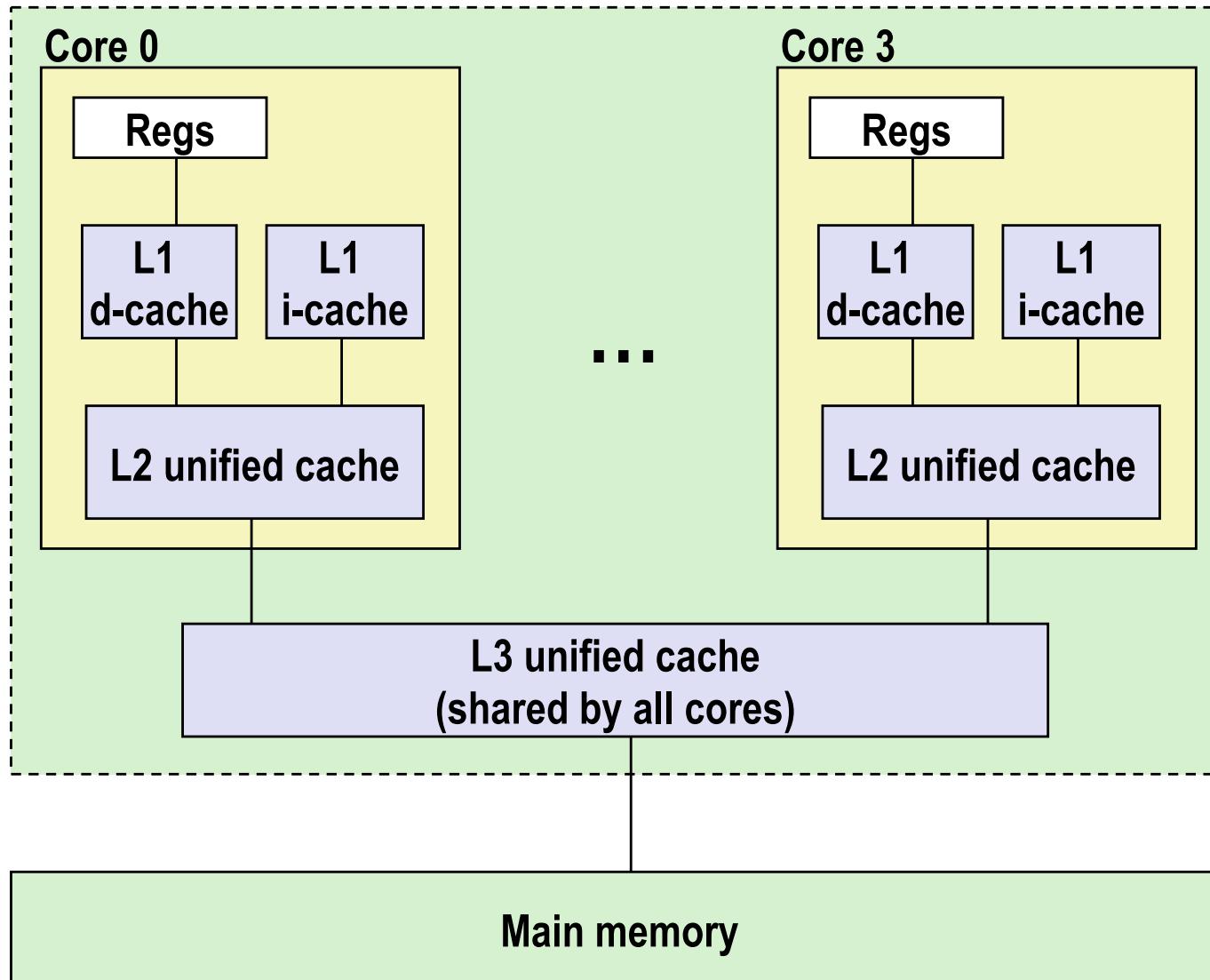
	v	Tag	Block
Set 0	1	00	$M[0-1]$
	1	10	$M[8-9]$
Set 1	1	01	$M[6-7]$
	0		

What about writes?

- **Multiple copies of data exist:**
 - L1, L2, L3, Main Memory, Disk
- **What to do on a write-hit?**
 - **Write-through** (write immediately to memory)
 - **Write-back** (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- **What to do on a write-miss?**
 - **Write-allocate** (load into cache, update line in cache)
 - Good if more writes to the location follow
 - **No-write-allocate** (writes straight to memory, does not load into cache)
- **Typical**
 - Write-through + No-write-allocate
 - **Write-back + Write-allocate**

Intel Core i7 Cache Hierarchy

Processor package



L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,
Access: 10 cycles

L3 unified cache:

8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Cache Performance Metrics

■ Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 $= 1 - \text{hit rate}$
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

■ Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

■ Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles
 - Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = **4 cycles**
99% hits: 1 cycle + 0.01 * 100 cycles = **2 cycles**
- This is why “miss rate” is used instead of “hit rate”

Writing Cache Friendly Code

- **Make the common case go fast**
 - Focus on the inner loops of the core functions
- **Minimize the misses in the inner loops**
 - Repeated references to variables are good (**temporal locality**)
 - Stride-1 reference patterns are good (**spatial locality**)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Today

- Cache organization and operation
- **Performance impact of caches**
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- **Read throughput (read bandwidth)**
 - Number of bytes read from memory per second (MB/s)
- **Memory mountain: Measured read throughput as a function of spatial and temporal locality.**
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 *         array "data" with stride of "stride", using
 *         using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;

    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    }

    /* Finish any remaining elements */
    for (; i < length; i++) {
        acc0 = acc0 + data[i];
    }
    return ((acc0 + acc1) + (acc2 + acc3));
}
```

Call `test()` with many combinations of `elems` and `stride`.

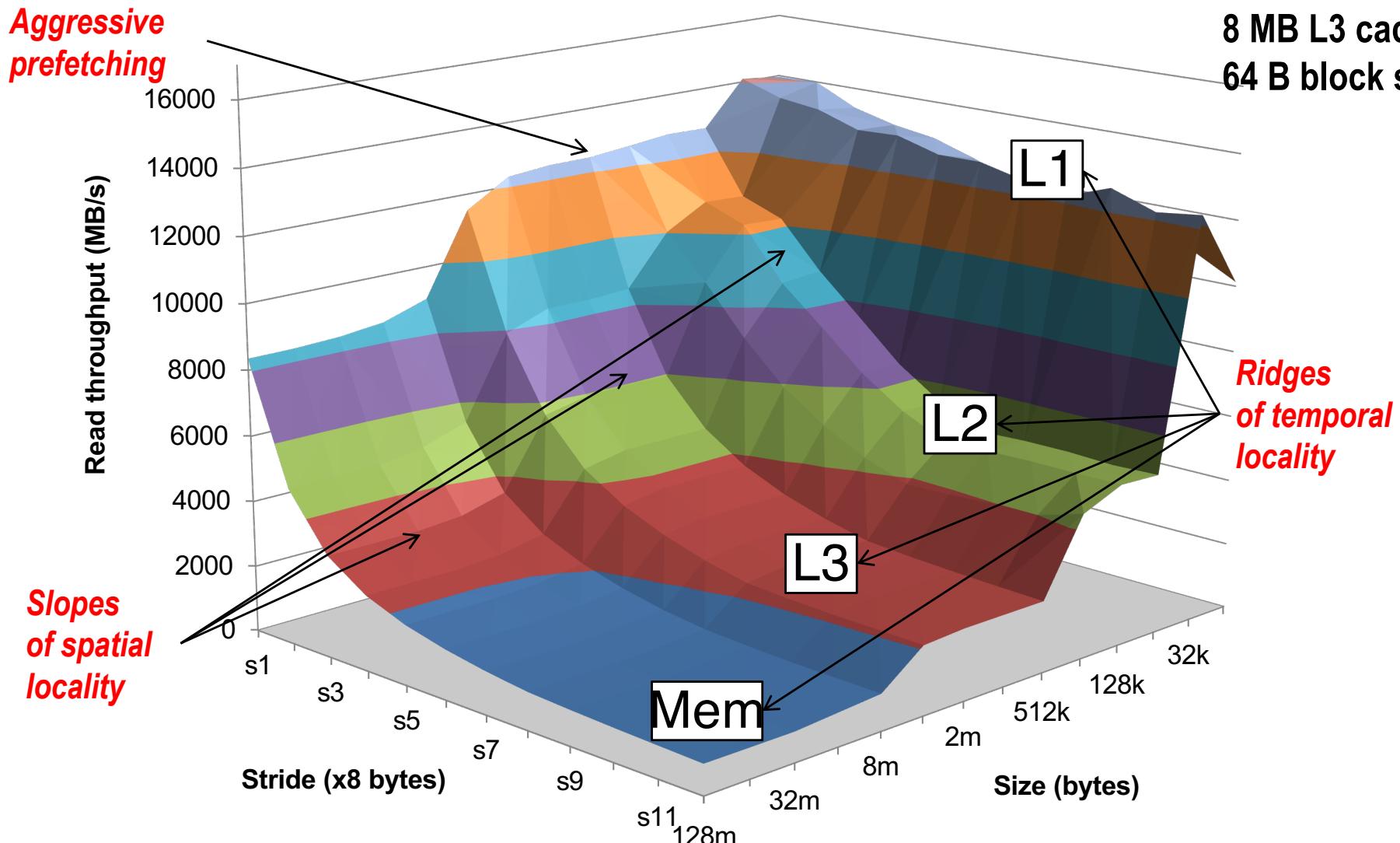
For each `elems` and `stride`:

1. Call `test()` once to warm up the caches.
2. Call `test()` again and measure the read throughput (MB/s)

mountain/mountain.c

The Memory Mountain

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size



Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Matrix Multiplication Example

■ Description:

- Multiply $N \times N$ matrices
- Matrix elements are doubles (8 bytes)
- $O(N^3)$ total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */  
for (i=0; i<n; i++)  
    for (j=0; j<n; j++) {  
        sum = 0.0; ← Variable sum held in register  
        for (k=0; k<n; k++)  
            sum += a[i][k] * b[k][j];  
        c[i][j] = sum;  
    }  
}
```

matmult/mm.c

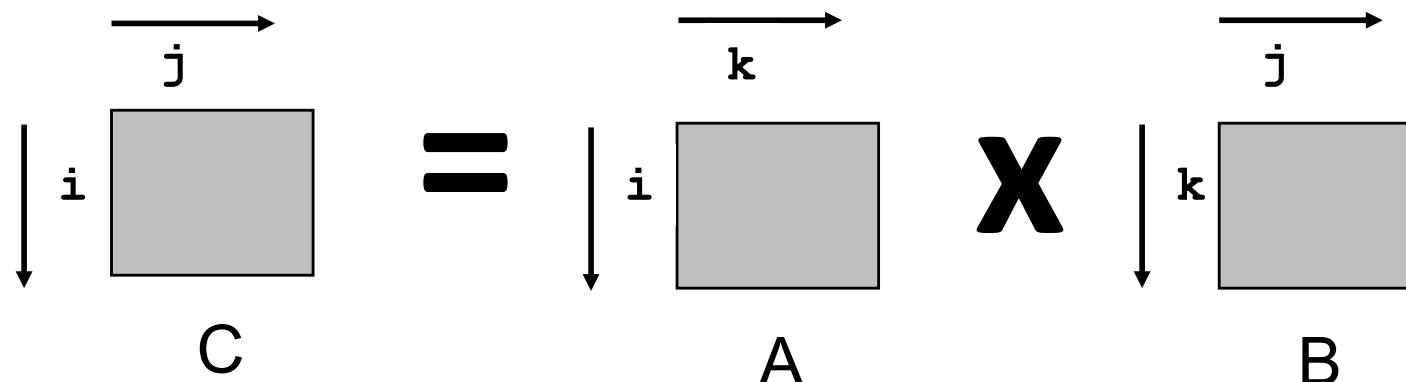
Miss Rate Analysis for Matrix Multiply

■ Assume:

- Block size = $32B$ (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate $1/N$ as 0.0
- Cache is not even big enough to hold multiple rows

■ Analysis Method:

- Look at access pattern of inner loop



Layout of C Arrays in Memory (review)

■ C arrays allocated in row-major order

- each row in contiguous memory locations

■ Stepping through columns in one row:

- ```
for (i = 0; i < N; i++)
 sum += a[0][i];
```
- accesses successive elements
- if block size (B) > `sizeof(aij)` bytes, exploit spatial locality
  - miss rate = `sizeof(aij) / B`

## ■ Stepping through rows in one column:

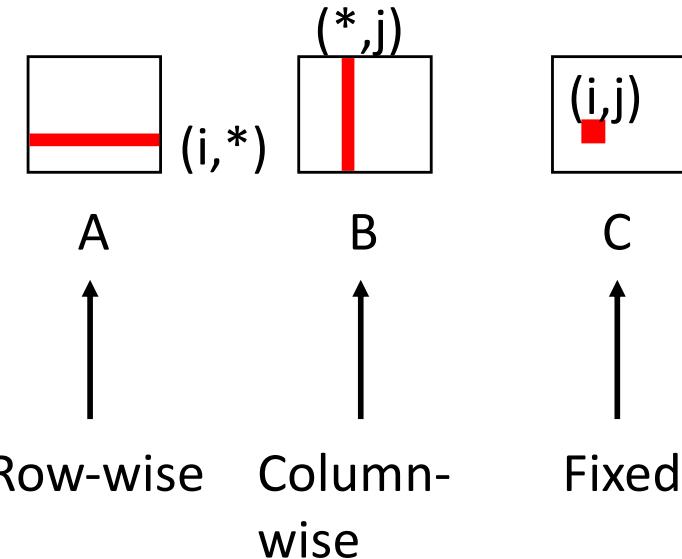
- ```
for (i = 0; i < n; i++)
    sum += a[i][0];
```
- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++)  {
    for (j=0; j<n; j++)  {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

matmult/mm.c

Inner loop:



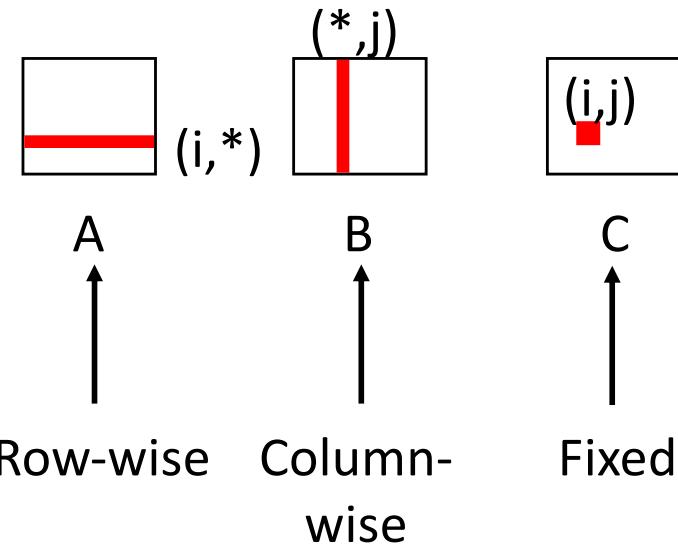
Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (jik)

```
/* jik */  
for (j=0; j<n; j++) {  
    for (i=0; i<n; i++) {  
        sum = 0.0;  
        for (k=0; k<n; k++)  
            sum += a[i][k] * b[k][j];  
        c[i][j] = sum  
    }  
}  
matmult/mm.c
```

Inner loop:



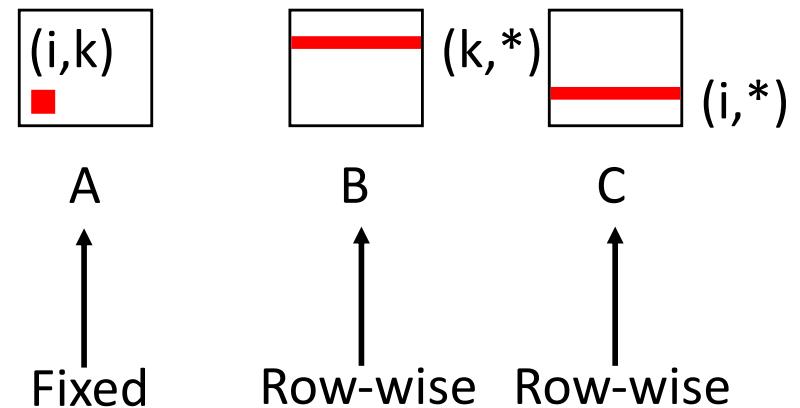
Misses per inner loop iteration:

A	B	C
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */  
for (k=0; k<n; k++) {  
    for (i=0; i<n; i++) {  
        r = a[i][k];  
        for (j=0; j<n; j++)  
            c[i][j] += r * b[k][j];  
    }  
}  
matmult/mm.c
```

Inner loop:



Misses per inner loop iteration:

A
0.0

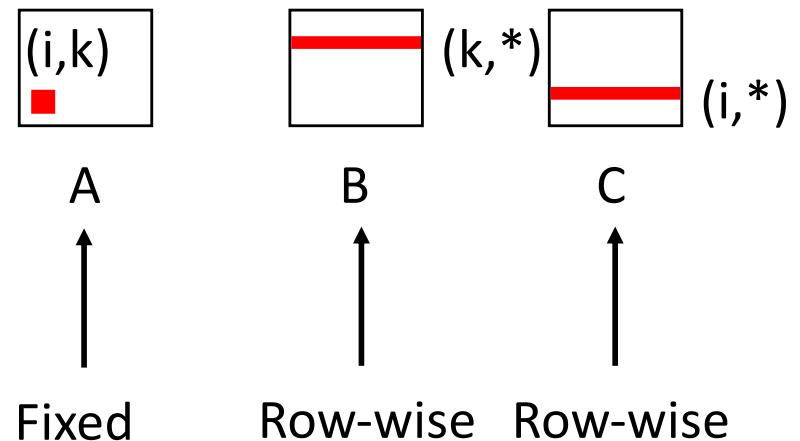
B
0.25

C
0.25

Matrix Multiplication (ikj)

```
/* ikj */  
for (i=0; i<n; i++) {  
    for (k=0; k<n; k++) {  
        r = a[i][k];  
        for (j=0; j<n; j++)  
            c[i][j] += r * b[k][j];  
    }  
}  
matmult/mm.c
```

Inner loop:



Misses per inner loop iteration:

A
0.0

B
0.25

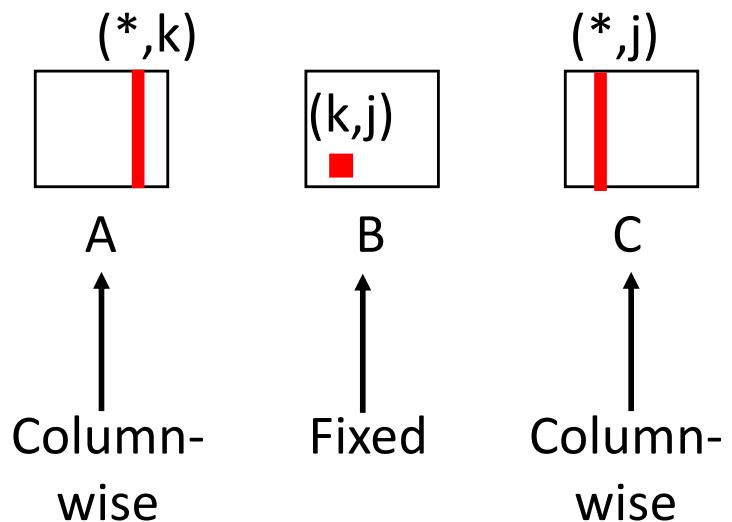
C
0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

matmult/mm.c

Inner loop:



Misses per inner loop iteration:

A
1.0

B
0.0

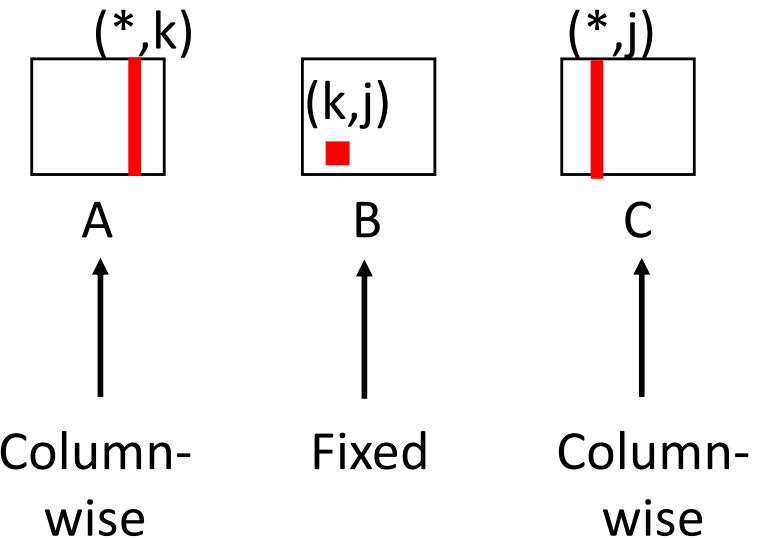
C
1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

matmult/mm.c

Inner loop:



Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {  
    for (j=0; j<n; j++) {  
        sum = 0.0;  
        for (k=0; k<n; k++)  
            sum += a[i][k] * b[k][j];  
        c[i][j] = sum;  
    }  
}
```

```
for (k=0; k<n; k++) {  
    for (i=0; i<n; i++) {  
        r = a[i][k];  
        for (j=0; j<n; j++)  
            c[i][j] += r * b[k][j];  
    }  
}
```

```
for (j=0; j<n; j++) {  
    for (k=0; k<n; k++) {  
        r = b[k][j];  
        for (i=0; i<n; i++)  
            c[i][j] += a[i][k] * r;  
    }  
}
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

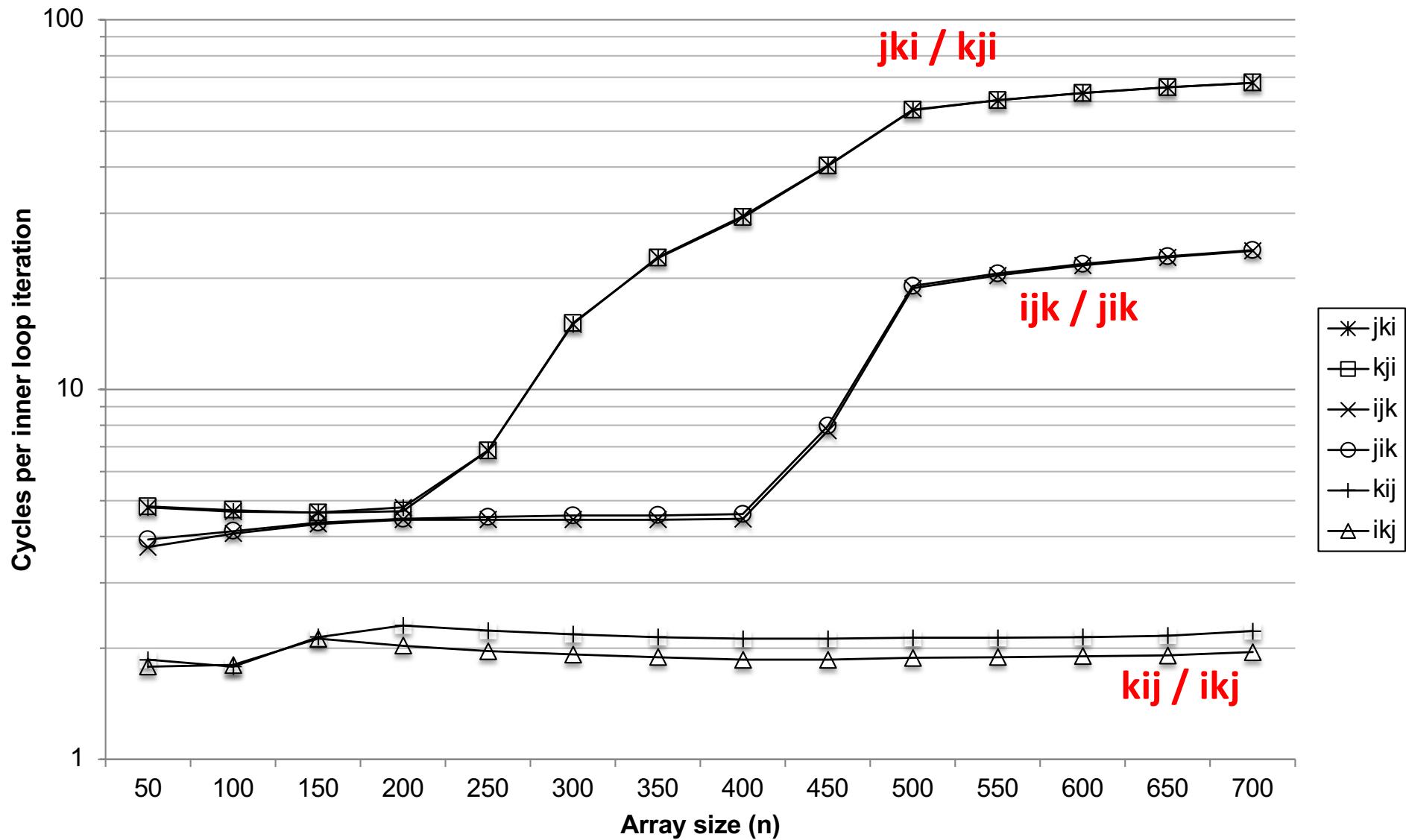
kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

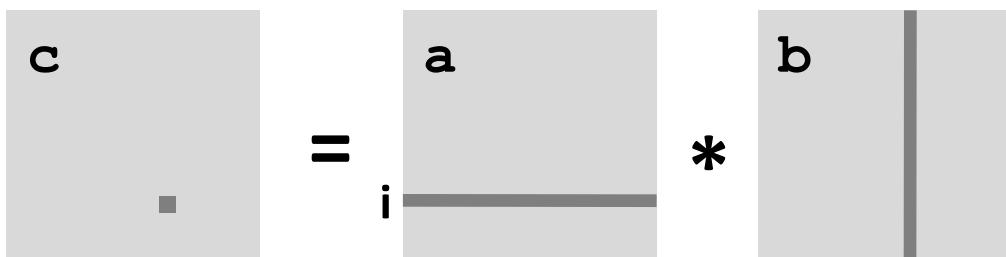


Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);  
  
/* Multiply n x n matrices a and b */  
void mmm(double *a, double *b, double *c, int n) {  
    int i, j, k;  
    for (i = 0; i < n; i++)  
        for (j = 0; j < n; j++)  
            for (k = 0; k < n; k++)  
                c[i*n + j] += a[i*n + k] * b[k*n + j];  
}
```



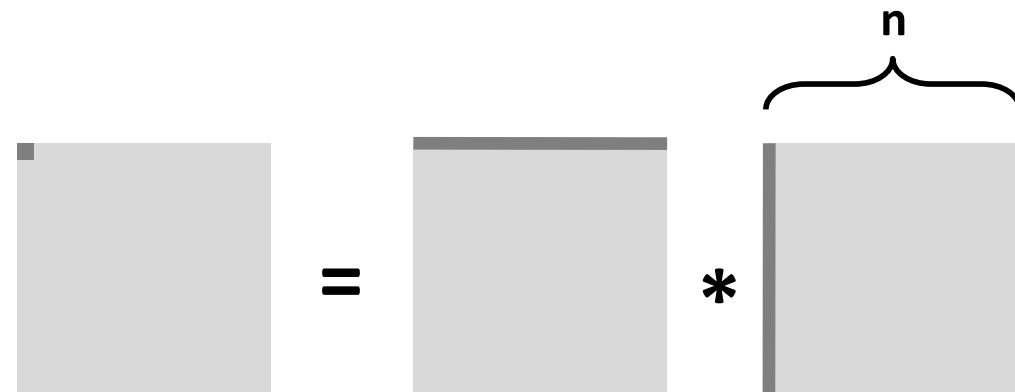
Cache Miss Analysis

■ Assume:

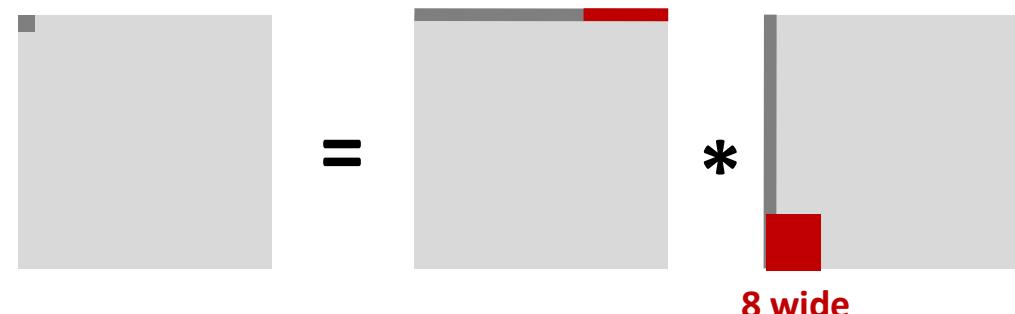
- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)

■ First iteration:

- $n/8 + n = 9n/8$ misses



- Afterwards **in cache**:
(schematic)



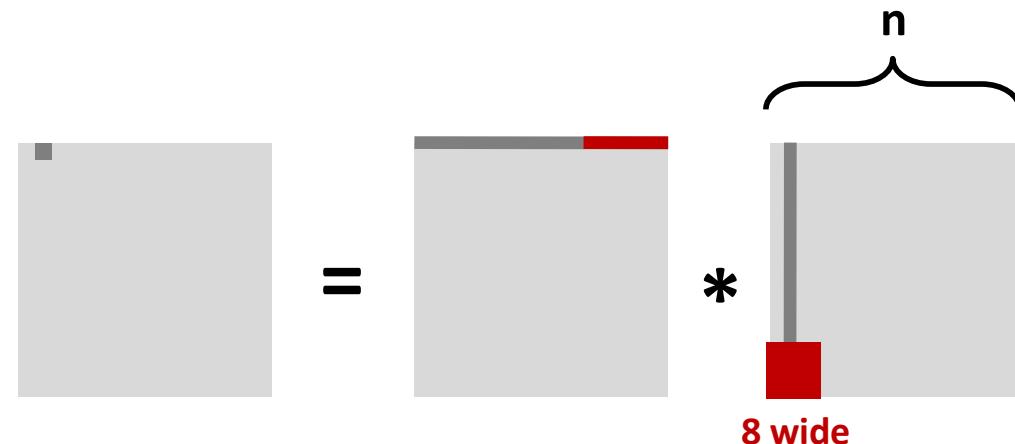
Cache Miss Analysis

■ Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)

■ Second iteration:

- Again:
 $n/8 + n = 9n/8$ misses



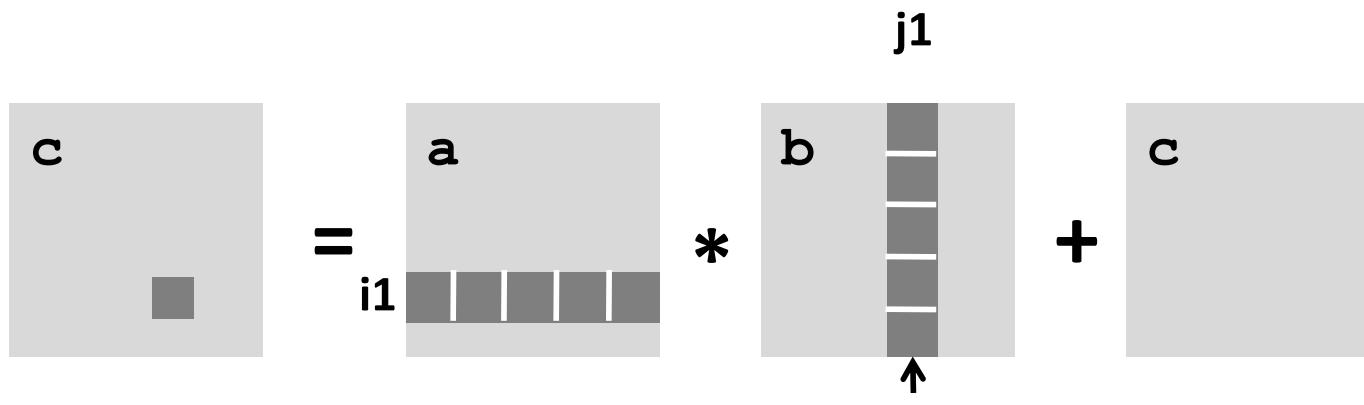
■ Total misses:

- $9n/8 * n^2 = (9/8) * n^3$

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
        for (j = 0; j < n; j+=B)
            for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                for (i1 = i; i1 < i+B; i++)
                    for (j1 = j; j1 < j+B; j++)
                        for (k1 = k; k1 < k+B; k++)
                            c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}
                                            matmult/bmm.c
```



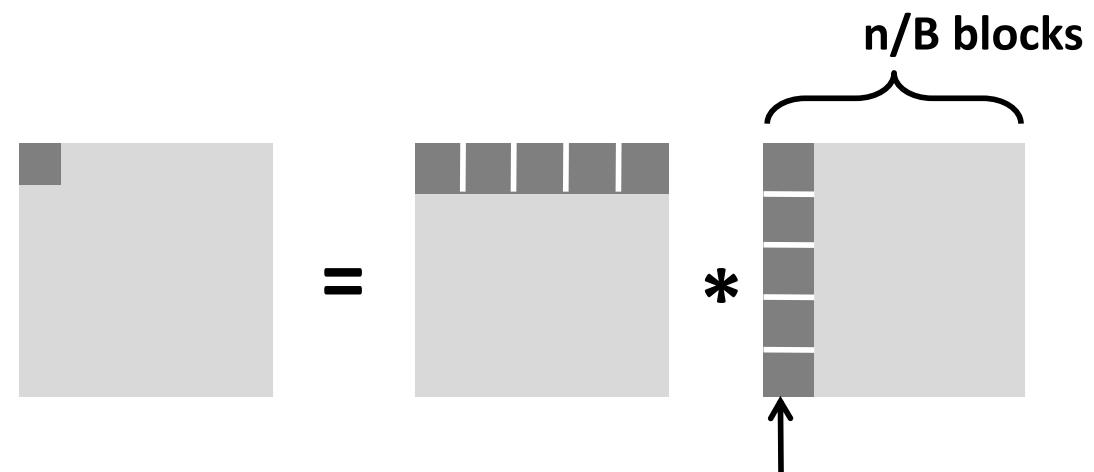
Cache Miss Analysis

■ Assume:

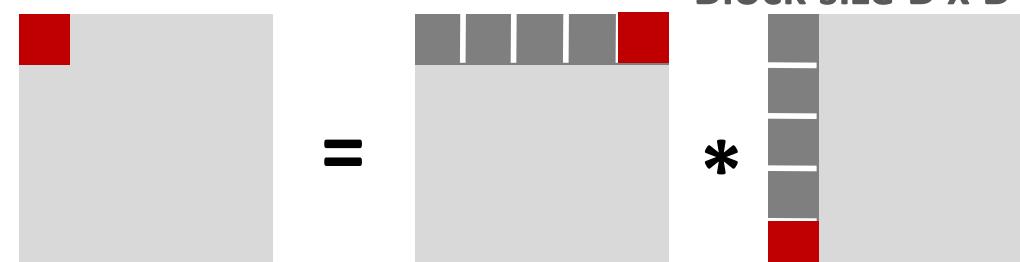
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

■ First (block) iteration:

- $B^2/8$ misses for each block
- $2n/B * B^2/8 = nB/4$
(omitting matrix c)



- Afterwards in cache
(schematic)



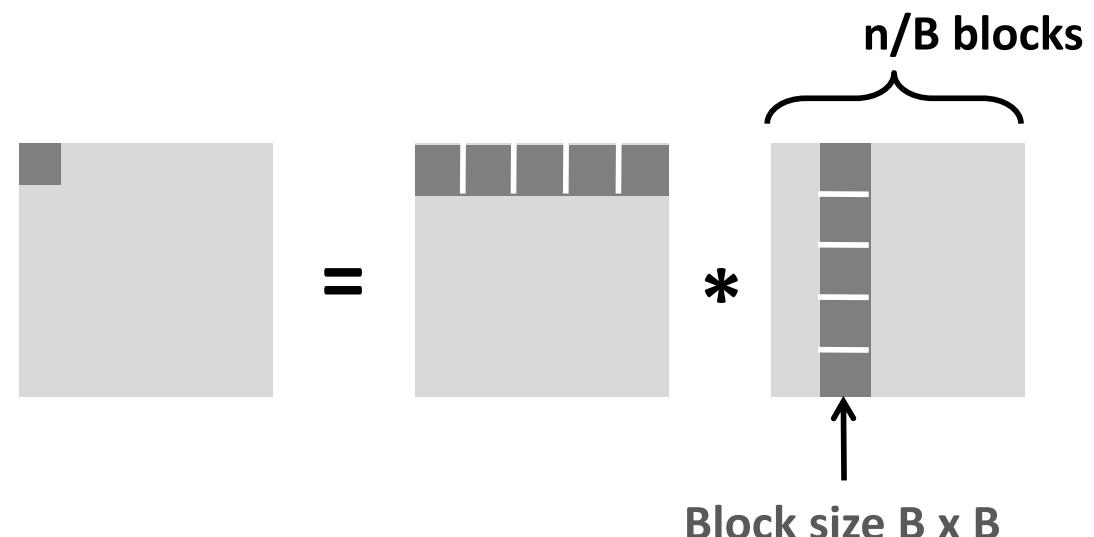
Cache Miss Analysis

■ Assume:

- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

■ Second (block) iteration:

- Same as first iteration
- $2n/B * B^2/8 = nB/4$



■ Total misses:

- $nB/4 * (n/B)^2 = n^3/(4B)$

Blocking Summary

- No blocking: $(9/8) * n^3$
- Blocking: $1/(4B) * n^3$
- Suggest largest possible block size B, but limit $3B^2 < C$!
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array elements used $O(n)$ times!
 - But program has to be written properly

Cache Summary

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.