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Course Update

> Assignment 1 — Marking now

> Checkpoint 2 — Next week
» Attend same lab for Checkpoint 2 as per Checkpoint 1

> Final Exam — Closed Book
» Wednesday 12/11/2025 2-5:15pm
> Melville Hall



Cache Memories

Acknowledgement of material: With changes suited to ANU needs, the slides
are obtained from Carnegie Mellon University: https://www.cs.cmu.edu/~213/
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Today

m Cache memory organization and operation
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Example Memory
, Hierarchy "%/ .,

CPU registers hold words

Smaller, retrieved from the L1 cache.
faster, L1:/ L1 cache\
and (SRAM) L1 cache holds cache lines
costlier retrieved from the L2 cache.
(per byte) L2 L2 cache

(SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache

L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds
cheaper disk blocks retrieved
(per byte) from local disks.
storage | 5. Local secondary storage
devices (local disks)
Local disks hold files

v retrieved from disks
on remote servers

L6: Remote secondary storage
(e.g., Web servers)
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General Cache Concept

Smaller, faster, more expensive

Cache 4 9 10 3 memory caches a subset of
the blocks
Data is copied in block-sized
10 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
00000000 000O0CDOCOG®O OO
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

Register file
Cache <—> |:> ALU
memory ]

Bus interface

Systembus  Memory bus

o L) Man
bridge memory
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General Cache Organization (S, E, B)

E = 2¢ lines per set

A
' N\
4 «—
eoe0 e —
XE X
S=ZSSEtS< o000

o000
\
Cache size:
Vv tag O11]2] cocc-- B-1 C - S X EX B data bytes
T = —
L Y
valid bit B = 2° bytes per cache block (the data)
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CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of word:
t bits s bits | b bits
_ 95 S~~~
S =2°%sets < XXX tag set block
index offset

data begins at this offset

Vv tag O 1 Z ...... B-1

valid bit ~—
B = 2P bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

( Address of int:
t bits 0..01 | 100

v tag 0|11]2]|3]|4]|5]|6]7

find set
S=Zssets<
v tag 0|11]2]|3]|4]|5]|6]7
0 00000000 OCOCGEOGCEOEOOEOOSOOOSOO
Vv tag 0|112]|3]4]|5]16]7
\.
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

vl | tag | |o]z1]|2]3]4]5]6]7

block offset
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|11]2]|3|4]5]6]7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 0000,], miss
1 0001,], hit
7 0111,], Mmiss
8 1000,], miss
0 0000, miss
v Tag Block

Set0 | 1 0 M[0-1]

Setl

Set 2

Set3 | 1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | |of1]2]3]a]5{6]7]| |[v] | teg | [0]2[2]3]4]5]6]7

vl [ tag | [o[2]2]3Ta[s[6[7ll [[v] [ tag | [o[2[2]3]a[5][6[7]| — find set

v| | tag | |o|1]2]3]4]5]6]7 vl | tag | [o]1]2]3]a]5]6]7

v| [ tag | [0]1]2]3]a]5{6]7]| |[v] | tag ] [0]2]2]3]4]5]6]7
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| | tag | [0o]1]2]3]al5{6]7]] |[v] | tag ] [0]2]2]3]a]5]6]7|| —

block offset
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| | tag | |of1]2]3]a]5|6]7]| ||v] [ tag | [o]2]2]3]a]5]6[7]| —

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X

M=16 byte (4-bit addresses), B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, hit

v Tag Block

seto L1100 [M[0-1]
1 |10 |Mm[8-9]

cerq L 101 [MI6-7]
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[
What about writes?

m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk
m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)
m What to do on a write-miss?

= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow

= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Processor package

______________________________________________________________________

Access: 40-75 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

. Core 0 Core 3 ' L1 i-cache and d-cache:
| : 32 KB, 8-way,
Regs Regs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

\ | |d-cache| |i-cache d-cache| |i-cache | | 256 KB, 8-way,
e Access: 10 cycles

' | | L2 unified cache L2 unified cache | | | |3 unified cache:

| | 8 MB, 16-way,

Main memory
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Cache Performance Metrics

m Miss Rate

® Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss

" Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

" Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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-
Writing Cache Friendly Code

m Make the common case go fast
= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Today

m Performance impact of caches

"= The memory mountain
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.
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e
Memory Mountain Test Function

long data[MAXELEMS]; /% Global array to traverse */

/*x test — Iterate over first "elems" elements of Call test () with many

% array “data” with stride of "stride", using o
* using 4x4 loop unrolling. combinations of elems
*/ and stride.
int test(int elems, int stride) {
long 1, sx2=stridex2, sx3=stridex3, sx4=stridex4; For each elems
long accO = 0, accl = @0, acc2 = 0, acc3 = 0; and stride:

long length = elems, Llimit = length - sx4;

/* Combine 4 elements at a time x/ 1. Call test()

for (1 =0; i < limit; i += sx4) { once to warm up
accO® = acc@ + datalil; the caches.
accl = accl + datali+stridel;
acc2 = acc2 + data[@+sx2]i 2. Call test()
, acc3 = acc3 + datal[i+sx3]; again and measure
the read
/* Finish any remaining elements x/ throughput (MB/s)

for (; 1 < length; i++) {
accd = acc@ + datalil;
}

return ((acc@ + accl) + (acc2 + acc3));

mountain/mountain.c
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Core i7 Haswell

1 2.1 GHz
The Memory Mountain %9 KB L1 decache
256 KB L2 cache
Ag‘cijcressive 8 MB L3 cache
prefetching _ 5 '
9 oo —— 94 B block size

@ 14000 - ‘

S 12000 -

H

£ o000 ‘ A

g 8000 _ A Ridges

b ’ -|_2 [—>- of temporal

I;:g P00 ~ locality

4000
2000

Slopes
of spatial 32k

) 128k
locality s3 - 512k

Stride (x8 bytes) 39m Size (bytes)

11
5" 28m
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= Rearranging loops to improve spatial locality
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Matrix Multiplication Example

T Variable sum
m Description: /* ijk */ held in register

= Multiply N x N matrices for (i=0; i<n; i++) ¢ /

= Matrix elements are for (j=0; j<n; j++) {

doubles (8 bytes) sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][]j];
c[i] [J] = sum;

= O(N3) total operations

= N reads per source
element

= N values summed per
destination

matmult/mm.c

= but may be able to
hold in register
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:
" Look at access pattern of inner loop

i = |- X |

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; 1 < N; i++)
sum += a[0][1i];
= accesses successive elements
" if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; 1++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)
sum += a[i][k] * b[k]l[j];
cl[i] []]

}

} matmult/mm. c

sum,

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { *i
sum = 0.0; L;;;J ﬁ]i%: (&D
for (k=0; k<n; k++) (i,)

sum += a[i] [k] * b[k][]3]; A B

c[i][j] = sum ‘ ‘ ‘
}

matmult/mm. c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k'*)g
r = a[i] [k]; O (i,%)
B C

for (3=0; j<n; Jj++) A
c[i][J] += r * Db[k][]]’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k'*)g
r = a[i] [k]; o (i,*)
B C

for (j=0; j<n; j++) A
c[i][J] += r * b[k][]]’ ‘ | ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25
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Matrix Multiplication (jki)

/* 3ki */ Inner loop:
for (j=0; j<n; Jj++) { (* k) (* j)
for (k=0; k<n; k++) { :[| (kj)
r = b[k]1[]]; n ‘ |
for (i=0; i<n; 1i++) A B C
c[1][]J] += a[i][k] * r; | ‘
}
matmult/mm.cf Column- Fixed  Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Matrix Multiplication (kiji

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) *)
r = b[k][]]’ (ED

for (i=0; i<n; i++)

Inner loop:

. i : A B
c[il[§] += a[il [k] * r; ‘ ‘ C‘
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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-
Summary of Matrix Multiplication

for (i=0; i<n; i++) {
for (3=0; j<n; Jj++) {
com 2 0.0 ik (& jik):
for (k=0; k<n; k++) ¢ 2 |oads, O stores
sum += a[i]l[k] * b[k][j]; * misses/iter = 1.25
c[i] [j] = sum;
}
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { kij (& ikj):
r = a[i] [k]; ¢ 2 |oads, 1 store
for (j=0; j<n; j++) e misses/iter = 0.5
c[i] [J] += r * b[k][]];
}
}
for (3=0; j<n; j++) {
for (k=0; k<n; k++) { jki (& kji):
r = b[k][j]; ¢ 2 |oads, 1 store
for (i=0; i<n; i++) * misses/iter = 2.0
c[i] [J] += a[i] [k] * r;
}
Bryant and O’Hallaron, | } 37




Core i7 Matrix Multiply Performance

100 - . a ae
jki / kiji
c
9
E - —
[}
s ”k/“k == jki
o y
- —=-Kiji
2 10 ..
£ i —>ijk
'g:_ —o-jik
n ——Kij
Q0 28 Bd — ik
(% V& —&— 1K
—+— ! ! ! —
kij / ikj
1

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)
38
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= Using blocking to improve temporal locality
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Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n X n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
*
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Cache Miss Analysis

m Assume:;

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

m First iteration: r ~
" n/8+n=9n/8 misses

I
*

= Afterwards in cache:
(schematic) . ——

I
*

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4



Cache Miss Analysis

m Assume:;

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m Second iteration: —
" Again: - -
n/8 + n =9n/8 misses _ .

8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (jl1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl1l];

} matmult/bmm. c

j1
Cc a b Cc
- * +
] i1 [ A

Block size B x B 43
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. . . n/B blocks
m First (block) iteration: A
" B2/8 misses for each block W BEEEE B
= 2n/B * B2/8 = nB/4 .
" . = x
(omitting matrix c) []

Block size Bx B

. .
Afterwards in cache B EEEEE

(schematic)

I
*
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

B block
m Second (block) iteration: n/B blocks

' Y
= Same as first iteration ] BEEREE
= 2n/B * B2/8 =nB/4

I
*

m Total misses:
= nB/4 * (n/B)?=n3/(4B)

Block size B x B
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Blocking Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!

= But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.

" Try to maximize spatial locality by reading data objects with
sequentially with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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