The Australian National University Semester 1, 2025
School of Computing Final Exam

Convenor(s): Ranald Clouston

Logic (COMP2620)

PLEASE READ THIS BEFORE YOU START WORKING ON YOUR EXAM:

e You have 15 minutes of reading time and an additional 180 minutes to solve the exercises. The
total score is 100 marks.

e This exam is split into 7 topics, each of which is split into questions. Topics and questions are
worth varying numbers of marks, and are labelled with how many marks they are worth. Partial
marks will be available for all questions.

e Your answers should go into the provided booklet. Your booklet should be clearly labelled with
your University ID, and not your name. Each answer should be clearly labelled by which topic
and question it is for, e.g. 2.3. If your answer to a question is spread across non-consecutive pages,
please clearly indicate this. If you need another booklet, you may request one.

e You may use scribble paper, and may ask for more. However, note that the scribble papers are
NOT marked.

e This exam will contribute 50% to your overall grade for the course.

Exercise 1 Truth Tables 7 marks

1. (3 marks) Construct the truth table for the propositions

e (p—=q) —r

ep—(qg—r)

Clearly indicate which columns are your final answer for each proposition. Give a brief explanation
in English in which circumstances these propositions have different truth values.

2. (4 marks) Construct the truth table for the sequent
pVg—=qVr,q——p,r—q—LFr

Clearly indicate which columns are your final answer for each proposition. Which single proposi-
tional variable could be added to the premises to make this a valid argument?

Exercise 2 Natural Deduction 16 marks
Prove the following sequents using natural deduction. You should use the five part notation for natural
deduction: which premises are being used; a line number; a proposition or first order logic formula;
previous lines used; and the rule name.

1. (5 marks) (p—>q)—>(¢—p)Fq—p

2. (5 marks) JaVy Rxy, ~Rcc F Jz(—x = ¢ARxx), where ¢ is a constant and R is a binary predicate.

3. (6 marks) Va(PzV Q) + —3z—-PxVQ, where P is a unary predicate and @ is a nullary predicate.

Exercise 3 Soundness and Completeness 14 marks

1. (3 marks) Suppose that the following rule was added to our natural deduction rules for proposi-
tional logic:
L'y Tk
o+
Use induction to show that this rule is sound with respect to propositional logic semantics (truth
tables). Be careful to clearly state your induction hypothesis.

2. (3 marks) Suppose that we have a proposition ¢ containing one variable p, and that ¢ has value
1 on both rows of its truth table. Restate the ‘main lemma’ of the completeness proof for this case
(for example, you should replace 7 with an actual proposition). Then give a clear English language
explanation of why we can hence conclude completeness for the particular case of the sequent - ¢.

(Recall that the main lemma states

o if p is 1 in the k’th row of its truth table, then m F ¢ can be proved by natural deduction;
e If ¢ is 0 in the k’th row of its truth table, then 7y - —p can be proved by natural deduction.

for any ¢, where 7y, is the ‘special proposition’ corresponding to the k’th row of the truth table.)
3. (4 marks) Suppose that the following rule was added to our natural deduction rules for first order

logic:
I'-Vzop

'3z

Use induction to show that this rule is sound with respect to first order logic semantics. Be careful
to clearly state your induction hypothesis.

4. (4 marks) The substitution lemma states that
Fm.e @[t/x] if and only if Faq cfpsire] @
Suppose that substitution for V-formulas was wrongly implemented as
(Vai)ft/a] = Va(blt/a])

with no side conditions. Present a first order logic signature, a model for that signature, an envi-
ronment (if necessary), a formula in place of ¢, and a term in place of ¢, which together show that,
if substitution were implemented in this way, the substitution lemma would not be correct. Give a
mathematical argument for why this is a counterexample.

Exercise 4 Modelling from English 15 marks

1. (4 marks) Consider the following rules for a course with two assignments which everyone sits,
and an extra assignment which only some students are offered. Each assignment is marked as pass
or fail. Convert each rule into propositional logic (You may use standard notation - A,V, etc. -
or Logic4Fun notation - AND, OR, etc.). Be explicit about which propositional variables you are
using, and what their English language meaning is.

e If you pass both assignment 1 and assignment 2, then you are not offered the extra assignment,
but simply pass the course.

e If you passed one of the assignments, but not the other one, then you will be offered the extra
assignment. Note that other students might, or might not, be offered the extra assignment
also.

e If you are offered the extra assignment then you pass the course if and only if you pass the
extra assignment.

What further proposition could be added to the list that carries the meaning ‘there is no other way
to pass the course’?

2. (5 marks) Translate the following paragraph into either a series of first order logic formulas, or
Logic4Fun notation. Be consistent in which notation you use. If using first order logic notation,
be explicit about which functions or predicates you are using, and what their English language
meaning is. If using Logic4Fun notation, be explicit about what needs to be put into the Sorts
and Vocabulary boxes, and what the English language meaning of each line is, before giving your
Constraints.

“Arguments can have any number of premises, but only one conclusion. If all the premises are true,
and the argument is valid, then the conclusion is true. A philosopher showed me two arguments;
let’s call them X and Y. Both X and Y were valid, but only one had a true conclusion. Therefore
one of their premises cannot be the conclusion of any valid argument whose premises are all true”

3. (6 marks) On the the weekend you need to drive from your home in the Inner North of Canberra
to do errands in Belconnen, Gungahlin, and South Canberra, then return to the Inner North. You
may perform these errands in any order. To be efficient, you should avoid visiting anywhere other
than these four areas, and avoid visiting any of the four areas more than once, other than starting
and finishing in the Inner North. You can drive from anywhere to anywhere, except that to get
between Gungahlin and South Canberra you need to go through either Belconnen or the Inner
North in between.

Write an LTL specification that your driving plan must obey. Consider both the conditions above
and whether there are any ‘commonsense’ conditions that need to be specified to avoid impossible
plans. Use the proposition variables i (you are in the Inner North), b (Belconnen), g (Gungahlin),
and s (South Canberra).

Exercise 5 Tableaux 23 marks

For all tableaux in this section, you should number your lines; label on the right each new signed propo-
sition or formula by which lines justify it; and cross each branch that can close, with line justifications
beside any crosses. If a tableau becomes repetitive in parts you may leaves the later lines out, as long as
you write a clear English language explanation of what is happening. If you find any terminated open
branch, you do not need to explore any other branch.

1. (5 marks) Use the tableaux method to prove valid the sequent

pVg q—r,a(rvyi)kp

2. (4 marks) Use the tableaux method to prove the satisfiability of the pair of signed propositions

e T :rvs
e F:p—>g—rAs

Explicitly state an assignment of truth values to propositional variables satisfying these signed
propositions.

3. (5 marks) Use the tableaux method to determine whether the following sequent is valid.

Jz(Pzr — Qx), JzPx + JzQx

where P and @ are unary predicates. State in English whether the sequent is valid or not. If it is
not valid, you do not need to explicitly extract a counterexample.

4. (5 marks) Use the tableaux method to determine whether the following pair of signed propositions
are satisfiable.

e T : Fp
e T : G(p— XG—p)

State in English whether the signed propositions are satisifable or not. If they are satisfiable, extract
and draw a satisfying model.

5. (4 marks) Use the tableaux method to determine whether the following pair of signed propositions
are satisfiable.

e T: G(—pUq)
e T: G(—qUp)

State in English whether the signed propositions are satisifable or not. If they are satisfiable, extract
and draw a satisfying model.

Exercise 6 Semantics 12 marks

1. (2 marks) Consider the first order logic signature with a unary function f and binary function g.
Consider a model for this signature with universe of discourse the natural numbers 0,1, 2, ..., with
f interpreted as the square of its input (multiplication of the input by itself) and with g interpreted
as addition.

Define an environment for this model so that the formula

F2(g(f, fy) = f2)
is satisfied. Do not define the environment’s action on any variable not appearing free in the formula.

2. (2 marks) Consider the transition system

S1 52

Suppose that this system should be able to terminate if it is in state s; or s3, but not if it is in s¢.
Draw a new transition system that is the same as the system above, except that it also has this

property.

3. (2 marks) Consider the computation tree

Suppose each path through the tree continues, below the lowest level drawn, without branching or

changing how propositions are labelled. Draw a transition system that has this computation tree.

4. (3 marks) Prove using the semantics of LTL (not using tableaux) that GX ¢ is equivalent to X G¢
for any proposition (.

5. (3 marks) Prove using the semantics of CTL* that A[y] is equivalent to E[A[p]] for any path
proposition .

Exercise 7 Model Checking 13 marks

1. (4 marks) Model check the CTL proposition E[E[-pU q|U E[-qU p]] against the transition sys-

tem
50 51
. ’
S2 S3

Make sure that you clearly label every node with every subformula that it satisfies.

2. (3 marks) Consider the transition system

In the subgraph of states that are labelled p, which are the Strongly Connected Components?
Secondly, which states satisfy the CTL formula EGp?

3. (6 marks) Transform the LTL proposition GpV Gq to the simplest possible equivalent proposition
that uses only the connectives T,—, A, U (where T is shorthand for a proposition that holds at any
state). Then model check this proposition against the transition system

t

S

u

Make sure that you clearly label every node with every subformula that it satisfies. If you erase any
states or transitions as part of your working, you should draw a new diagram instead of crossing
things out, so that your marker can follow your development.

Appendix

Truth Tables

P q|pPAg pVyq p—q
1 p|-p 1 1 1 1 1
—‘T 1] 0 1 0 0 1 0
0] 1 0 1 0 1 1
0 0 0 0 1
Natural Deduction
Y
Ty I'F T T+
w—w/\[ﬂ/\El ﬂ/\EQ
IV oAy | R) 'y
LypE F'te—=yv TVE o
_— I E
TFrooog T.I F o -
!
F,gpFJ__‘ Ik @FFQ@ﬁE FFJ_J_E
T F - I, F L TF o
! 1
ko vl 'y v 2 T'Fevy TVepko F,w}—avE
L' pVvey vy | R O X o
I'F ==
- Y _E
'k
_7 F'kt=u TVF o[t/z] _E
Fit=t I, I7 b plu/x]
T'F plt/x] , 'k 3z IV gla/z] b ¢
—— = 4] FV (T T : dF
Fl‘ﬂxgo aé (7%0? ?w)]_—‘,]_—‘/|_1/J
'+ pla/z] I' - Vap
FV (T P —_— —_—
a¢ (T ¢) 'k Vzp I F o[t/x]

First Order Logic: Free Variables and Substitution

FV(P(t1,...,t,)) and FV(t = u) are all variables appearing in any of the terms.

FV(L)is0

o FV(~p) is FV(p)
FV(pe)is FV(p) UFV (1)) for @ € {A,V,—}
FV(Qz) is FV(p) — {2} for © € {v,3}

o aft/a] is t

o ylt/a]isy

o f(tr. . t)[t/a]is f(t1[t/],- .., talt/2])

o P(ty,tn)[t/z] is P(ti[t/2], ... tn]t/a])

o (u=u)t/a] is ult/z] = w'[t/2]

o Llt/a]is L

o (mp)[t/x]is ~(p[t/x])

o (poy)[t/a]is (p[t/x]) e (Y[t/x]) for e € {A,V, =}

o (Qyo)[t/x] is Qy(p[t/x]) for © € {V, 3}, so long as x and y are different and y is not a free variable
int

First Order Logic Semantics
o Epge Pty, ... ty) if (1€, ... tMe) e PM
o Faret =uif tMe = uM® in the universe of discourse D
® Fare L never
e Fare 1 if it is not the case that Faqe ¢
o Fate p AP I Fage p and Fpaqe ¢
o Fare @V if Epqe p or Eaqe ¥ (or both)
o Farep — Y if Fage ¢ implies Faqe ¥
® Fae Voo if for all d € D we have Faq e[zsq) ¢

® Fae Joy if there exists d € D such that Fay ezsq) ¢

Logic4Fun Built-in Syntax

e function NOT (bool): bool.

e function AND (bool,bool): bool.
e function OR (bool,bool): bool.
e function XOR (bool,bool): bool.
e function IMP (bool,bool): bool.
e function IFF (bool,bool): bool.
e function ALL (var:S) (bool): bool.
e function SOME (var:S) (bool): bool.
e predicate = (S,S).

e predicate < (S,S).

e predicate <= (8,9).

e predicate > (S,S).

e predicate >= (8,S).

e predicate <> (8,S9).

e predicate EST (S).

e function + (S,natnum): S

e function - (S,natnum): S

e function PRED (S) : S.

e function SUCC (S) : S.

e function DIF (S,S): natnum.

e name MIN : S.

e name MAX : S.

10

Tableaux

T: 1 T: - F:-p T:oVY F:pVvy
X F:op T:p T:p T:9¢ F:op
F:y
T:pAY F:opAvY T:o—=1Y F:o—v
T:p F:o F:v F:op T: T:p
T: ¢ F:vy
T : Vap F:3zp
T : play/x] F : play /7]
T : plaz/x] F : plas/x]
T : plan/7] F: plan /]
where a1,...,a, are all variables in the tableau appearing free before or after this line. If no variables

appear free before this line, the conclusion is p[a/x], along with ¢[b/z] for any other variable b appearing

free after this line.
F:Vzp T:dze

F:ola/z] T:la/z]
where a does not appear free earlier in the tableau.

Branching quantifier rules:

F :Vzp T:dzp
F : plai /] F : pla,/z] F : pla/z] T : pla;/x] T : pla,/z] T : pla/z]
where aq,...,a, are all terms (= variables) in the tableau appearing free before or after this line, and a

does not appear free earlier in the tableau.

T:Gyp F: Gy T: Fo F:Fyp
T:yp F:op F: XGy T:o T: XFyp F:op
T: XGop F:XFp
T:pU1 F:oUvy

Ty T:p F:v
' T: X(pU) F:o F: X(pU)

If the node is poised, you may step:

T:X¢1 -+ T: X, F: Xy -+ T:X,

+
Tchla"'7T:@m,F:wla"'vF:wn

Semantics of Temporal Logics

LTL:

e Faopifpe Liog)

e Faro L never

e Faq0 i if it is not the case that Fae ¢
e Frmo o ANYifEM, g and Faqp ¢

* o @ Vipif Epgo @ or Faq o 1 (or both)
e Fato o= Y if Epo o implies Faqp ¢

® Frmo Xpif Faon, @

® Fn,o Gy if for all natural numbers i, Fag,0., ¢

11

Fam,o Fo if there exists a natural number i such that Faqo., ¢

Fam,o @U1 if there exists a natural number ¢ such that Faq,., %, and for all h < i we have
':M,O'>h (p

Em,s pif p e L(s)

Fm,s L never

Fam,s 7 if it is not the case that Faq s ¢

Fa,s ¢ AN if Eags o and Bags ¢

Eas oV if Eags @ or Eags ¢ (or both)

Fm,s ¢ = ¥ if Faqs @ implies Faq s 9

Ea,s AX g if for all transitions s — s’ we have Faq g .

Ea,s EX o if there exists a transition s — s’ such that Faq s ¢

Ea,s AGyp if all paths s — --- and all states s’ in such a path, Eaqy ¢

Eam,s EGo if there exists a path s — --- such that for all states s’ in that path, Faq s ¢
Eam,s AFp if all for paths s — - -- there exists a state s’ in that path such that Faqs ¢

Eam,s EF if there exists a path s — --- such that there exists a state s’ in that path such that
':./\/l,s’ ¥

Ea,s Alp U] if for all paths s — --- there exists a state s’ in that path such that Faq s 1, and
for all strictly earlier states s” in that path, Faq ¢ ¢

Eam,s ElpU] if there exists a path s — --- such that there exists a state s’ in that path such
that Faq s ¢, and for all strictly earlier states s” in that path, Faq s @

CTL* path propositions are exactly as for LTL, along with the case where ¢ is a CTL* proposition:

':M,a 2] if ':M’go %2

CTL* propositions are exactly as for CTL for variables and propositional connectives, along with:

Em,s Ala] if for all paths o = s — -+, Faq0 @

Eam,s Ela] if there exists a path 0 = s — - -+ such that Faq, @

Model Checking

CTL:

Label with propositional variables according to the labelling function
Label nothing with L

If a state is not labelled with ¢, label it with —p

If a state is labelled with both ¢ and 1, label it with ¢ A 1

Label a state with EX ¢ if any of its successors are labelled with ¢

Label with E[p U 9] all states that are labelled with 1, then label with E[U ¢] all states that are
labelled with ¢ for which some immediate successor is labelled with E[p U 9], until done

12

e Label with EGp all states that are labelled with ¢, then delete EGy from any state with no
successors labelled with EGy, until done, or

e Label with EGp any state in the subgraph of states labelled ¢ that can reach a non-trivial SCC
in any number of transitions

e Label with FcGyp any state in the subgraph of states labelled ¢ that can reach a fair SCC in any
number of transitions

LTL, static phase:

e No state gets label L
e A state gets label —¢ if and only if it does not get label ¢

o A state gets label ¢ A ¢ if and only if it gets both ¢ and ¥

Make copies both with and without X ¢

Add ¢ U 1, making a copy if necessary, unless a state has neither ¢ nor .

e Leave out ¢ U ¥, making a copy if necessary, unless a state has 1

LTL, transition phase: given states s’, ', which are copies of s, t from the original model, add a transition
s’ — t’ if there was a transition s — ¢ in the original model and

e If s’ has X then ¢’ must have ¢
e If s’ does not have X¢ then ¢’ must not have ¢
e If s’ has p U+ and does not have ¢ then ¢’ must have o U

e If s has ¢ and does not have ¢ U ¢ then ¢’ must not have ¢ U ¢

13

