Introduction to
First Order Logic

Syntax, Comparison to Logic4Fun, Modelling Natural Language,
Natural Deduction

Ranald Clouston

March 17, 2025

Australian
National
University

Beyond Propositional Logic

Logic4Fun has shown that some things are awkward to express with propositional logic.

Other things, although appearing to be logically reasonable, seem impossible to express:
> All cricket fans know the rules of cricket;
> Some Australians do not know the rules of cricket;

» . Some Australians are not cricket fans

This is a perennial problem: if we think parts of language or thought have logical content,
but our current logics cannot express that content, we need new logics.

This example, and many more, can be expressed via first order logic, also called predicate
logic.

.

First Order Logic R. Clouston

Syntax of First Order
Logic

oooooooooo

Functions

Logic4Fun is specialised for logic puzzles and automatic model finding, so while its syntax is
similar to first order logic it is not the same.

Like Logic4Fun, we do want to talk about functions.

Unlike Logic4Fun we will have no sorts, so the only property of a function’s syntax is how
many arguments it takes, which is called its arity.

> Special case: a nullary (arity 0) function is called a constant.
> Without sort bool we will not be able to express a predicate as a sort of function;

P> We will see later that sorts, while very convenient, are not essential.

First Order Logic R. Clouston

Variables and Terms

A term is a ‘thing’ in some universe of discourse
> We will be more precise about these universes later; for now, it is a ‘collection of things

we are interested in’'
P Terms are either variables - arbitrary things, written x, y, z etc...
> Do not confuse with propositional variables, which are arbitrary truth values, not things.

» ... or defined via some function(s), e.g. 'Mountback’, "the horse ridden by Mountback’,
"the activity performed by the horse ridden by x'.

In Backus-Naur form:

t = x| f(t,...,1t)

where x is any variable, f is a function with arity n, and f has been applied to n terms.

First Order Logic R. Clouston

Predicates and Signatures

A predicate is syntax that takes term(s) as input, and given such input has a truth value.

Like functions, predicates have arities.
> A nullary predicate behaves just like a propositional variable.
> unary predicates are assertions about things: ‘_is a cricket fan’, ‘_ knows the rules of
cricket’, '_is Australian’
> binary predicates are assertions about pairs of things, i.e., a relation between them: ‘_

is married to _', ‘_ = _

When we do first order logic, we always work with a signature: a collection of functions and
predicates, each with specified arities.

.

First Order Logic R. Clouston

Formulas

Definition of formula:

o = Pt,...,t)|t=t|L|w|eAp|eVe|ooe|Vxe|Ixp

where t are terms, P is a predicate of arity n applied to n terms, and x is a variable.

Connective Name Also called
= equality identity
A4 universal quantifier for all, ALL
=

existential quantifier there exists, SOME

Vx and Jx bind as tightly as =, so e.g. VxL A pis (VxL) A .
Where a function or predicate, and its subterm, are one letter, omit brackets, e.g. Pc,

First Order Logic

fx

=

)

’iii

R. Clouston

Free and Bound Variables
In mathematics, programming, and logic we have the idea of free and bound variables.

If a mathematics book says ‘Let x be a natural number’, we read x as an arbitrary natural
number throughout a certain ‘scope’. If 100 pages later we see x again we do not assume it
is the same natural number, or even a natural number at all.

P The construction ‘let x be' is said to bind x.
> In the sentence ‘x is odd’, x is free: it only makes sense in the context of a binder.
> The end of the scope might not be explicit; it might be e.g. the end of a section.

> The name x is essentially arbitrary; it could have been y so long as it was uniformly
replaced throughout the scope.

In programming we meet the same phenomenon with local variables.

..

First Order Logic R. Clouston

Free and Bound Variables in First Order Logic

v and 3 bind their variables. Formally we define the set of free variables of a formula:
» FV(P(ti,...,ty)) and FV(t = u) are all variables appearing in any of the terms.
> FV(L)is @
> FV(~) is FV(p)
> FV(pet)is FV(p)UFV(¢) for e € {A,V,—}

> FV(Ox)is FV(p) — {x} for © € {V,3}
A variable is bound if it appears but is not free.

Examples:
> FV(vx(Px A Q(x,y)))
> FV(VxPx A Q(x,y))

First Order Logic R. Clouston

Free and Bound Variables in First Order Logic

v and 3 bind their variables. Formally we define the set of free variables of a formula:
» FV(P(ti,...,ty)) and FV(t = u) are all variables appearing in any of the terms.
> FV(L)is @
> FV(~) is FV(p)
> FV(pet)is FV(p)UFV(¢) for e € {A,V,—}

> FV(Ox)is FV(p) — {x} for © € {V,3}
A variable is bound if it appears but is not free.

Examples:

> FV(Vx(Px A Q(x,y))) is {y}
> FV(VxPx A Q(x,y))

First Order Logic R. Clouston

Free and Bound Variables in First Order Logic

v and 3 bind their variables. Formally we define the set of free variables of a formula:
» FV(P(ti,...,ty)) and FV(t = u) are all variables appearing in any of the terms.
> FV(L)is @
> FV(~) is FV(p)
> FV(pet)is FV(p)UFV(¢) for e € {A,V,—}

> FV(Ox)is FV(p) — {x} for © € {V,3}
A variable is bound if it appears but is not free.

Examples:
> FV(Vx(Px A Q(x,y))) is {y}
> FV(VxPx A Q(x,y))is {x,y}.
> This formula is needlessly confusing and could be rewritten Vz Pz A Q(x,y).

First Order Logic R. Clouston

Closed Formulas

A formula is closed if it has no free variables.

We are mostly interested in closed formulas; other formulas are in some sense incomplete.

But our closed formulas often have subformulas that are not closed

> e.g. VxP x is closed, but its subformula P x is not...
> so we must develop first order logic in a way that makes sense of free variables.

R. Clouston

10 First Order Logic

.

Comparison to
Logic4Fun

oooooooooo

Comparison to Logic4Fun

The languages of Logic4Fun and first order logic are similar, but there are a few
conveniences (for users) and restrictions (to make automation tractable) in Logic4Fun

Logic4Fun vs First Order Logic:
> Finite and small vs potentially infinite universes of discourse.

> Sorts vs no sorts. First order logic can be extended with sorts, but it is simpler to work
with the unsorted base logic. Yet sorts are so useful that we will spend a few slides
talking about how to live without them.

> Potentially partial vs always total functions (and predicates).
» No built-in properties of functions like all_different.
> Ordered sorts vs no ordering.
During our discussion on sorts we will return to these last three issues.

..

12 First Order Logic R. Clouston

Working with a Single Sort

Suppose our LogicdFun example requires only a single sort and does not use the built-in

bool or natnum.
> To be concrete, say we define it in the Sorts box as Universe.

Then all our terms will have sort Universe, which is no different from having no sorts.
> e.g. instead of defining a function as £ (Universe,Universe) : Universe, we

might as well just say that f has arity 2.

R. Clouston

13 First Order Logic

..

Single Sort by Enumeration

What if our single sort was defined with enum?

> e.g. rider enum : Mountback, Hacking, Klamberon, Topalov.

Put a constant (nullary function) for each of these elements into the signature.
For each pair of constants, assert they are non-equal, e.g. —(Mountback = Hacking)

Finally, if necessary, declare that there is nothing else:

Vx(x = Mountback V x = Hacking V x = Klamberon \/ x = Topalov)

14 First Order Logic R. Clouston

.

Single Sort by Cardinality

P> e.g. Universe cardinality = 3

We can use the same trick as the previous slide with constants called 0, 1, 2.
Alternatively: observe that if there are 4 things, at least two of them must be equal
YwVxVyVz(w =xVw=yVw=zVx=yVx=zVy=2)

and that there exist at least three different things:

AxJy3z(—(x = y) A =(x

R. Clouston

These tricks allow us to define bool and the finite natnum, should we need them

15 First Order Logic

.

Multiple Sorts

What if we do want multiple sorts e.g. rider, horse, activity?

Think of our universe as a set of diverse ‘things’ and introduce the sorts to the signature as
unary predicates, so e.g. rider(x) is intended to mean that the thing x is a rider.

» Announce that all the constants fulfill the relevant predicate, e.g. rider(Mountback).

> To prevent our constants of the same sort being equal things, as before we assert e.g.
—(Mountback = Hacking)

> To keep our sorts disjoint, assert e.g. Vx(rider(x) — —horse(x))
There is nothing else in our universe: Vx(rider(x) \V horse(x) V activity(x)).
> But how to handle quantified variables and functions, that we intuitively assign sorts to?

v

16

First Order Logic R. Clouston

Quantified Variables

In Logic4Fun when we write ALL x ... or SOME x ... the variable x has an inferred sort.

Now that sorts are replaced by unary predicates, we add an assertion inside our statement
that such a predicate holds for our variable.

> If we have Vx¢ with intended sort S for x, use implication: Vx(S x — ¢).

> If we have Ixy with intended sort S, use conjunction: 3x(S x A ¢).
e.g. to assert there are at most two things in a sort S, write

VxVyVz(Sx NSy ANSz—sx=yVx=zVx=2)
and to assert there are at least two things:

IxJy(SxASy A-(x=y))

..

First Order Logic R. Clouston

Functions

How to express sorted functions like rides (rider) : horse?
> Not as unary functions, because these must be defined on everything in our universe!

We use the fact that functions are a special kind of relation, and relations can be expressed
by predicates

> e.g. instead of a unary function, use a binary predicate

> Assert it obeys our sorts (as predicates): VxVy(rides(x,y) — rider(x) A horse(y)).

> Assert everything in our domain is mapped by the function:
Vx(rider(x) — 3y rides(x,y)). If we omit this our function could be partial.

> Assert that it maps things uniquely: VxVyVz(rides(x, y) A rides(x,z) — y = z)

We could similarly make our function all _different or surjective.

18

First Order Logic R. Clouston

Ordered Sets

In Logic4Fun all sorts are ordered. We do not always use this, so do not always need to

encode it into first order logic.

But if we did, we could introduce binary predicates <, <, >, >

> Do we really need all four?
> What assertions of first order logic should they obey? Left as an exercise.

R. Clouston

19 First Order Logic

.

Modelling Natural
Language with First
Order Logic

oooooooooo

Modelling Natural Language

First order logic cannot, of course, model all of natural language
> Nor even model all quantifiers: “For most x”, “For finitely many x", ...

> But we hope to model a lot more language than propositional logic could.

Our discussion of moving between Logic4Fun and first order logic brought up many issues
that arise with natural language also
> Start with our signature: what are our things, and what operations on, properties of,
and relations between them do we wish to discuss?
> Sometimes need to express properties like specific finite size, functionality, injectivity
etc.

.

21

First Order Logic R. Clouston

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy

Some footballers are hairy
Goats do not play football

Every footballer kicks goats
Every footballer kicks a goat
Only hairy footballers kick goats

22

First Order Logic R. Clouston

).

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)
Some footballers are hairy

Goats do not play football

Every footballer kicks goats

Every footballer kicks a goat

Only hairy footballers kick goats

22

First Order Logic R. Clouston

).

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)
Some footballers are hairy Ix(Fx A Hx)
Goats do not play football

Every footballer kicks goats

Every footballer kicks a goat

Only hairy footballers kick goats

22

First Order Logic R. Clouston

).

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)
Some footballers are hairy Ix(Fx A Hx)
Goats do not play football Vx(Gx — —Fx)

Every footballer kicks goats
Every footballer kicks a goat
Only hairy footballers kick goats

22

First Order Logic R. Clouston

.

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)

Some footballers are hairy Ix(Fx A Hx)

Goats do not play football Vx(Gx — —Fx)

Every footballer kicks goats Vx(Fx — Jy(Gy A Kxy))

Every footballer kicks a goat
Only hairy footballers kick goats

22

First Order Logic R. Clouston

.

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)

Some footballers are hairy Ix(Fx A Hx)

Goats do not play football Vx(Gx — —Fx)

Every footballer kicks goats Vx(Fx — Jy(Gy A Kxy))

Every footballer kicks a goat As above, or Jy(Gy A Vx(Fx — Kxy))?

Only hairy footballers kick goats

22

First Order Logic R. Clouston

.

Extended Example

Take unary predicates F 'plays football / is a footballer’, G ‘is a goat’, H ‘is hairy’, and
binary predicate K ‘_ kicks _".

All goats are hairy Vx(Gx — Hx)

Some footballers are hairy Ix(Fx A Hx)

Goats do not play football Vx(Gx — —Fx)

Every footballer kicks goats Vx(Fx — Jy(Gy A Kxy))

Every footballer kicks a goat As above, or Jy(Gy A Vx(Fx — Kxy))?

Only hairy footballers kick goats Vx(3Jy(Gy A Kxy) — Fx A Hx)
or Vx(Fx A Jy(Gy A Kxy) — Hx)?

22

First Order Logic R. Clouston

..

Ambiguity

The last two examples were ambiguous: they could be translated different ways and (in
fact) those ways are not logically equivalent.

First order logic has its limitations and flaws, but this is not one of them.

Rather, this is a feature! We identify potentially dangerous ambiguities in language, e.g. in
program specifications or laws, by attempting to formalise them.

..

23

First Order Logic R. Clouston

Natural Deduction for
First Order Logic

oooooooooo

Natural Deduction and Predicates

Recall that natural deduction is structured around introduction and elimination rules.

We will not have such rules for atomic predicates P(ti, ..., t,).
> To prove such a predicate we must use our assumptions, or eliminate other connectives.

However we will have such rules for the very special predicate =, which is why it is a basic
part of the logic instead of being yet another predicate we can try to define ourselves.

25

First Order Logic R. Clouston

Equality Introduction

Everything is equal to itself:

[l

This is our second axiom, after Assumption, so when it appears in our proof we do not cite
any previous line.

26

First Order Logic R. Clouston

Equality Elimination

If a formula involving some term t is true, and t = u, then the formula with some or all
instances of t replaced by u is true:

Fr-t=u I"F p[t/x] _
M Eolu/x] N

This requires us to formally define substitution.

27

First Order Logic R. Clouston

=

Substitution into Terms

Substitution is the replacement of all appearances of a given variable by a given term.

Substitution inside a term is defined by an easy induction:

> x[t/x]is t

> ylt/x]isy
> F(tn. o ta)[/x] s F(0[E/X], . ta]t/X])
This is just find-and-replace: every instance of x inside a given term is replaced by t.

> Special case: there is no x in the given term. Then substitution does nothing.

R. Clouston

28 First Order Logic

..

Substitution into Formulas (No Quantifiers)

If we ignore quantifiers, substitution inside a formula is also find-and-replace:
> P(t1,...,ty)[t/x]is P(ti[t/x],. .., ta[t/x])
> (u=u)[t/x]is u[t/x] = J[t/x]
> 1[t/x]is L
> (~)[t/x] is (¢lt/x])
> (pe)[t/x]is ([t/x]) @ (Y[t/x]) for e € {A,V, =}

Note that this definition uses the definition of substitution into terms.

We will return to the question of substitution in the presence of quantifiers.

29 First Order Logic R. Clouston

Equality Elimination

Fr-t=u I"F p[t/x] _ £
T plu/x] ;

The definition of substitution from the last slides allows us to prove a basic example on the
whiteboard:
t=utu=t

Note: another way to think about substitution is to ignore the variable in the definition, and
just replace some (or all) occurrences of some term with another term that is equal to it.

30

First Order Logic R. Clouston

Existential Introduction

If we know something about a specific term, we know that property holds for some term:

M- olt/x]
{ T J

31

=
First Order Logic R. Clouston

Universal Elimination

Universal elimination is equally easy to state:

= Vxp
I+ ot/x]

Whiteboard proof:
Vx(Fx — Gx) F VxFx — IxGx

(This example requires 3/ also):

[+ et/ -,
M= Ixp

32

First Order Logic

R. Clouston

Substitution with Quantifiers

Substitution as simple find-and-replace is not correct in the presence of quantifiers.

Suppose we have the perfectly reasonable property Vx3y(x < y) and decide to apply VE.
» We can choose any term to replace x. Let's choose y. Then Jy(y < y)?77?

Problem: a clash between the term y we chose, and a variable name appearing bound in the
formula we are replacing inside.

Solution: change the bound name y in our original formula to z, to get Vx3z(x < z).
> Are you convinced that this does not change the meaning of our formula at all?
> Let's choose y to replace x again. Then 3z(y < z)
» Health warning: never change a free name. Only bound names can be changed like this.

..

33

First Order Logic R. Clouston

Substitution with Quantifiers

To our earlier almost complete definition of substitution inside a formula we add
> (Qyp)[t/x] is Qy(p[t/x]) for © € {V,3}, so long as x and y are different and y is not

a free variable in t
This looks like a partial definition - it only works if two conditions hold - but in fact it is

total if we adopt the policy:
> if either condition fails, choose a variable z not used anywhere in ¢, x, or t, then
rename all occurences of y in Oy to z, then proceed with the substitution.

.

R. Clouston

34 First Order Logic

Universal Introduction

If we know something about a completely arbitrary variable, then we know it about anything.

{ ad FV(T,) - %w }

There is a rough convention of choosing variable names from the start of the alphabet to
mean 'variable name which is arbitrary in the current context’. Such variables are sometimes
called eigenvariables.

Whiteboard example:
VxFx,VxGx F Vx(Fx A Gx)

35

First Order Logic R. Clouston

Existential Elimination

How can we use an existential? Recall VE: if we know a disjunction without knowing which
side holds, we show that either side gets us to the same conclusion.

With 3 we might have no idea which term our property holds of, so we show that the same
conclusion follows from the assumption of the property on an arbitrary eigenvariable:

{ ad FV(T, 0,) : er rr,/’f[;’/x] " Y3 }

36

First Order Logic R. Clouston

From Universal to Existential

An interesting sequent with a short proof: Vxp - Ixp.
Sanity check: confirm we cannot prove the other direction.

The theorem says that if everything has a certain property, then something has that
property.
> This only makes sense if our universe of discourse is not empty.

> First order logic can be modified to have a possibly empty domain of discourse; this is

called free logic. We will not pursue this in this course.

» We can have possibly empty ‘sorts’ (unary predicates): there is no general proof that

IxSx.

37 First Order Logic R. Clouston

.

The Classical Relationship between Universal and
Existential

Just as A and V are related by the De Morgan laws, which require classical proof, we have
P dx—p F =Vxe and =Vxp F Ix—p
P> Vx—p F —3dxe and =dxp F Vx—p

Three of these sequents follow by intuitionistically acceptable proofs; let's do the first one.

But the sequent =Vxy - Ix— requires —=—E.
» Hint: first prove =(3x—¢p) - Vx¢p, which also required ~—=E

38

=] ——
=

First Order Logic R. Clouston

