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Branching Transition Systems

Transition systems often branch (evolve in different ways), perhaps because of:
▶ Interaction with users, external processes, environment
▶ Randomness
▶ Parallelism creating unpredictable ordering of operations
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Beyond LTL

LTL propositions only talk about a single path of a transition system

▶ Sometimes in practice LTL propositions are analysed with respect to all possible paths.

We often want to talk about all or some possible paths, and to mix these existential and
universal statements in a single proposition

▶ It is possible to get to state where a certain property holds;

▶ From any point on any path through the system, it is possible to get to state where a
certain property holds;

▶ There exists a situation from which all paths will lead to a certain proposition.

This capability is provided by branching temporal logic, better known as Computation Tree
Logic (CTL).
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Computation Trees

Computation Tree Logic takes its name from a visualisation of all paths through a system as
an infinite tree of branching possibilities:
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CTL Syntax and
Semantics
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Extending LTL Syntax

If we consider of multiple paths, even a connective as simple as X becomes ambiguous:
▶ By Xφ, do I mean that all possible next states satisfy φ, or only that some possible

next state does?
▶ If there is exactly one possible next state, as in LTL, there is no distinction here!

We resolve this ambiguity by splitting X into two connectives:
▶ AX means ‘All neXt’
▶ EX means ’Exists a neXt’
▶ X on its own is no longer a valid unary connective; we must specify which X we mean

by putting A or E on top, every time.
▶ A and E on their own are also not valid unary connectives.

We perform the same doubling to all the temporal connectives.
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CTL Syntax

Definition of a CTL proposition:

φ := p | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | AXφ | EXφ

| AFφ | EFφ | AGφ | EGφ | A[φUφ] | E [φUφ]

where p is any propositional variable.

The unary connectives bind as tightly as ¬. Where AU and EU need disambiguation, we
will use parentheses.
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Semantics of Propositional Connectives

A CTL proposition holds, or fails to hold, for a particular transition system M and state s
(usually, we are interested in a start state).
▶ Write ⊨M,s φ to say that φ is satisfied by all paths whose first state is s.
▶ If we want a proposition to hold for all states in the model, write ⊨M. If we want to

express that it holds for all transition systems, write ⊨.

Semantics for the propositional connectives are mostly familiar from LTL:
▶ ⊨M,s p if p ∈ L(s)
▶ ⊨M,s ⊥ never
▶ ⊨M,s ¬φ if it is not the case that ⊨M,s φ
▶ ⊨M,s φ ∧ ψ if ⊨M,s φ and ⊨M,s ψ
▶ ⊨M,s φ ∨ ψ if ⊨M,s φ or ⊨M,s ψ (or both)
▶ ⊨M,s φ→ ψ if ⊨M,s φ implies ⊨M,s ψ
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Semantics of Temporal Connectives, via LTL

▶ ⊨M,s AXφ if for all paths σ = s → s1 → s2 → · · · in M, we have ⊨M,σ Xφ in LTL.

▶ ⊨M,s EXφ if there exists a path s → · · · satisfying Xφ

▶ ⊨M,s AGφ if all paths s → · · · satisfy Gφ

▶ ⊨M,s EGφ if there exists a path s → · · · satisfying Gφ

▶ ⊨M,s AFφ if all paths s → · · · satisfy Fφ

▶ ⊨M,s EFφ if there exists a path s → · · · satisfying Fφ

▶ ⊨M,s A[φU ψ] if all paths s → · · · satisfy φU ψ

▶ ⊨M,s E [φU ψ] if there exists a path s → · · · satisfying φU ψ
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Semantics of Temporal Connectives, Directly

▶ ⊨M,s AXφ if for all transitions s → s ′ in M, we have ⊨M,s′ φ.

▶ ⊨M,s EXφ if there exists a transition s → s ′ such that ⊨M,s′ φ

▶ ⊨M,s AGφ if all paths s → · · · and all states s ′ in such a path, ⊨M,s′ φ

▶ ⊨M,s EGφ if there exists a path s → · · · such that for all states s ′ in that path, ⊨M,s′ φ

▶ ⊨M,s AFφ if all for paths s → · · · there exists a state s ′ in that path such that ⊨M,s′ φ

▶ ⊨M,s EFφ if there exists a path s → · · · such that there exists a state s ′ in that path
such that ⊨M,s′ φ

▶ ⊨M,s A[φU ψ] if for all paths s → · · · there exists a state s ′ in that path such that
⊨M,s′ ψ, and for all strictly earlier states s ′′ in that path, ⊨M,s′′ φ

▶ ⊨M,s E [φU ψ] if there exists a path s → · · · such that there exists a state s ′ in that
path such that ⊨M,s′ ψ, and for all strictly earlier states s ′′ in that path, ⊨M,s′′ φ
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Examples
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In this transition system starting at s0 / induced computation tree:
▶ AX (q ∧ r) or EX (q ∧ r)?
▶ If either of the above fail, what is a true statement involving AX or EX?
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Examples
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▶ AFr or EFr? What can we say in general about A♡ and E♡ for any LTL connective ♡?

▶ A[p ∧ q U AGr ] or E [p ∧ q U AGr ]?
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Equivalences
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Duality

We are now used to pairs of ‘dual connectives’ that are related to each other by ¬:
▶ ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ and ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
▶ ¬∀x φ ≡ ∃x¬φ and ¬∃x φ ≡ ∀x¬φ
▶ ¬Gφ ≡ F¬φ and ¬Fφ ≡ G¬φ

In all the above, ≡ means ‘is satisfied by exactly the same models’.

Hence either of these pairs of connectives are definable in terms of their dual:

▶ e.g. φ ∨ ψ ≡ ¬¬φ ∨ ¬¬ψ ≡ ¬(¬φ ∧ ¬ψ)

What dualities does CTL exhibit?
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Duality in CTL

Each A and G is defined universally, and each E and F is existential, so:

▶ ¬AGφ ≡ EF¬φ and ¬EFφ ≡ AG¬φ
▶ ¬AFφ ≡ EG¬φ and ¬EGφ ≡ AF¬φ

X was self dual in LTL, so

▶ ¬AXφ ≡ EX¬φ and ¬EXφ ≡ AX¬φ

But what about U?

▶ ¬A[φU ψ] cannot be E¬[φU ψ] because this is not valid syntax!
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AU via EU
In LTL it is a fact (don’t believe me? Prove the two sequents with tableaux!) that

φU ψ ≡ ¬(¬ψU (¬φ ∧ ¬ψ)) ∧ Fψ

Hence ⊨M,s A[φU ψ] iff...
▶ for all paths σ from s, ⊨M,σ φU ψ in LTL, iff
▶ for all paths σ from s, ⊨M,σ ¬(¬ψU (¬φ ∧ ¬ψ)) ∧ Fψ, iff
▶ there does not exist a path σ from s for which it is not the case that

⊨M,σ ¬(¬ψU (¬φ ∧ ¬ψ)) ∧ Fψ, iff
▶ there does not exist a path σ from s such that ⊨M,σ ¬(¬(¬ψU (¬φ ∧ ¬ψ)) ∧ Fψ), iff
▶ there does not exist a path σ from s for which ⊨M,σ (¬ψU (¬φ ∧ ¬ψ)) ∨ G¬ψ
▶ it is neither the case that there exists a path σ from s for which

⊨M,σ ¬ψU (¬φ ∧ ¬ψ), nor that there exists a path σ from s for which ⊨M,σ G¬ψ, iff
▶ it is not the case that ⊨M,s E [¬φU ¬φ ∧ ¬ψ], nor ⊨M,s EG¬ψ, iff
▶ ⊨M,s ¬(E [¬φU ¬φ ∧ ¬ψ] ∨ EG¬ψ)
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A Minimal Set of Connectives

So we get the far from obvious fact that AU can be defined via ¬, EU, ∧, and EG :

A[φU ψ] ≡ ¬(E [¬φU ¬φ ∧ ¬ψ] ∨ EG¬ψ)

(essentially the same argument would define EU in terms of AU)

As with LTL, we can define our F connectives in terms of our U connectives:

AFφ ≡ A[⊤U φ] and EFφ ≡ E [⊤U φ]

We will continue to use all our connectives because it is more convenient

▶ But when we get to model checking next week we will simplify our algorithm by
assuming that our only connectives are ⊥, ¬, ∧, EX , EG , and EU.
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Specification with CTL

18 CTL R. Clouston



A Two-Player Alternating Game

Suppose we are design a game with two players strictly alternating turns (like chess,
tic-tac-toe). What would some desirable properties be?

▶ Let f be ‘first player’s move’, and e be ‘game is ended’

The property that the game starts with the first player, and is not already ended, can be
expressed without temporal connectives, as f ∧ ¬e.

Some desirable properties are expressible, for an arbitrary game (path), in LTL:

▶ The game eventually ends: Fe

▶ The game eventually ends, and turns alternate until then: ((f ∧ X¬f ) ∨ (¬f ∧ Xf ))U e

▶ Whenever the game ends, it stays ended: G (e → Ge)
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A Two-Player Alternating Game

We can sometimes say an LTL proposition holds of an arbitrary path by prefixing A:

▶ ‘The game eventually ends: Fe’ becomes ‘all games eventually end: AFe’

But A[(f ∧ X¬f ) ∨ (¬f ∧ Xf )U e] and AG (e → Ge) are not CTL propositions.

▶ In fact, we can convert these to CTL without changing the intended meaning by adding
some more As: A[(f ∧ AX¬f ) ∨ (¬f ∧ AXf )U e] and AG (e → AGe)

But here is a CTL proposition that seems to have no LTL counterpart:

▶ Introducing w for ‘first player wins’, we probably want to rule out a first move so
powerful that they are guaranteed a win from it: ¬EX AFw .
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CTL* : Beyond LTL and
CTL
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LTL vs CTL

Because CTL can talk about branching time, in particular mixing universals and existentials,
it is obvious that it can express things than LTL cannot.

But what about the other way around? Can we always translate an LTL proposition
(considered as a statement about an aribtrary path from the start state) into a CTL
proposition by sprinkling in As?

Surprisingly perhaps, the answer is no.
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LTL but not CTL: An Example

p p
s0

s1 s2

There are two kinds of paths through this system:

▶ Loop forever at s0;

▶ Loop some finite number (maybe 0) times on s0, then proceed to s2

Both these sorts of paths obey the LTL proposition FGp: eventually they affirm p forever.

But the system does not satisfy AF AGp: there is a path (looping on s0) in which there is
no point from which the only paths always satisfy p (because we can always proceed to s1).
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LTL but not CTL: Another Example

p p
s0

s1 s2

Another example: all paths through this system obey the LTL proposition FXp, but the
system does not satisfy AF AXp.

In fact, in LTL FXp is equivalent to XFp; but while we have just shown these propositions
do not match AF AXp, they in fact do match AX AFp!

▶ So a lot of care is needed when trying to translate from LTL to CTL

▶ In fact (not proved in this course) there are LTL propositions with meanings that
cannot be captured by any CTL proposition. The logics are formally incomparable.
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Introducing CTL*

CTL* is a logic powerful enough to include all statements of LTL and CTL.

This is achieved by keeping the LTL connectives, but letting A and E be unary connectives
on their own as well.

▶ Complication: Xφ and similar propositions on their own are still ambiguous.

▶ Solution: Xφ etc. must have an A or E above it in the syntax tree, but not necessarily
immediately above.

So all CTL propositions are CTL* propositions, but we can now also express tricky LTL
propositions like FGp, by writing AFGp.

▶ More precisely, we use square brackets and write A[FGφ]

▶ In fact any LTL proposition φ becomes the CTL* proposition A[φ].
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CTL* Syntax

Definition of a CTL* proposition φ involves the ancillary notion of a path propositions α:

φ := p | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | A[α] | E [α]

α := φ | ¬α | α ∧ α | α ∨ α | α→ α | Xα | Fα | Gα | αU α

where p is any propositional variable.

This is complex to read, but the effect is simply to ensure that any occurrence of an LTL
operator has at least one A or E above it.
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CTL* Path Proposition Semantics, via LTL

The path propositions:

α := φ | ¬α | α ∧ α | α ∨ α | α→ α | Xα | Fα | Gα | αU α

satisfy, or fail to satisfy, a model and a path though it, so we write ⊨M,σ α.

The semantics are defined exactly as for LTL, with the exception of the φ case (a CTL*
proposition considered as a path proposition):

▶ ⊨M,σ φ if ⊨M,σ0 φ

27 CTL R. Clouston



CTL* Semantics

CTL* propositions:

φ := p | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | A[α] | E [α]

satisfy, or fail to satisfy, a model and a state in it, so we write ⊨M,s α.

The semantics are defined exactly as for CTL, except for:

▶ ⊨M,s A[α] if for all paths σ = s → · · · , ⊨M,σ α

▶ ⊨M,s E [α] if there exists a path σ = s → · · · such that ⊨M,σ α
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The Power of CTL*

Clearly CTL* lets us say everything that LTL and CTL can (including the many things that
both those logics can say).

In fact, it can also say some things which neither of these logics can say.

There exists a path with infinitely many p:

▶ In CTL*, E [GFp]

▶ Obviously not expressible in LTL, which has no existentials over possible futures;

▶ Not at all obvious it cannot be expressed in CTL, but the obvious candidates EG EFp
and EG AFp fail (counter-examples on whiteboard).
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Why Not Stick with CTL*?

CTL* expresses all of LTL, CTL, and a few other properties as well.

Why not jettison the earlier systems and spend all our time with CTL*?

We have seen this issue earlier with propositional logic and first order logic
▶ Yes, first order order logic is more expressive...
▶ but proof methods are more complex, and computation (much) more expensive.

Similarly:
▶ Yes, CTL* is the most expressive of our three temporal logics...
▶ but LTL is much simpler for humans to prove in (our tableaux method)...
▶ and it is in fact CTL that is computationally superior, at least for model checking, the

topic of our final set of lectures (apart from exam revision).
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