Model Checking

In Industry,Efficiency, CTL, Fairness Constraints, LTL

Ranald Clouston

May 22, 2025 .
d Australian

==/ National

N~

=~ University



Model Checking

Given a model, and a logical formula / proposition, does that model satisfy that

proposition?
» A yes/no question; perhaps in the case of ‘no’ we would like an explanation

In principle this question could be asked of any logic with semantics:
> Propositional logic: Given an assignment of truth values to propositional variables, is a
proposition true?
> First order logic: Given a universe of discourse, interpretation of functions and relations,
and an environment assigning universe elements to variables, is a formula satisfied?

But the most significant applications of model checking have involved temporal logic:
> Give a transition system, and a path / state, is this LTL / CTL / CTL* proposition
satisfied?

..

Model Checking R. Clouston



Model Checking in
Industry

Model Checking

oooooooooo



The Pentium Bug

The notorious Pentium bug (sometimes called the FDIV bug) of 1994 was a subtle hardware

error in an Intel microprocessor, effecting floating point computations.

P Discovered by computational number theorist Thomas R. Nicely

Intel initially argued the bug was not significant
> Estimate that 1 in 9,000,000,000 computations was effected

But correct hardware is literally a life and death matter in some cases
> Eventual recalls cost Intel half a billion US dollars (in 1994 money!), not to mention

..

reputational cost

R. Clouston

Model Checking



Formal Methods

Formal methods is mathematical proof of properties of computer systems.
> As opposed to testing (though testing will always be used alongside)
> A high level of rigour comes with a cost in time, logicians, and money...

> but getting it wrong can be costly also!
Avoiding billion dollar recalls is clearly a potential motivator for formal methods

> In general, how bad is it if this system fails to act as it should?

Many real computer systems are much too big to tackle with the pen-and-paper logical

techniques we are using in this course.
> Automation is necessary!
» Understanding the pen-and-paper techniques is the foundation of understanding what

the automatic logical tools are trying to accomplish.
R. Clouston

Model Checking



Formal Methods at IBM

The mid 1990s saw IBM emerge as a leader in formal methods for hardware
> Key technique: model checking with CTL
> e.g. the 1996 papers Word Level Model Checking - Avoiding the Pentium FDIV Error
and RuleBase: an Industry-Oriented Formal Verification Tool:

For example, we have proved that at init state, the re-
mainder is the dividend and the quotient is zero. Therefore,
the initial value for r + ¢ - d equals the dividend. Moreover,
the inequality mentioned above holds at the init state.

SPEC AG(state = init -> r = dividend & q = 0)
SPEC AG(state = init -> (-8) * ' d <= 3 # r <= 8 » d)

We have also proved that the inequality always holds in
the loop states, and that r + ¢ - d is invariant with respect
to left shifting.

SPEC AG(state = loop ->
AL((-8)*d <= 3r <= 8xd) U state = last])

SPEC AG((state = loop & ((-8)*d <= 3#r <= 8xd)) ->
A((r+q*r)*4 = next(r+q*r)))

. An X86 bus interface unit. Rules were written to verify the

X86 bus protocol, transaction initiation and completion, split
cycles, queue entry, queue promotion, snooping, pipelining
and others. Two sample rules used in this project are:

- “Writeback cycles and locked cycles are never pipelined.”

- “If a snoop hits an address that is in the writeback buffer
before the last BRDY of that writeback, then HITM should be
asserted 2 clocks later”.

The verification of this unit employed a phased methodology
where global properties have been verified in the complete unit
only after a detailed verification of its constituent components.
Nearly 70 bugs have been found by RuleBase in this unit; first
silicon realization is functional and currently being tested.

Model Checking

R. Clouston


https://doi.org/10.1109/DAC.1996.545654
https://doi.org/10.1109/DAC.1996.545656

Industrial Model Checking Now

Model checking has continued to be applied and developed. Examples from the last decade:

» Applying Model Checking to Industrial-Sized PLC Programs: programs for
Programmable Logic Controllers at CERN (European Organization for Nuclear
Research): “the size of the potential state space (PSS) is 1.6 x 10218"

> Automated test generation using model checking: an industrial evaluation: software
analysis for German manufacturer Bombardier Transportation.

> Practical applications of model checking in the Finnish nuclear industry: " Since 2008,
VTT has applied model checking in practical customer work related to the Olkiluoto 3
EPR, Loviisa 1&2 VVER-440, and Hanhikivi 1 AES-2006 nuclear power plants... The
verified properties are specified using temporal logic languages such as Linear Temporal
Logic (LTL) or Computational Tree Logic (CTL)"

..

Model Checking R. Clouston


10.1109/TII.2015.2489184
https://doi.org/10.1007/s10009-014-0355-9
https://cris.vtt.fi/en/publications/practical-applications-of-model-checking-in-the-finnish-nuclear-i

Computational Efficiency
of Model Checking

Temporal Logic

Model Checking . R Clouston



Considering Efficiency

In this course we will not formally analyse the time and space costs of algorithms.

> But cost considerations are critical to the real world use of implemented algorithms.

We have a variety of tools for reasoning about the cost of algorithms, and the innate cost of
problems (how good could be the theoretically best algorithm that solves this problem be?)

P Testing by timing.

> Expressing the time or space used as a function of the size of the input(s), in worst /
best / average etc. cases.

> Big O notation expresses these functions in a cruder but more robust manner.

> Complexity classes group problems together that have similar costs.

.

Model Checking R. Clouston



The Complexity of Model Checking

An analysis of the problems (not merely an analysis of particular algorithms!):

CTL P-complete
LTL | PSPACE-complete
CTL™ | PSPACE-complete

Figure: Ph. Schnoebelen, The Complexity of Temporal Logic Model Checking (2002)

» CTL model checking solvable in time proportional to a polynomial of its inputs

> LTL and CTL* model checking in space proportional to a polynomial of its inputs

These may not look like big differences, but no known algorithm exists for a
PSPACE-complete problem that does not take exponential time.

> Technically, P C NP C PSPACE and it is generally believed that, at least, P # NP,
but no one has yet been able to prove this!

10

Model Checking

R. Clouston

.


http://www.aiml.net/volumes/volume4/

Measuring Complexity of Model Checking Problems

Model checking problems have two inputs: model and proposition.
> Measure a model by separately measuring the number of states, and of transitions;

> Measure a proposition by its number of connectives;

> A problem or algorithm might be e.g. exponential in one of these measurements and
only linear in the other; the worse cost will tend to dominate the better and therefore

be used as the ‘headline’ figure.

A related but separate question: can we restrain the cost of our problem / algorithm by

keeping our model and/or proposition small?
> Outside the scope of this course, but motivates work on e.g. Binary Decision Diagrams.

..

11 Model Checking R. Clouston



Model Checking CTL

Model Checking

oooooooooo



Model Checking via Labelling States

We will see an algorithm for model checking vs the connectives L, =, A, EX, EU, EG

> We have seen that this set is adequate for CTL, so simplifies our algorithm
> Even this gives rise to a practical question: what is the cost of converting a CTL

formula to this 'smaller’ logic?
Basic idea: label every state (not just the start state!) in our system by every subformula of

our proposition that it satisfies
» subformulas(L) = L and subformulas(p) = {p}
» subformulas(—yp) = {—¢} U subformulas(y), and EX, EG likewise.
» subformulas(p A1) = {p A} U subformulas(y) U subformulas(t)), and EU likewise

.

We will work bottom up, labelling with all proper subformulas of ¢ before we label anything

R. Clouston

with ¢.

13 Model Checking



Labelling with Propositional Logic

> Label with propositional variables according to the labelling function;
> Label nothing with L;

> |If a state is not labelled with ¢, label it with —¢;

> |If a state is labelled with both ¢ and ), label it with ¢ A .

OGO

(transition arrows left off because they are not relevant to these labels)

e.g. formula p A —q:



Labelling with Propositional Logic

> Label with propositional variables according to the labelling function;
> Label nothing with L;

> |If a state is not labelled with ¢, label it with —¢;

> |If a state is labelled with both ¢ and ), label it with ¢ A .

OISI0N0

(transition arrows left off because they are not relevant to these labels)

e.g. formula p A —q:



Labelling with Propositional Logic

> Label with propositional variables according to the labelling function;
> Label nothing with L;

> |f a state is not labelled with ¢, label it with —¢;

> |If a state is labelled with both ¢ and ), label it with ¢ A .

e.g. formula p A —q:

p;—aq,
pA—q

(transition arrows left off because they are not relevant to these labels)

14 Model Checking R. Clouston



Labelling with Exists neXt

> Label a state with EXy if any of its successors are labelled with ¢.

Whiteboard example: take a one-state system with an empty labelling function and label it
for the proposition ~EXp — EX—p.

15 Model Checking R. Clouston



Labelling with Exists Until

Give a proposition E[e U], and labelling completed for ¢ and ),
> Label with E[p U] all states that are labelled with ;
> Label with E[p U] all states that are labelled with ¢ for which some immediate
successor is labelled with E[p U 9];
> Repeat the second step until there are no more states than can be so labelled.

To avoid ever visiting the same state twice, search backwards from E[p U 1] states.

Whiteboard example: E[p U q] and

16 Model Checking R. Clouston

.



Labelling with Exists Globally: A First Attempt

Given a proposition EGy, and labelling completed for ¢,
> Label with EG all states that are labelled with ¢;
> Delete EGp from any state for which none of its successors are labelled with EG;

> Repeat the second step until no more such deletions are possible.

Whiteboard example: EGp and
(o) P

17

Model Checking R. Clouston



Improving the Exists Globally Algorithm

The EG algorithm of the previous slide is simple and good enough for on-paper work, but it
sometimes considers the same state more than once, which could be inefficient.

A more sophisticated version of the algorithm involves a concept called a strongly connected
component (SCC):
> A set of states that can all reach each other in zero or more steps...

P that is maximal: cannot be expanded to a bigger set that keeps this property

An SCC is trivial if it contains one state and no self-loop.
> Intuition: a system can get stuck in a non-trivial SCC forever.

We will not give an explicit algorithm, but SCCs can be identified in linear time.

18 Model Checking R. Clouston



SCC Example

19

Model Checking



SCC Example

Only the SCC numbered 4 is trivial. —

&

19 Model Checking R. Clouston



Exists Globally, with SCCs

Given a proposition EGy, and labelling completed for ¢,
> Ignore (temporarily) all states not labelled ¢;
> Identify the SCCs in this subgraph;
> Label with EGy any state in the subgraph that can reach a non-trivial SCC in any

number of transitions (including any state in a non-trivial SCC).

Whiteboard examples
> The example from our first attempt at an EG algorithm;

> EGp with
— ()~ =) @
R. Clouston

20 Model Checking

.



Analysis of our Model Checking Algorithm

Our algorithm considers each connective in our proposition once, so is linear in the number
¢ of connectives.

Per connective, it considers each state (and each transition) at most once, so for each
connective it is linear in the numbers s of states and t of transitions.

So time complexity is O(c x (s + t))
> Triple the size of the proposition, cost approximately triples;
> Triple the size of the transition system, cost approximately triples;
> But there is a multiplication, so triple both and cost approximately up by factor of nine.

..

21

Model Checking R. Clouston



CTL with Fairness

Constraints

Model Checking

oooooooooo



Pathological Paths
There are sometimes paths through a system that are so unrealistic that we do not care
about them for the purpose of verification.

> e.g. pathological user behaviour, like an elevator system where users go up but no user

ever requests to go down.
This creates ‘false negatives’: failed model checks which do not actually indicate a ‘real’ bug.

How to avoid these false negatives?
> Fix our system to rule out these paths? Good idea! But maybe difficult or impossible.
P Fix our proposition with an implication to say that we are only interested in certain
paths. Good idea! But what if the condition is not expressible in our logic of choice?

R. Clouston

23 Model Checking



Fairness Constraints

The model checker NuSMV has special support for just such a situation:
» CTL model checking restricted to paths obeying special propositions called fairness
constraints which are not expressible in CTL.
> Fairness constraints are CTL propositions asserted to hold infinitely often.

> Of course 'infinitely often’ is expressible in LTL, as GF

‘Occurs infinitely often’ is a common thing to specify because it describes any activity that
is expected to keep happening across the entire lifetime of the system, without committing
to how often it will happen.
> As long as the elevator is operational, there will be people pressing every available
button in the future of its operation.

..

24 Model Checking R. Clouston



Fair Paths

Fix a set C of CTL propositions we will call fairness constraints.

A fair path is a path sy — s;1 — s» — --- in a model M for which for all fairness constraints
¢, there are infinite many natural numbers i, such that Fa s ¢.

We then introduce new connectives Ec X, Ec G, EcU, with new semantics:
» Em,s Ec Gy if there exists a fair path from s whose every state satisfies ¢.

Ec X will simply mean EX(p A EcGT), and Ec[p U] means E[p Uy A EcGT]
» So no need for more new semantics or model checking rules once we handle EcG.

P> Recall T is any theorem, e.g. —.L.

..

25 Model Checking R. Clouston



Model Checking the Fair version of Exists Globally

A fair strong connected component is a non-trivial SCC in which all fairness constraints

appear at some state
> Intuition: a system can get stuck in a non-trivial SCC forever, and visit each fairness

constraint infinitely often while there.

We then need only a mild edit to our algorithm for EG:

Given a proposition Ec Gy, and labelling completed for ¢ and for all propositions in C,
> Ignore (temporarily) all states not labelled ¢;
> Identify the SCCs in this subgraph;
> Label with Ec Gy any state in the subgraph that can reach a fair SCC in any number
of transitions (including any state in a fair SCC).

26 Model Checking R. Clouston



Example

Show that EG(w V EXw) holds for

But let our constraints C be {—r}. Show then that Ec G(w V EcXw) does not hold.

27

Model Checking R. Clouston



Analysis of Model Checking with Fairness

Formally, we have defined a new logic, CTL with fairness constraints, which is more
expressive than CTL.

What is the impact on efficiency?

We do need to some more work - to model check each of our fairness constraints - but we
are linear in the size of these constraints, and remain linear in our other inputs.

> So despite dipping our toes into LTL territory with ‘occurs infinitely often’, we do not
inherit the bad computational properties of LTL.

28

Model Checking R. Clouston



Model Checking LTL

Model Checking

oooooooooo



From States to Paths in Model Checking

The state labelling approach does not seem to be extendable to LTL, because LTL is about

paths, not states
> A state might have successors with p, and without; do we label it Xp?

Solution: Build a bigger transition system that makes copies of states of the original model,
which are then labelled with different collections of non-variable propositions.
> e.g. two versions of a state, one with Xp, one without.
> If a state is labelled with ¢ in the big transition system, all paths from it satisfy ¢.
> So if ¢ is the proposition we are checking, then the model check succeeds if and only if
all copies of the start state are labelled with ¢.

.

30 Model Checking R. Clouston



States of the New Transition System

Given a transition system M and proposition ¢, we start by ignoring the transition relation
and setting out some possible states of our bigger transition system.

All copies of a state s should agree with s on variables.

We make as many copies as we need to make labels with all different combinations of the
subformulas of ¢, except those that cause a contradiction.

Easy example: proposition XXp and transition system

O=0

..

31

Model Checking R. Clouston



Non-Contradictory Labels

We will use only connectives L, =, A, X, U (all others are expressible).

Rules for which subformulas we can legally put together in states:
> No state gets label 1.

> A state gets label = if and only if it does not get label ¢ (recall that absence of a
proposition means exactly that its negation holds).

> A state gets label ¢ A 4 if and only if it gets both ¢ and .

> Neither X nor its absence causes a contradiction, so we need state copies with each.
> Add ¢ U, making a copy if necessary, unless a state has neither ¢ nor 1.

>

Leave out ¢ U1, making a copy if necessary, unless a state has .

..

32

Model Checking R. Clouston



More Examples

Xp Ugq and

pUqg and

33

Model Checking



Transitions

Given states s’, t/, which are copies of s, t from the original model, add a transition s’ — t/

if
P> There is a transition s — t in the original model, and
> Adding this transition does not cause a contradiction.

Rules for when the second condition is satisfied:
> If s’ has Xy then t' must have (.
> If s’ does not have X then t’ must not have .
> If s’ has ¢ U1 and does not have 1) then t' must have ¢ U 1.

> If s has ¢ and does not have ¢ U1 then t’ must not have ¢ U .

Whiteboard: return to examples.

34

Model Checking

R. Clouston

..



Pruning

The graph we get might not be a transition system at all, because some states might have

no transitions out of them.
> Delete any state without a transition out of it.
» This might cause further deletions, as other states lose their transitions out.

The graph also might have the problem we observed when we worked with tableaux:

endlessly delayed eventualities.
P Delete any state with ¢ U that has no path to .

> Again, many deletions might ensue.

R. Clouston

35 Model Checking



Completing the Model Check

Given a transition system M and LTL proposition ¢, we have created a new, possibly
bigger, transition system M’, some of whose states might be labelled with (.

[The model check succeeds if all copies of the start state are labelled with .

We have not been quite precise enough about our algorithm to do a deep analysis of
complexity, but there is no known algorithm with better than exponential time performance.

> Because the problem is PSPACE-complete, it is unlikely there ever will be.

36

Model Checking R. Clouston



Model Checking: Back to Practice

There is significant engineering and theoretical work needed to move from this set of slides
to a technology capable of model checking a massive industrially relevant model.

But we can only do so much in one 2000/6000 level course!

In our first lecture we learned that logic started with philosophers. While we end with a
logic of relevance to billions of dollars of risk management for giant commercial entities, it is
worth remembering that even this logic began with philosophical questions, and required

much mathematical work, before becoming computationally useful.

Who can say where the logics of the future will come from?

..

37

Model Checking R. Clouston



