COMP2620/6262 (Logic) Tutorial

Week 11
Semester 1, 2025

Tutorial Quiz

In each tutorial, apart from week 2, there is a short quiz on skills practised in the previous tutorial. Your
top 7 quiz attempts, out of the 9 available, will collectively count for 50% of your final mark.

This week’s quiz is on modelling English into CTL*. Your tutor will hand out blank paper, on
which you should clearly write your university ID and name. Your tutor will also hand out paper with
an English language description of current and future states of a situation. You will translate each line
of the description into a CTL* proposition. You must use CTL* syntax - not LTL or CTL, even if you
feel that an LTL or CTL proposition could be used. Where you believe the English language description
is ambiguous, you will be asked to present what you think is the most plausible translation, and then
briefly discuss what other translations might be reasonable. You will have eight minutes to do this.

You are not permitted to have any other resource on the table during this quiz, including any electronic
device. If you finish your quiz before time elapses you may put your hand up and your tutor will collect
your sheet. Once you have done this, you may get a device out and start work silently on this week’s
questions. If you are still working when time elapses you must stop writing immediately and let your
tutor collect your paper.

There will be no tutorial next week, and so no quiz.

This Week’s Exercises

1. Model check the following CTL propositions against the transition system below. You should label

all states.
50 A 51 $2
p @ b,q

e EX(pNEXq)

Solution. s : p, EXq,pANEXq, EX(pANEXq); s1: p,EXq,pN EXq, EX(p N EXq);
s2:p,q, EXq,pNEXq s3: ¢, EXq;s4: ¢, EXq, EX(p\NEXq).

e E[pU-—-pA EXp)
Solution. sg: p, EXp, E[pU -pAEXp|;s1: p, EXp, E[pU -pANEXp|; sz : p,q, E[pU —pA
EXpl;ss: ¢,p;sa: q,~p, EXp,~pNEXp, E[pU—p A EXp].

e EG-EG(p N —q)
Solution. sg: p,—¢,pA—q, EG(p A —q); s1: p,~q,p A—q,~EG(p A —q), EG-EG(p A =q);
s2: p,q,"EG(pA—q), EG-EG(pA—q); s3 : ¢, EG(pA—q), EG-EG(pA—q); 84 : ¢, ~"EG(pA
—q), EG=EG(p A —q).

2. Identify the Strongly Connected Components (SCCs) in the transition system above. Are any of
them trivial?

If you did not do so already, solve the final part of question 1 using the more efficient SCC method
(if you did use that method, you could instead try out the simpler deletion-based method).

Solution. sp on its own is one SCC; all the other states together form the only other SCC.
Neither is trivial: although sy forms an SCC on its own, it has a self loop.

For the SCC-based model check for EG(pA—q), we first consider the subgraph of states that satisfy
P AgG:

so and s1 each form one element SCCs, but only the s; one is trivial. So we label sg with EG(pA—q)
and do not label s; so, because it has no path to a non-trivial SCC.

For the model check for EG-EG(p A —q) we disregard so. Then the whole graph is a single SCC
so everything in that graph gets the label.

. This system models a priority process and a secondary process which both need access to some non-
shareable resource. Requests come in for these processes (r,,7s) and they can do work (wp,ws),
but the priority process takes precedence, with requests for it even making the secondary process
pause if it has started its work. We assume that after each process finishes work it must be inactive
for one step to check whether it has any pending requests.

e State a CTL proposition that means that, if the secondary process starts work, it will even-
tually become inactive (neither working nor holding a pending request).
Solution. AG(ws — AF(—ws A —ry))

e Give a reason (informally) that this proposition fails.

Solution. We can get stuck in a loop from ws,r, (the secondary process is working but a
priority request has been recieved) to wy, rs (the secondary process is paused to do the priority
work) to rs (the priority work is finished) then back to wg,r, (the secondary process restarts,
but another priority request is detected). We never reach a state satisfying —ws A =rs. The
situation is the same if we sometimes include w; in our loop between 5 and ws,).

e Perhaps it is not plausible that the primary process would be always active, or just about to
become active. Model check the CTL proposition from the first part of this question, replacing
each A by Ac and E by E¢, where C is the single fairness constraint {—w, A —r, A=EXrp,}.
Solution. We first need to translate (the fair version of) our proposition into the set of
connectives that we learned to model check. By standard conversions this is equivalent to
—EcF(ws AN EcG—(—ws A =)

We can express EF via EU (recalling T is any theorem, e.g. —1) in the usual way:
—Ec|[TUws AN E6G—(—~wg A =)

We finally desugar our EcU to get:

—E[TUws AN EcG—(—~ws A —rs) AN EcGT]

Now we begin to label:

— The whole system is an SCC, but none of them satisfy the constaint, so we label EcGT
nowhere.

— —(—ws A —rg) is written anywhere with either w; or rg.
— For EcG—(—ws A —rs) we look at the subgraph

o

We have two SCCs: a trivial one with r,, 7, and one with the other states. But {-w), A
—rp AEXry} fails throughout the non-trivial SCC, as for example both the lower states
are labelled EXr,. So there is no fair SCC, so we label EcG—(—ws A —rs) nowhere.

— We therefore write EcG—(—ws A—rs) AEcGT nowhere, so write E[T U ws A EcG—(—ws A
—r5) A EcGT] nowhere, so its negation everywhere, so our model check succeeds.

4. Model check the following LTL propositions against the transition system below. You should label
all states in your expanded transition system. You will need to convert som of the propositions to
use only the set of connectives that we learned to model check: 1, =, A, X, U.

S t
Oad=
UE Iv
e pAXp

Solution. Initial graph with all possible states:
P, 4, Xp,p A Xp

p, Xp,p N Xp Xp

Then erase states without outbound transitions:
p, Xp,p A Xp D¢, Xp,p N Xp

(=
@)

Xp

Only one copy of the start state remains, and it satisfies Xp, so the model check succeeds.

e pUq
Solution. Initial graph (omitting for space reasons the p and ¢ labels, which are as in the

original system):

Only the bottom state gets deleted for lacking an outbound arrow. There remain two copies
of the start state, and one is not labelled p U ¢, so the model check fails.

e GFp
Solution. GFp = -F-Fp = ~(TU—(TUp)). Initial graph, omitting T which is labelled
everywhere:

p, TUp, TU~(TUp) p, TUp, TU—(TUp)

p, TUp, TU~(TUp)
~(TUp), TU(TUp)

We delete the bottom state because it has no outbound transitions. But then the entire
outside perimeter becomes useless, as all states claim T U —=(T U p) but no state in it delivers
on =(T Up). So we delete those four states also to end up with:

p,TUp,GFp p,TUp,GFp

p,TUp,GFp TUp,GFp

Only one copy of the start state remains, and it satisfies GF'p, so the model check succeeds.

