COMP2620/6262 (Logic) Tutorial

Week 6
Semester 1, 2025

Tutorial Quiz

In each tutorial, apart from week 2, there is a short quiz on skills practised in the previous tutorial. Your
top 7 quiz attempts, out of the 9 available, will collectively count for 50% of your final mark.

This week’s quiz is on natural deduction for first order logic. Your tutor will hand out blank paper,
on which you should clearly write your university ID and name. Your tutor will also hand out paper with
all natural deduction rules They will then write a sequent on the board which you should attempt to
prove with these rules. You should use the five part notation for natural deduction: which premises are
being used; a line number; a formula; previous lines used; and the rule name. You will have eighteen
minutes to attempt this proof.

You are not permitted to have any other resource on the table during this quiz, including any electronic
device. If you finish your quiz before time elapses you may put your hand up and your tutor will collect
your sheet. Once you have done this, you may get a device out and start work silently on this week’s
questions. If you are still working when time elapses you must stop writing immediately and let your
tutor collect your paper.

This Week’s Exercises

This tutorial involves the natural deduction rules and the semantics for first order logic:

e ko
TFo I/ F4 TF oAy oAy
— AT ————— AFE1 ——— AE2
II"F oAy | I) 'y
!
F,(pl—w_>l 'k p—y TVFop >
' p—v | I R V)
!
Lok L_ k- 'ty . THLl o
T F— I F L T Fo
Tk Tk Tkovy Ipko IMyko
—— VIl —— VI2 VvV E
TF oV TF oV T, F o
e
ST TY L E
'k o
_7 F'kt=u TVF o[t/z] _E
Ft=t IV + plu/z]
T+ plt/x] , 'k 3zp TV pla/z] b ¢
———= 4] FV (I, T’ : JF
1—\ l_ ngﬁ a’¢ V(780))w) F,Fl I_ ¢
'+ pla/z] I' - Vap
FV (T P _—
ag FV(T,¢) '+ Vo I+ oft/x]

We define Faq e ¢, saying that ¢ is satisfied by (M, e), as:
o Epte P(ty, ... ty) if (t]1°, . tMe) e pM

o Fpfet=uif tMoe — M€ in the universe of discourse D

® Faqe L never

o Fare i if it is not the case that Faqe ¢

® Fate p AN if Fare p and Fage ¥

o Fatep Vit Fare g or Faqe ¢ (or both)

¢ Faprep = Y if Fage ¢ implies Faqe ¥

® Fae Voo if for all d € D we have F oy e[zisd) ¢

® e Jop if there exists d € D such that Fa cza) ¢

1. Let R be a binary predicate and f be a unary function. For each of the formulas below, (a) suggest
a model and environment that satisfies it, and (b) suggest a model and environment that does not
satisty it.

e Yz R(x, fx)
Solution. For all these questions there is a huge range of possible correct answers. For this
one, let’s define our universe of discourse as the integers, and R as equality. Then this formula
is satisfied by the model in which we define f as the identity, and not satisfied if we define f
as anything else, e.g. the successor function. Because there are no free variables, we do not
need to specify an environment.

e R(z,z) — L
Solution. Take our universe as the integers again, and say that (i,j) € R™ when i + j = 0.
Then the formula is not satisfied if our environment maps x to 0. For the ‘is satisfied’ case

we cannot make the right hand side of the implication true, so we must make the left hand
side false; let the environment map x to your favourite nonzero number.
* R(z,y) A R(y,2) = R(z,2)

Solution. Let our universe be the integers again, and say that (i,7) € R exactly if i # j.
Then the formula is satisfied e.g. by any environment that maps z, y, and z to different
numbers (or any environment that maps z and y to the same number, or any environment
that maps y and z to the same number, because these make the left side of the implication
false, so the whole implication true). The formula is not satisfied e.g. by the environment
mapping x to 42, y to 7, and z also to 42.

e dzfu=y
Solution. On the integers again, let f be the constant function mapping any input to 13.

Then this formula is satisfied if we choose the environment that maps y to 13, and not satisfied
by any other assignment to y.

2. The key lemma towards the proof of soundness is the substitution lemma: Fa . ¢[t/z] if and only
if Fejzsimoe) . Tt is proved by induction on the structure of p. A few cases were given lectures.
Prove it for the following cases:

* T
Solution. Faq . (—)[t/x] if and only if
Eae ~(p[t/x]) (definition of substitution), if and only if
it is not the case that Faqe @[t/z], if and only if
it is not the case that F[;,,4m.e) ¢ (by induction), if and only if
':e[:m—>tM~e] P

e u = v for terms u and v. This will require the substitution lemma for terms, (u[t/z])**€ =
uM,e[x»—)tM’e].

Solution. Faq. (u=v)[t/z] if and only if

Eae (ult/z]) = (v[t/x]) (definition of substitution), if and only if
(u[t/z])Me = (v[t/x])™¢ in the universe of discourse, if and only if
uMoelz=t™] =y Miele=t™ T (gubstitution lemma for terms), if and only if

t:e[thM,e] U ="v.

* Vyyp
Solution. Fuq. (Vyp)[t/z] if and only if
Em.e Yy(p[t/z]) (definition of substitution), if and only if
for all d in the universe of discourse, Fy c[y—q) @[t/x], if and only if
Felydj[atMe] @ (by induction), if and only if
elzstMoc][ysd) P Decause there is no clash between x and either y and ¢, so this reordering
does not change the environment, if and only if

':e[mv—nM’e] Vy()o

3. The soundness of natural deduction for first order logic is proved by induction on the length of
proofs. We assume that anything proved by a shorter natural deduction proof is semantically
valid (satisfied by all models and environments), and then show for each natural deduction rule
separately that the conclusion of that rule is also a sequent that is semantically valid. A number
of cases were proved in lectures.

Prove the soundness of the following natural deduction rules:

o ANE1
Solution. Assume for induction that any model and environment that satisfies all formula of
T" also satisfies ¢ A1p. This means by definition that any such model and environment satisfies
o and also satisfies 1. In particular, it satisfies .

e > F
Solution. Assume for induction that any model and environment that satisfies all formula of
T also satisfies ¢ — 1), and similarly for IV and ¢. This means that any model and environment
that satisfies both T' and I must satisfy both ¢ — 1 and . The former by definition says
that if ¢ is satisfied then so is . But ¢ is satisfied, so then so is).

o =T
Solution. Assume for induction that any model and environment that satisfies all formula of
I, and also ¢, also satisfies 1. Consider any model and environment that satisfies all formula
of I'. There are two cases to consider. The first is that this model and environment satisfies
. Then it must satisfy v, so it is true that the satisfaction of ¢ implies the satisfaction of 1,
so ¢ — 1 is satisfied. The second case is that ¢ is not satisfied. But then the satisfaction of
o vacuously implies the satisfaction of ¥, so ¢ — 1 is satisfied

o dJ
Solution. Assume for induction that any model M and environment e that satisfies all
formula of I', also satisfies ¢[t/x]. By the substitution lemma, F e[z s¢m.c) . But then tMoe
is the witness required by the definition of satisfaction of Jxp.

e JF (Tricky)
Solution. Assume for induction that any model and environment that satisfies all of I" also
satisfies 3z, and that any model and environment that satisfies all of I'" and also ¢[a/z] for
an eigenvariable a, also satisfies .
Suppose M, e satisfies all of I' and I'. By the first assumption and the substitution lemma,
there exists d in the universe of discourse such that

ﬁ./\/he[w»—)d] ¥

Now because a does not appear free in I', I, ¢, ¥, changing the value of e(a) will not change
anything about the satisfaction of these formulas (do you accept this claim? If it needs a
separate proof, how would you go about it?). So M, e[a — d] satisfies all of I and I, and so
by the first assumption again,

F M, elamsd)[asd] P

but d is the output of the function e[a — d] on input a, so we could write this as

':M,e[w—)d] [z;-)a/\/l-,e[w—»d]] SD

By the substitution lemma, this gives F g c[asa) wla/z]. But this is exactly what is needed
to invoke our second assumption, so Fay c[asq) ¥- But, again, 1) does not contain a so we no
longer care what it is mapped to, so Faq,e 1.

4. The test at the start of the next tutorial will resemble these questions.

Attempt the following puzzles from the Logic4Fun website.

e Pet Show
Solution.
Sorts:
owner enum : Franz, George, Harriet, Isabelle, Joanne.
pet enum : duck, echidna, frog, lizard, spider.
suburb enum : Ainslie, Banks, Chapman, Downer, Evatt.
Vocabulary:
function {
owns (owner) : pet {all.different}.
from (owner) : suburb {all different}.
position (owner) : natnum {all_different}.
}
Constraints:

ALL x (position x > O AND position x < 6).

position Harriet = 1 AND SOME x (position x = 5 AND owns x = spider).
SOME x (from x = Evatt AND owns x <> echidna AND position x <> 2).
from Franz = Banks.
SOME x (position x = 4 AND x <> Joanne AND x <> Isabelle AND from x = Downer).
owns Joanne = lizard AND position Joanne <> 3.
SOME x SOME y (owns x = duck AND from x = Chapman AND from y = Ainslie AND position
x > position y).
e Parking Bay
Solution.
Sorts:
vehicle enum : Dbus, car, taxi, truck, van.
colour enum : black, blue, brown, green, white.
Vocabulary:
function {
coloured (vehicle) : colour {all different}.
position (colour) : natnum {all different}.
}
Constraints:
ALL x (position x > O AND position x < 6).

position white = position (coloured taxi) + 1 AND position (coloured van) > position
blue + 1.

coloured car <> brown AND position brown <> 3.

position (coloured car) > position green AND position (coloured truck) > position
(coloured car) AND coloured car <> white AND coloured truck <> white.

position black = position (coloured bus) + 2.

position (coloured bus) < position (coloured taxi) AND position (coloured van)

< position (coloured truck).

e Transfer List

Solution. This one is a bit sneaky, because the information that there are not multiple
players who stayed at the same club is in the text above the grey box!

Sorts:

player enum : Aristotle, Boole, Curry, DeMorgan, Etchemendy.
position enum : goalkeeper, defender, midfield, wing, striker.
club enum : Wanderers, City, United, Victory, Stars.
Vocabulary:

function {
pos (player) : position {all different}.
0ld (player) : club {all different}.

new (player) : club {all different}.

}

Constraints:

ALL x ALL y (old x = new x AND old y = new y IMP x = y).

old Etchemendy = City AND SOME x (pos Etchemendy > pos x AND new x = City) AND
SOME y (pos Etchemendy < pos y AND pos y = wing AND new y = Wanderers).

SOME x (old x = Stars AND new x = Stars).

new Boole = United AND SOME x (old x = United AND pos x < pos Boole).

SOME x (pos x = defender AND old x = Victory AND x <> DeMorgan).

pos Curry = goalkeeper AND new Curry <> Victory.

Trading Post (seriously time consuming, so you might like to return to it in the teaching
break)

Solution. This is my solution. This question is complex enough that yours might look quite
different. Do sink some time into this one before running to the solution below, because once
you have done so, you will have a very good grip on how to work with Logic4Fun.

Sorts:

child enum : Andy, Belinda, Clara, Daniel, Elizabeth, Frederic.

surname enum : Garrett, Hardy, Irwin, Jones, Kennedy.

toy enum : kite, football, skateboard, puzzle, costume, tricks.
Vocabulary:

function {

age (child) : natnum.

named (child) : surname {surjective}.

arrived (child) : natnum {all different}.

gave (child) : toy {all different}.
took (child) : toy {all.different}.

}

predicate {

twin (child,child) {commutative}.

girl (child) {hidden}.

}

Constraints:

% Basic constraints on functions and predicates
ALL x (age x > 5 AND age x < 11).

ALL x (x > 5 AND x < 11 IMP SOME y (age y = x)).

ALL x (arrived x > O AND arrived x < 7).
ALL x (gave x <> took x).

ALL x ALL y (x twin y IFF (x <> y AND age x = age y)).
ALL x ALL y (age x = age y IFF named x = named y).

NOT girl Andy AND girl Belinda AND girl Clara AND NOT girl Daniel AND girl Elizabeth

AND NOT girl Frederic.

% Numbered clues. Clue 8 is split over two lines

age Andy <> 6 AND age Daniel > age Andy.

ALL x ALL y (age x = 6 AND age y = 10 IMP arrived x < arrived y).
named Frederic = Jones AND age Frederic <> 10 AND SOME x (age x = 10 AND took x
= tricks).

named Clara = Hardy AND SOME x (arrived x < arrived Clara AND gave Clara
x AND gave x = took Clara).

SOME x (gave x = skateboard AND age x = age Belinda + 3) AND SOME y SOME z (NOT
girl y AND took y = skateboard AND took z = football AND age y < age z).

took

SOME x SOME y SOME z (gave x = skateboard AND gave y = football AND gave z = kite

AND arrived x < arrived z AND arrived y < arrived z).

SOME x (age x = 7 AND named x <> Irwin AND arrived x = 1 AND NOT SOME y (x twin
y)) AND SOME x (age x = 9 AND arrived x = 6 AND NOT SOME y (x twin y)).

SOME x SOME y (x twin y AND named x <> Garrett AND gave x = puzzle AND gave y =
costume AND arrived x < arrived y AND ((took x = football AND took y = kite) OR
(took x = kite AND took y = football))).

SOME w SOME x SOME y SOME z (w twin z AND x <> y AND arrived w < arrived x AND
arrived w < arrived y AND arrived x < arrived z AND arrived y < arrived z).
SOME x (named x = Garrett AND girl x AND took x <> costume).

% Final clue, hidden in the final question.
SOME x (NOT girl x AND took x = puzzle).

