
COMP2620/6262 (Logic) Tutorial

Week 8

Semester 1, 2025

Tutorial Quiz

In each tutorial, apart from week 2, there is a short quiz on skills practised in the previous tutorial. Your
top 7 quiz attempts, out of the 9 available, will collectively count for 50% of your final mark.

This week’s quiz is on tableaux for propositional logic. Your tutor will hand out blank paper,
on which you should clearly write your university ID and name. Your tutor will also hand out paper
with all tableaux rules for propositional logic. They will then write a set of signed propositions on the
whiteboard. You should construct a complete tableaux for this set of signed propositions, continuing
every branch until it closes or terminates open. You should remember to number your lines; to label on
the right each new signed proposition by which lines justify it; and to cross each branch that can close,
with line justifications beside any crosses. You do not need to explicitly extract a satisfying model. You
will have fourteen minutes to construct this tableau.

You are not permitted to have any other resource on the table during this quiz, including any electronic
device. If you finish your quiz before time elapses you may put your hand up and your tutor will collect
your sheet. Once you have done this, you may get a device out and start work silently on this week’s
questions. If you are still working when time elapses you must stop writing immediately and let your
tutor collect your paper.

This Week’s Exercises

This tutorial involves the tableaux rules, with branching rules for quantifiers, for first order logic:

T : ⊥
×

T : ¬φ
F : φ

F : ¬φ
T : φ

T : φ ∨ ψ
T : φ T : ψ

F : φ ∨ ψ
F : φ
F : ψ

T : φ ∧ ψ
T : φ
T : ψ

F : φ ∧ ψ
F : φ F : ψ

T : φ→ ψ

F : φ T : ψ

F : φ→ ψ

T : φ
F : ψ

T : ∀xφ
T : φ[a1/x]
T : φ[a2/x]

...
T : φ[an/x]

F : ∃xφ
F : φ[a1/x]
F : φ[a2/x]

...
F : φ[an/x]

where a1, . . . , an are all terms (= variables) in the tableau appearing free before or after this line. If no
variables appear free before this line, the conclusion is φ[a/x] only.

F : ∀xφ
F : φ[a1/x] · · · F : φ[an/x] F : φ[a/x]

T : ∃xφ
T : φ[a1/x] · · · T : φ[an/x] T : φ[a/x]

where a1, . . . , an are all terms (= variables) in the tableau appearing free before or after this line, and a
does not appear free earlier in the tableau.

1. The test at the start of the next tutorial will resemble this question.

In the last tutorial we only briefly practiced the branching quantifier rules, so here we will do some
more.

1



For each of these signed propositions, use the tableaux method to extract a finite satisfying model.
You should not attempt to construct the whole tableaux, because you cannot, as some branches
would be infinite. It suffices to find one open terminated branch. You should likewise avoid pursuing
any branches that you think will close, or multiple open branches; this question is all about being
thoughtful and pursuing one path through the tableau to get to a model.

Because the T rule for ∀ and F rule for ∃ can fire more than once, your tableaux, if worked out in
detail, might become quite repetitive. You may skip some repetitive steps if you justify your rules
by explaining which line you got started with, which line this part of your tableau resembles, and
which substitutions for bound variables you used to get there, e.g. ‘from (3), as for (6), with [b/x]
and [c/y]’. You will be able to do this in the tutorial test next week also. Do not skip any steps
the first time you apply one of these rules.

� T : ∀x(∃y Rxy ∧ ∃y¬Rxy) (where R is a binary predicate)

Solution.
(1) T : ∀x(∃y Rxy ∧ ∃y¬Rxy) ✓✓

(2) T : ∃y Ray ∧ ∃y¬Ray from (1) ✓

(3) T : ∃y Ray from (2) ✓

(4) T : ∃y¬Ray from (2) ✓

(5) T : Raa from (3)

(6) T : ¬Rab from (4) ✓

(7) F : Rab from (6)

(8) T : ∃y Rby ∧ ∃y¬Rby from (1) ✓

(9) T : ∃y Rby from (8) ✓

(10) T : ∃y¬Rby from (8) ✓

(11) T : Rba from (9)

(12) T : ¬Rbb from (10) ✓

(13) F : Rbb from (12)

The model extracted is {a, b} with R interpreted as {(a, a), (b, a)}.
Some notes on this solution:

– There are plenty of other interpretations of R that would work just as well; all we need
is that a and b are each related to exactly one thing. There are also many models with
more than two elements, but finding a two element model is the most efficient solution.

– Because we only need to find one terminated open branch, we simply ignore branches that
we don’t think are worth exploring. We in fact did this four times in this proof, because
the T rules for ∃, applied to lines (3), (4), (9), and (10), are all branching rules.

– This proof is a bit repetitive because of the second rule application to line (1), so we could
abbreviate it from line (8) on as:

(8) T : Rba from (1), as for (5), with [b/x] and [a/y]

(9) F : Rbb from (1), as for (7), with [b/x] and [b/y]

� T : ∀x(∃y(Rxx→ ¬Rxy) ∧ ∀y Ryy)
Solution.

(1) T : ∀x(∃y(Rxx→ ¬Rxy) ∧ ∀y Ryy) ✓✓

(2) T : ∃y(Raa→ ¬Ray) ∧ ∀y Ryy from (1) ✓

(3) T : ∃y(Raa→ ¬Ray) from (2) ✓

(4) T : ∀y Ryy from (2) ✓

(5) T : Raa→ ¬Rab from (3) ✓

(6) T : Raa from (4)

2



(7) T : Rbb from (4)

(8) T : ¬Rab from (5) ✓

(9) F : Rab from (8)

(10) F : Rba from (1), as for (9), with [b/x] and [a/y]

The model is {a, b} with R interpreted as {(a, a), (b, b)}. A common mistake here would be to
think we are done after line (9). Why do we need to continue? A plausible but wrong answer
is that we do not yet know whether (b, a) is in the interpretation of R. In fact, tableaux do not
always give a T or F sign to every possible part of the relation; if there is something missing,
that means that we get a satisfiying model either way. The correct answer is that the branch
has not terminated because we have not yet reapplied line (1) for the new variable b.

If you do not understand the justification of line (10) you should reconstruct it yourself: first
apply the T rule for the ∀ on line (1), but this time with the new variable b; then the T rule
for ∧; then the T rule for ∃, choosing the branch with a; then the T rule for ¬.

� F : ∃x∀y(¬∀z Rzz ∨ (Rxy → Ryx))

Solution.
(1) F : ∃x∀y(¬∀z Rzz ∨ (Rxy → Ryx)) ✓✓✓

(2) F : ∀y(¬∀z Rzz ∨ (Ray → Rya)) from (1) ✓

(3) F : ¬∀z Rzz ∨ (Rab→ Rba) from (2) ✓

(4) F : ¬∀z Rzz from (3) ✓

(5) F : Rab→ Rba from (3) ✓

(6) T : ∀z Rzz from (4) ✓✓

(7) T : Raa from (6)

(8) T : Rbb from (6)

(9) T : Rab from (5)

(10) F : Rba from (5)

(11) T : Rbc from (1), as for (9), with [b/x] and [c/y]

(12) F : Rcb from (1), as for (10), with [b/x] and [c/y]

(13) T : Rcc from (6), as for (7), with [c/z]

(14) T : Rca from (1), as for (9), with [c/x] and [a/y]

(15) F : Rac from (1), as for (10), with [c/x] and [a/y]

The model is {a, b, c} with R interpreted as {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)}.

2. Turn the following descriptions of transition systems into diagrams. The states s0 are start states.

� S = {s0, s1, s2, s3}; →= {(s0, s1), (s0, s2), (s1, s1), (s1, s3), (s2, s1), (s2, s3), (s3, s2)}; L(s0) =
∅; L(s1) = {p, q}; L(s2) = L(s3) = {p}.
Solution.

p, q

p p

s0 s1

s2 s3

� S = {s0, s1, s2, s3, s4}; →= {(s0, s1), (s0, s2), (s1, s3), (s1, s4), (s2, s3), (s2, s4), (s3, s0), (s4, s4)};
L(s0) = L(s1) = L(s2) = {p}; L(s3) = {q}; L(s4) = {r}.
Solution.

3



p

p p

q r

s0

s1 s2

s3 s4

3. For each of the transition systems of the previous question, suggest some paths, starting at the
state states. Then for each path you suggest, suggest some LTL propositions that would be satisfied
by that path. Try to use all the new connectives of LTL.

Solution.

There are of course many possible answers here; what matters is that each path is an infinite list
of states (not propositional variables) that follows the arrows of the diagrams.

For example, for the first transition system we could have s0 followed by s2s1s3 repeated forever;
or we could have s0 followed by s1 forever. For the second system we could have an infinite loop
of s0s1s3, or we could alternate between s0s1s3 and s0s2s3 ten times each, then go to s0s1, then
get stuck in the sink state s4 forever.

There are also many propositions we could choose. Some will be satisfied no matter which path
we consider: say XGp for the first, or G(pU(q ∨ r)) for the second. Some will depend on the
path chosen. For example the path in the first system that loops around s2s1s3 forever will satisfy
G(q∨Xq∨XXq), while the path in the second system that gets stuck in the sink state will satisfy
FGr.

4. Recall the semantics of LTL:

� ⊨M,σ p if p ∈ L(σ0)

� ⊨M,σ ⊥ never

� ⊨M,σ ¬φ if it is not the case that ⊨M,σ φ

� ⊨M,σ φ ∧ ψ if ⊨M,σ φ and ⊨M,σ ψ

� ⊨M,σ φ ∨ ψ if ⊨M,σ φ or ⊨M,σ ψ (or both)

� ⊨M,σ φ→ ψ if ⊨M,σ φ implies ⊨M,σ ψ

� ⊨M,σ Xφ if ⊨M,σ≥1
φ

� ⊨M,σ Gφ if for all natural numbers i, ⊨M,σ≥i
φ

� ⊨M,σ Fφ if there exists a natural number i such that ⊨M,σ≥i
φ

� ⊨M,σ φU ψ if there exists a natural number i such that ⊨M,σ≥i
ψ, and for all h < i we have

⊨M,σ≥h
φ

Argue using the semantics that the following propositions are equivalent (regardless of the system
M or path σ).

� X(φ ∨ ψ) and Xφ ∨Xψ.
Solution.

⊨M,σ X(φ ∨ ψ)
iff ⊨M,σ≥1

(φ ∨ ψ)
iff ⊨M,σ≥1

φ or ⊨M,σ≥1
ψ

iff ⊨M,σ Xφ or ⊨M,σ Xψ
iff ⊨M,σ Xφ ∨Xψ.

� XGφ and GXφ.

Solution.

⊨M,σ XGφ
iff ⊨M,σ≥1

Gφ

4



iff for all natural numbers i, ⊨M,(σ≥1)≥i
φ

But (σ≥1)≥i is just a path in σ starting at position i, where i must be greater than or equal
to 1, so this is equivalent to
for all positive integers i ≥ 1, ⊨M,σ≥i

φ
iff for all natural numbers i, ⊨M,σ≥i+1

φ
iff for all natural numbers i, ⊨M,σ≥i

Xφ
iff ⊨M,σ GXφ

� ¬φU φ and Fφ.

Solution.

In all cases ⊨M,σ φU ψ implies ⊨M,σ Fψ, because part of the semantics of U is that its right
proposition must come true eventually, which is exactly the semantics of F .

So we will focus on the other direction: say ⊨M,σ Fφ, so there exists a natural number i such
that ⊨M,σ≥i

φ. In particular let i be the smallest such number. By this choice, it is not the
case that ⊨M,σ≥h

φ for any h < i. But this is exactly the requirement for ⊨M,σ≥h
¬φ for all

such h. These two facts together define ⊨M,σ ¬φU φ.
� ⊥U φ and φ

Solution.

⊨M,σ ⊥U φ iff there exists a natural number i such that ⊨M,σ≥i
φ, and for all h < i we have

⊨M,σ≥h
⊥. But ⊥ can never be satisfied, so there cannot exist any natural numbers h less

than i, so the Until statement holds exactly if i is 0, i.e. ⊨M,σ≥0
φ. But σ≥0 is σ, so this is

the same as saying ⊨M,σ φ.

5. Give LTL propositions to specify the desirable properties of an elevator (lift) in a two story building.
In each state the elevator should be on the ground or first floor, and buttons might have been
pressed, or not, by people wanting the elevator. Because there are only two floors, only one button
is required on each floor and no buttons are required inside the elevator. To simplify the system
you may assume that different buttons are never pressed at the exact same moment, although they
might be pressed close enough together that the elevator has not been able to fulfil the first request.

Then draw a transition system whose paths satisfy your propositions.

Solution. Your propositions and transition system might not exactly match mine.

We only need three propositions: g for ‘the elevator is on the ground floor’ (if negated, it is on the
first floor), bg for ‘the ground floor button is pushed’, and bf for ‘the first floor button is pushed’.

We will put all our propositions inside G, because they should hold forever, not just at the start
of a path through our system:

� If the elevator is on the floor on which a button is pressed, it should immediately move floors
and clear that button: G(g ∧ bg → X(¬g ∧ ¬bg)) and G(¬g ∧ bf → X(g ∧ ¬bf ));

� If the elevator is on a different floor than on which a button is pressed, it should immediately
move floors, but not clear the button (which will happen at the next step): G(g ∧ bf →
X(¬g ∧ bf )) and G(¬g ∧ bg → X(g ∧ bg)).

We would like it to be possible for the buttons to be pressed, and for both to be pressed simultane-
ously, but this cannot be directly expressed in LTL, because it requires an existential quantification
over possible paths through the system. For this reason a one state system, unlabelled by any
proposition, that loops to itself forever technically satisfies our specification! But here is a more
reasonable system:

5



bg bfbg, bf

g, bg g, bfg, bg, bf

g

6. (Time consuming and open ended; no complete solution wil be presented). Suggest some LTL
propositions that would help to specify a three floor elevator. In particular, how do you ensure
that the elevator does not keep itself busy moving up and down between two of the floors while
ignoring request for the third?

You will find a transition system for such an elevator too large to construct in reasonable time, but
you are welcome to think about how it might be done.

Solution. Some remarks:

� We need rather a lot of propositions. We will want one for each elevator position (say, g for
ground, f for first, and s for second); propositions for the direction of travel of the elevator
(say u for upwards and d for downwards) because that effects e.g. whether an elevator moving
from the first to third floor picks up a passenger from the second; propositions for each button
on floors (bg and bs for the ground and second floor, but two buttons bfu and bfd for the first
floor); and three propositions for each button inside the elevator (using ‘i’ to mean inside, say
ig, id, and is). The combination of all these propositions makes for a rather large number of
possible states!

� We would need some safety propositions ruling out impossible actions, e.g. G(g → ¬f ∧ ¬s)
- if the elevator is on the ground floor, it is not on the other floors - and G(u → ¬d) - if it is
moving up, it is not moving down.

� Liveness (on request) can be specified by propositions like G(bg → Fg) - if the ground floor
button is pressed, the elevator will eventually reach the ground floor. But this raises the
possibility that the system might take a thousand steps to fulfil the request! If you think you
can guarantee service in, say, six steps, you could specify this with G(bg → g ∨Xg ∨XXg ∨
. . . ∨XXXXXXg).

� The U connective is quite useful for expressing some properties. For example if the button on
the ground floor is pressed, it should stay pressed until the elevator reaches the ground floor:
G(bg → bg U(g ∧ ¬bg).

� We need to think about unusual user behaviour. What should the system do if a user gets
into the elevator then presses the button for the floor they are already on? What if the down
button is pressed on the first floor, but if the user on that floor gets inside the elevator and
requests the second floor?

6


