COMP3610/6361 Principles of Programming Languages

Assignment 1

ver 1.0

Submission Guidelines

- Due time: Aug 10, 2023, 11am (Canberra Time) Aug 13, 2023, 11:59pm (Canberra Time)
- Submit a pdf via Wattle.
- Scans of hand-written text are fine, as long as they are readable and neat.
- Please read and sign the declaration on the last page and attach a copy to your submission.
- No late submission, deadline is strict

Exercise 1 (Syntax)

(30 Marks)

Type checking can be done with help of a type system, or with a refined syntax – to a certain degree.

Question 1 Refine the syntax given on Slide 33 of Lecture 1 (IMP – Syntax), such that it can distinguish boolean expressions, integer expressions and program expressions.

Question 2 Explain in a few sentences your design decisions: you can, for example, explain which expressions are excluded and which are not (and why this makes sense). To get you started, you may ask yourself whether the expression

while
$$5 \ge (if ! l \ge 3 then 3 else 6) do $l := ! l + 1$$$

should be allowed. Parentheses are only given to help the reader.

Exercise 2 (Semantics)

(25 Marks)

We extend the syntax of our simple while language to be the following:

```
Booleans b \in \mathbb{B} = \{ \text{true}, \text{false} \} Expressions Integers (Values) n \in \mathbb{Z} = \{ \dots, -1, 0, 1, \dots \} E ::= n \mid b \mid E \text{ op } E \mid Locations l \in \mathbb{L} = \{ l, l_0, l_1, l_2, \dots \} l := E \mid !l \mid Operations op ::= + \mid \geq \mid \land skip \mid E ; E \mid while E \text{ do } E \mid
```

Question 3 The operator \land denotes Boolean conjunction. Extend the sos-rules (operational semantics) to define the 'standard' behaviour of \land .

2 COMP3610/6361

Question 4 Extend the syntax and the semantics with a (nondeterministic) choice operator \sqcup . The idea is that $E_1 \sqcup E_2$ can freely choose between E_1 and E_2 as long as E_i $(1 \le i \le 2)$ is not stuck.

Exercise 3 (Types)

(10 Marks)

Give a derivation tree to prove that

$$\{\} \vdash \text{if } 3 \ge 7 \text{ then } 3 + 5 \text{ else } 4: \text{int}$$

is well typed.

Exercise 4 (A Well-typed Program)

(35 Marks)

Question 5 Write a program P in the simple imperative language of the lecture that computes the factorial of the integer initially stored in location l_1 . Make sure that you only use the syntax given on Slide 33 of the first lecture.

Question 6 Prove that your program *P* is well typed. That means, give a type derivation for

 l_1 : intref $\vdash P$: unit

P. Höfner 3

Academic Integrity

I declare that this work upholds the principles of academic integrity, as defined in the University Aca-
demic Misconduct Rule; is entirely my own work, with only the exceptions listed; is produced for the
purposes of this assessment task and has not been submitted for assessment in any other context, except
where authorised in writing by the course convener; gives appropriate acknowledgement of the ideas,
scholarship and intellectual property of others insofar as these have been used; in no part involves copy-
ing, cheating, collusion, fabrication, plagiarism or recycling.

Date	Signature