
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Jul 26, 2023

1

Section 2

IMP
and its Operational Semantics

2

‘Toy’ languages

• real programming languages are large
many features, redundant constructs

• focus on particular aspects and abstract from others (scale up later)
• even small languages can involve delicate design choices.

3

Design choices, from Micro to Macro

• basic values
• evaluation order
• what is guaranteed at compile-time and run-time
• how effects are controlled
• how concurrency is supported
• how information hiding is enforceable
• how large-scale development and re-use are supported
• . . .

4

IMP1– Introductory Example

IMP is an imperative language with store locations, conditionals and
while loop.
For example

l2 := 0 ;
while !l1 ≥ 1 do (

l2 := !l2 + !l1 ;
l1 := !l1 + −1

)

with initial store {l1 7→ 3, l2 7→ 0}.

1Basically the same as in Winskel 1993 (IMP) and in Hennessy 1990 (WhileL)
5

IMP – Syntax
Booleans b ∈ B = {true, false}
Integers (Values) n ∈ Z = {. . . ,−1, 0, 1, . . . }
Locations l ∈ L = {l, l0, l1, l2, . . . }

Operations op ::= + | ≥

Expressions

E ::= n | b | E op E |
l := E | !l |
skip | E ; E |
if E then E else E

while E do E

6

Transition systems

A transition system consists of
• a set Config of configurations (or states), and
• a binary relation −→⊆ Config × Config.

The relation −→ is called the transition or reduction relation:
c −→ c′ reads as ‘state c can make a transition to state c′’.
(see DFA/NFA)

7

IMP Semantics (1 of 4) – Configurations

Stores are (finite) partial functions L ⇀ Z.
For example, {l1 7→ 3, l3 7→ 42}

Configurations are pairs ⟨E , s⟩ of an expression E and a store s.
For example, ⟨l := 2 + !l , {l 7→ 3}⟩.

Transitions have the form ⟨E , s⟩ −→ ⟨E′ , s′⟩.
For example, ⟨l := 2 + !l , {l 7→ 3}⟩ −→ ⟨l := 2 + 3 , {l 7→ 3}⟩

8

Transitions – Examples

Transitions are single computation steps.
For example

⟨l := 2 + !l , {l 7→ 3}⟩
−→ ⟨l := 2 + 3 , {l 7→ 3}⟩
−→ ⟨l := 5 , {l 7→ 3}⟩
−→ ⟨skip , {l 7→ 5}⟩
−̸→

Keep going until reaching a value v, an expression in V = B∪Z∪{skip}.
A configuration ⟨E , s⟩ is stuck if E is not a value and ⟨E , s⟩ −̸→.

9

IMP Semantics (2 of 4) – Rules (basic operations)

(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

(op≥) ⟨n1 ≥ n2 , s⟩ −→ ⟨b , s⟩ if b = (n1 ≥ n2)

(op1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E′
1 op E2 , s

′⟩

(op2)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨v op E2 , s⟩ −→ ⟨v op E′
2 , s

′⟩

10

Rules (basic operations) – Examples

Find the possible sequences of transitions for

⟨(2 + 3) + (4 + 5) , ∅⟩

The answer is 14 – but how do we show this formally?

11

IMP Semantics (3 of 4) – Store and Sequencing

(deref) ⟨ !l , s⟩ −→ ⟨n , s⟩ if l ∈ dom(s) and s(l) = n

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s + {l 7→ n}⟩

(assign2)
⟨E , s⟩ −→ ⟨E′ , s′⟩

⟨l := E , s⟩ −→ ⟨l := E′ , s′⟩

(seq1) ⟨skip;E2 , s⟩ −→ ⟨E2 , s⟩

(seq2)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1;E2 , s⟩ −→ ⟨E′
1;E2 , s

′⟩

12

Store and Sequencing – Examples

⟨l := 3 ; !l , {l 7→ 0}}⟩ −→ ⟨skip ; !l , {l 7→ 3}⟩
−→ ⟨ !l , {l 7→ 3}⟩
−→ ⟨3 , {l 7→ 3}⟩

13

Store and Sequencing – Examples

⟨l := 3 ; l := !l , {l 7→ 0}⟩ −→ ?

⟨42 + !l , ∅⟩ −→ ?

14

IMP Semantics (4 of 4) – Conditionals and While

(if1) ⟨if true then E2 else E3 , s⟩ −→ ⟨E2 , s⟩

(if2) ⟨if false then E2 else E3 , s⟩ −→ ⟨E3 , s⟩

(if3)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨if E1 then E2 else E3 , s⟩ −→ ⟨if E′
1 then E2 else E3 , s

′⟩

(while)
⟨while E1 do E2 , s⟩ −→ ⟨if E1 then (E2 ; while E1 do E2) else skip , s⟩

15

IMP – Examples

If

E =
(
l2 := 0 ; while !l1 ≥ 1 do (l2 := !l2 + !l1 ; l1 := !l1 + −1)

)
s = {l1 7→ 3, l2 7→ 0}

then

⟨E , s⟩ −→∗ ?

16

Determinacy

Theorem (Determinacy)
If ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Proof.
later

17

Reminder

• basic and simple imperative while-language
• with formal semantics
• given in the format structural operational semantics

• rules usually have the form
A B

C

(special rule is C, which we often write as C)
• derivation tree

(R1)

(R3)
A

(R4)
B1

(R5)
B2

B
(R2)

C

18

Language design I
Order of Evaluation
IMP uses left-to-right evaluation. For example

⟨(l := 1 ; 0) + (l := 2 ; 0) , {l 7→ 0}⟩ −→5 ⟨0 , {l 7→ 2}⟩

For right-to-left we could use

(op1’)
⟨E2 , s⟩ −→ ⟨E′

2 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E1 op E′
2 , s

′⟩

(op2’)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op v , s⟩ −→ ⟨E′
1 op v , s′⟩

In this language

⟨(l := 1 ; 0) + (l := 2 ; 0) , {l 7→ 0}⟩ −→5 ⟨0 , {l 7→ 1}⟩

19

Language design II

Assignment results
Recall

(assign1) ⟨l := n , s⟩ −→ ⟨skip , s + {l 7→ n}⟩ if l ∈ dom(s)

(seq1) ⟨skip ; E2 , s⟩ −→ ⟨E2 , s⟩

We have chosen to map an assignment to skip, and e1 ; e2 to progress
iff e1 = skip.

Instead we could have chosen the following.

(assign1’) ⟨l := n , s⟩ −→ ⟨n , s + {l 7→ n}⟩ if l ∈ dom(s)

(seq1’) ⟨v ; E2 , s⟩ −→ ⟨E2 , s⟩

20

Language design III

Store initialisation
Recall

(deref) ⟨ !l , s⟩ −→ ⟨n , s⟩ if l ∈ dom(s) and s(l) = n

Assumes l ∈ dom(s).

Instead we could have
• initialise all locations to 0, or
• allow assignments to an l ̸∈ dom(s).

21

Language design IV

Storable values
• our language only allows integer values (store: L ⇀ Z)
• could we store any value? Could we store locations, or even

programs?
• store is global and cannot create new locations

22

Language design V

Operators and Basic values
• Booleans are different from integers (unlike in C)
• Implementation is (probably) different to semantics

Exercise: fix the semantics to match 32-bit integers

23

Expressiveness

Is our language expressive enough to write ‘interesting’ programs?
• yes: it is Turing-powerful

Exercise: try to encode an arbitrary Turing machine in IMP
• no: no support for standard feature, such as functions, lists, trees,

objects, modules, . . .
Is the language too expressive?

• yes: we would like to exclude programs such as 3 + true

clearly 3 and true are of different type

24

	IMP and its Operational Semantics

