Australian
ational

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Jul 26, 2023

Australian
National

University

Section 2

IMP
and its Operational Semantics

Australian
National

= University

“Toy’ languages

« real programming languages are large
many features, redundant constructs

« focus on particular aspects and abstract from others (scale up later)
¢ even small languages can involve delicate design choices.

Australian
National

University

Design choices, from Micro to Macro

* basic values

e evaluation order

e what is guaranteed at compile-time and run-time

» how effects are controlled

» how concurrency is supported

 how information hiding is enforceable

« how large-scale development and re-use are supported

Australian

National
University

IMP'— Introductory Example

IMP is an imperative language with store locations, conditionals and

while loop.
For example
lo:=0;
while !l; > 1 do (
12 = 'lg + 'll N
ll = 'll + -1
)

with initial store {l; — 3,15 — 0}.

'Basically the same as in Winskel 1993 (IMP) and in Hennessy 1990 (WhileL)

Australian
National

University

IMP — Syntax

Booleans
Integers (Values)
Locations
Operations

Expressions

beB = {true,false}
neZ=1{.,-101,...}
lell :{l,l(hll,lz,...}

opu= +|>

E:=n|b|EopFE|
l:=E| |
skip | £ ; E |
if £ then £ else £
while £ do FE

Australian
National

University

Transition systems

A transition system consists of
« a set Config of configurations (or states), and
« abinary relation — C Config x Config.

The relation — is called the transition or reduction relation:
¢ — ¢ reads as ‘state ¢ can make a transition to state ¢’’.
(see DFA/NFA)

Australian
National

University

IMP Semantics (1 of 4) — Configurations

Stores are (finite) partial functions L. — Z.
For example, {l1 — 3,13 — 42}

Configurations are pairs (E, s) of an expression E and a store s.
For example, (I:=2+ 1, {l — 3}).

Transitions have the form (E, s) — (E', §').
Forexample, ({:=2+ 1, {I—~3}) — (1:=2+4+3, {{— 3})

Australian
National

University

Transitions — Examples

Transitions are single computation steps.
For example

l:i=24 1, {l—3})
1:=24+3,{l—3})
1:=5,{l—3})

{
{
{
(skip, {I — 5})

—
—
—
#_}

Keep going until reaching a value v, an expression in V=B UZU {sKip}.
A configuration (E, s) is stuck if E is not a value and (E, s) —/~.

Australian
National

University

IMP Semantics (2 of 4) — Rules (basic operations)

(op+) (n1+mn2,s) — (n,s) if n=mny + no
©Op>) (m >mng,s) —(b,s) ifb=(n1>ny)

<E1) S> — <Ei7 S/>
(ByopEy,s) — (Ejop Es,)

(op1)

(B, s) — (B},)
(vop Bz, s) — (vop By, &)

(op2)

Australian
National

University

Rules (basic operations) — Examples

Find the possible sequences of transitions for
(2+3)+(4+5),0)

The answer is 14 — but how do we show this formally?

Australian
National

IMP Semantics (3 of 4) — Store and Sequencing

(deref) (N, s) —(n,s) if L € dom(s) and s(l) =n
(assign1) (l:=n,s) — (skip, s+ {{— n})

(E,s) — (E',§)

(assign2) (1:=E,s) — (:=F',)

(seq) (skip; E2, s) — (Es, s)

<E1) S> — <Ei’ S/>

2
(8092 EiE s (BB 5

Australian
National

University

Store and Sequencing — Examples

(1:=3; 0,{l—0}}) — (skip; ', {l— 3})
— (1, {l—3})
— (3, {l—3})

Australian
National

University

Store and Sequencing — Examples

(1:=3;1:=10,{l—=0}) — ?

42+ 1, 0) — 7

Australian
“ajtionaj

IMP Semantics (4 of 4) — Conditionals and While

(if1) (if true then E; else E5, s) — (Es, s)

(if2) (if false then F, else E3, s) — (E3, s)

i) | (B, 5) = (B 5) /
(if £, then E; else E5, s) — (if £ then E; else E3, s')

(while)

(while E, do E;, s) — (if E; then (E; ; while £, do E;) else skip, s)

Australian
National

University

IMP — Examples

FE = (12 =0; while !l; > 1 do (12 = o+ Ny 50 = My + —1))
S:{ll '—)3712*—>0}

then

(E,s) —* 7

Australian
National

University

Determinacy

Theorem (Determinacy)
If<E, S> — <E‘17 51> and <E‘7 S> — <E2, 82>
then <E1 , 81> = <E2, 82>.

Proof.
later O

Australian

National
University

Reminder

basic and simple imperative while-language

with formal semantics

« given in the format structural operational semantics
B

rules usually have the form

(special rule is C, which we often write as C)

e derivation tree

(R4) — (R5) —
B By 2 (R2)
A

Australian
National

University

Language design |
Order of Evaluation
IMP uses left-to-right evaluation. For example
(1:=1;0)+ (1:=2;0), {I=0}) —5(0, {I2})
For right-to-left we could use
<E27 8> — <E£7 SI>
(Er op Ba, s) — (B 0p B3, §)

(opT’)

<E1) S> — <E17 S/>
(Evopv,s) — (Eyopu, s’

(op2’)

In this language

(1:=1;0)+(1:=2;0), {I—0}) —5(0, {I—1})

Australian
National

University

Language design I

Assignment results
Recall

(assign1) (l:=n,s) — (skip, s + {{ — n}) if I € dom(s)
(seql) (skip ; E3, s) — (Ea, s)

We have chosen to map an assignment to skip, and e; ; e; to progress
iff e; = skip.

Instead we could have chosen the following.
(assignt’) (l:=n,s) — (n, s+ {l—n}) if I € dom(s)

(seq1’) (vi; By, s) — (Fa, s)

20

Australian

National
University

Language design IlI

Store initialisation
Recall

(deref)y (1, s) — (n, s) if | € dom(s) and s(I) =n
Assumes [€ dom(s).

Instead we could have
« initialise all locations to 0, or
« allow assignments to an ! ¢ dom(s).

21

Australian
National

= University

Language design IV

Storable values
 our language only allows integer values (store: . — Z)

 could we store any value? Could we store locations, or even
programs?
« store is global and cannot create new locations

22

Australian
National

University

Language design V

Operators and Basic values
» Booleans are different from integers (unlike in C)

e Implementation is (probably) different to semantics
Exercise: fix the semantics to match 32-bit integers

23

Australian
National

University

Expressiveness

Is our language expressive enough to write ‘interesting’ programs?
e yes: it is Turing-powerful
Exercise: try to encode an arbitrary Turing machine in IMP

» no: no support for standard feature, such as functions, lists, trees,
objects, modules, ...

Is the language too expressive?

« yes: we would like to exclude programs such as 3 + true
clearly 3 and true are of different type

24

	IMP and its Operational Semantics

