Australian
ational

COMP3610/636
Principles of Programming Languages

Peter Hofner

Jul 20, 2023

| Australian
National

University

Section 3

Types

Australian
National

University

Type systems

describe when programs make sense
« prevent certain kinds of errors
structure programs

guide language design

Ideally, well-typed programs do not get stuck.

Australian

ational
Y

Run-time errors

Trapped errors

Cause execution to halt immediately.

Examples: jumping to an illegal address, raising a top-level exception.
Innocuous?

Untrapped errors

May go unnoticed for a while and later cause arbitrary behaviour.
Examples: accessing data past the end of an array, security loopholes in
Java abstract machines.

Insidious!

Given a precise definition of what constitutes an untrapped run-time
error, then a language is safe if all its syntactically legal programs cannot
cause such errors. Usually, safety is desirable. Moreover, we'd like as
few trapped errors as possible.

Australian

National
University

Formal type systems

We define a ternary relationI' - E: T

expression E has type T, under assumptions I" on the types of locations
that may occur in E.

For example (according to the definition coming up):
e {} F iftruethen2else3 +4 : int
o [y :intref + if !l; >3then !l;else3 : int
e {} ¥ 3+ true : TforanytypeT
e {} ¥ iftruethen 3else true : int

Australian
National

University

Types of IMP

Types of expressions

T :=int|bool | unit

Types of locations

Tioe = intref
We write T" and T, for the sets of all terms of these grammars.

« I" ranges over TypeEnv, the finite partial function from L — Z

e notation: write [, : intref, ..., : intref instead of
{ly — intref, ... I — intref}

Australian
National

University

Type Judgement (1 of 3)

(int) L'k n:int ifneZ
(bool) T Fb:bool ifbeB={true,false}

' Eq:int '+ Es:int

o
(p+) FI—E1+E2:int
'+ Eq:int '+ Ey:int
(op>) :
'+ E; > E5:bool
(if) I'+ Ey :bool I'EEy: T ' E3:T

I'+if E; then E> else E5:T

Australian
“ajtionaj

Type Judgement — Example

Prove that {} I- if false then 2 else 3 + 4:int.

N s g aam V)

— X (INT
{}F2:int() {}F3+4:int
{} - if false then 2 else 3 + 4:int

{} - false:bool (BooL)

Australian
National

University

Type Judgement (2 of 3)

I'(l) = intref I'- E:int

(assign) T'Fl:= FE:unit
I'(l) = intref
(derel) Tt

Here, (for the moment) I'(I) = intref means [€ dom(T")

Australian
National

University

Type Judgement (3 of 3)

(skip) I' I skip : unit

'+ Eq :unit 'k Ey:T
F"El;EQZT

(seq)

I'+ Ey :bool I' = Ey:unit

while
() I" + while E, do Ej : unit

Australian
National

University

Type Judgement — Properties

Theorem (Progress)

IfT = E:T and dom(I") C dom(s) then either E is a value or there exist
E’ and s’ such that (E, s) — (E', §').

Theorem (Type Preservation)
IfT+ E:T,dom(I) C dom(s) and (E, sy — (E', s') thenT' - E': T
and dom(T") C dom(s’).

Australian
National

University

Type Safety

Main result: Well-typed programs do not get stuck.

Theorem (Type Safety)

IfT - E:T, dom(T") C dom(s), and (E, s) —* (E’, §') then either E' is
avalue withT + E':T, or there exist E”, s" such that

(E', sy — (E",s"), T+ E":T and dom(T") C dom(s").

Here, —* means arbitrary many steps in the transition system.

Australian
National

University

Type checking, typeability, and type inference

Type checking problem for a type system:
givenI', Eand T,isT' - E: T derivable?

Type inference problem:
given I and E, find atype T such that I' - E: T' is derivable, or show
there is none.

Type inference is usually harder than type checking, for a type T" needs
to be computed.

For our type system, though, both are easy.

Australian
National

University

Properties

Theorem (Type inference)

GivenT and E , one can find T such thatT' + E : T, or show that there is
none.

Theorem (Decidability of type checking)
GivenT', E and T, one can decide whetherT - E : T holds.

Moreover

Theorem (Uniqueness of typing)
IfT+E:TandT - E:T thenT =T'.

	Types

