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Type systems

describe when programs make sense
« prevent certain kinds of errors
structure programs

guide language design

Ideally, well-typed programs do not get stuck.
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Run-time errors

Trapped errors

Cause execution to halt immediately.

Examples: jumping to an illegal address, raising a top-level exception.
Innocuous?

Untrapped errors

May go unnoticed for a while and later cause arbitrary behaviour.
Examples: accessing data past the end of an array, security loopholes in
Java abstract machines.

Insidious!

Given a precise definition of what constitutes an untrapped run-time
error, then a language is safe if all its syntactically legal programs cannot
cause such errors. Usually, safety is desirable. Moreover, we'd like as
few trapped errors as possible.
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Formal type systems

We define a ternary relationI' - E: T

expression E has type T, under assumptions I" on the types of locations
that may occur in E.

For example (according to the definition coming up):
e {} F iftruethen2else3 +4 : int
o [y :intref + if !l; >3then !l;else3 : int
e {} ¥ 3+ true : TforanytypeT
e {} ¥ iftruethen 3else true : int
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Types of IMP

Types of expressions

T :=int|bool | unit

Types of locations

Tioe = intref
We write T" and T, for the sets of all terms of these grammars.

« I" ranges over TypeEnv, the finite partial function from L — Z

e notation: write [, : intref, ..., : intref instead of
{ly — intref, ... I — intref}
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Type Judgement (1 of 3)

(int) L'k n:int ifneZ
(bool) T Fb:bool ifbeB={true,false}

' Eq:int '+ Es:int

o
(p+) FI—E1+E2:int
'+ Eq:int '+ Ey:int
(op>) :
'+ E; > E5:bool
(if) I'+ Ey :bool I'EEy: T ' E3:T

I'+if E; then E> else E5:T
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Type Judgement — Example

Prove that {} I- if false then 2 else 3 + 4:int.

N s g aam V)

— X (INT
{}F2:int( ) {}F3+4:int
{} - if false then 2 else 3 + 4:int

{} - false:bool (BooL)
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Type Judgement (2 of 3)

I'(l) = intref I'- E:int

(assign) T'Fl:= FE:unit
I'(l) = intref
(derel) Tt

Here, (for the moment) I'(I) = intref means [ € dom(T")
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Type Judgement (3 of 3)

(skip) I' I skip : unit

'+ Eq :unit 'k Ey:T
F"El;EQZT

(seq)

I'+ Ey :bool I' = Ey:unit

while
( ) I" + while E, do Ej : unit
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Type Judgement — Properties

Theorem (Progress)

IfT = E:T and dom(I") C dom(s) then either E is a value or there exist
E’ and s’ such that (E, s) — (E', §').

Theorem (Type Preservation)
IfT+ E:T,dom(I) C dom(s) and (E, sy — (E', s') thenT' - E': T
and dom(T") C dom(s’).
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Type Safety

Main result: Well-typed programs do not get stuck.

Theorem (Type Safety)

IfT - E:T, dom(T") C dom(s), and (E, s) —* (E’, §') then either E' is
avalue withT + E':T, or there exist E”, s" such that

(E', sy — (E",s"), T+ E":T and dom(T") C dom(s").

Here, —* means arbitrary many steps in the transition system.
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Type checking, typeability, and type inference

Type checking problem for a type system:
givenI', Eand T,isT' - E: T derivable?

Type inference problem:
given I and E, find atype T such that I' - E: T' is derivable, or show
there is none.

Type inference is usually harder than type checking, for a type T" needs
to be computed.

For our type system, though, both are easy.
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Properties

Theorem (Type inference)

GivenT and E , one can find T such thatT' + E : T, or show that there is
none.

Theorem (Decidability of type checking)
GivenT', E and T, one can decide whetherT - E : T holds.

Moreover

Theorem (Uniqueness of typing)
IfT+E:TandT - E:T thenT =T'.



	Types

