
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Aug 1, 2023

1

Section 4

Proofs (Structural Induction)

2

Why Proofs

• how do we know that the stated theorems are actually true?
intuition is often wrong – we need proof

• proofs strengthen intuition about language features
• examines all the various cases
• can guarantee items such as type safety
• most of our definitions are inductive; we use structural induction

3

(Mathematical) Induction

Mathematical induction proves that we can climb as high as we
like on a ladder, by proving that we can climb onto the bottom
rung (the basis) and that from each rung we can climb up to the
next one (the step).

[Concrete Mathematics (1994), R. Graham]

4

Natural Induction I

A proof by (natural) induction consists of two cases.

The base case proves the statement for n = 0 without assuming any
knowledge of other cases.
The induction step proves that if the statement holds for any given case
n = k, then it must also hold for the next case n = k + 1.

5

Natural Induction II

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀k. Φ(k) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume Φ(k) derive Φ(k + 1).

Example: 0 + 1 + 2 + · · ·+ n = n·(n+1)
2 .

6

Natural Induction III

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀i, k.0 ≤ i ≤ k. Φ(i) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume ϕ(i) for all i ≤ k derive ϕ(k + 1).

Example: Fn = φn−ψn

φ−ψ ,

with Fn is the n-th Fibonacci number, φ = 1+
√
5

2 (the golden ratio) and
ψ = 1−

√
5

2 .

7

Structural Induction I

• generalisation of natural induction
• prove that some proposition Φ(x) holds for all x of some sort of

recursively defined structure
• requires well-founded partial order

Examples: lists, formulas, trees

8

Structural Induction II

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results

9

Structural Induction over Expressions

Prove facts about all expressions, e.g. Determinacy?

Theorem (Determinacy)
If ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Do not forget the elided universal quantifiers.

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

10

Abstract Syntax

Remember the definition of expressions:

E ::= n | b | E op E |
l := E | !l |
if E then E else E |
skip | E ; E |
while E do E

This defines an (infinite) set of expressions.

11

Abstract Syntax Tree I

Example: if !l ≥ 0 then skip else (skip ; l := 0)

if then else

≥

!l 0

skip ;

skip l :=

0

12

Abstract Syntax Tree II

• equivalent expressions are not the same, e.g., 2 + 2 ̸= 4

+

2 2 4

• ambiguity, e.g., (1 + 2) + 3 ̸= 1 + (2 + 3)

+

+

1 2

3

+

1 +

2 3

Parentheses are only used for disambiguation – they are not part of
the grammar

13

Structural Induction (for abstract syntax)

Theorem
∀E ∈ IMP. Φ(E)

Proof.
Base case(s): show Φ(E) for each unary tree constructor (leaf)
Induction step(s): show it for the remaining constructors

∀c. ∀E1, . . . Ek. (Φ(E1) ∧ · · · ∧ Φ(Ek)) =⇒ Φ(c(E1, . . . , Ek))

14

Structural Induction (syntax IMP)

To show ∀E ∈ IMP. Φ(E).
base cases
nullary: Φ(skip)

∀b ∈ B. Φ(b)
∀n ∈ Z. Φ(n)
∀l ∈ L. Φ(!l)

steps
unary: ∀l ∈ L. ∀E. Φ(E) =⇒ Φ(l := E)
binary: ∀op. ∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 op E2)

∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 ; E2)
∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(while E1 do E2)

ternary: ∀E1, E2, E3. (Φ(E1) ∧ Φ(E2) ∧ Φ(E3))
=⇒ Φ(if E1 then E2 else E3)

15

Proving Determinacy – Outline

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Proof.
Choose

Φ(E)
def
= ∀s, E′, s′, E′′, s′′.

(⟨E , s⟩ −→ ⟨E′ , s′⟩ ∧ ⟨E , s⟩ −→ ⟨E′′ , s′′⟩)
=⇒ ⟨E′ , s′⟩ = ⟨E′′ , s′′⟩

and show Φ(E) by structural induction over E.

16

Proving Determinacy – Sketch

Some cases on whiteboard

17

Proving Determinacy – auxiliary lemma

Values do not reduce.

Lemma
For all E ∈ IMP, if E is a value then
∀s. ¬(∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩).

Proof.
• E is a value iff it is of the form n, b, skip
• By examination of the rules . . .

there is no rule with conclusion of the form ⟨E , s⟩ −→ ⟨E′ , s′⟩ for E
a value

18

Inversion I

In proofs involving inductive definitions. one often needs an inversion
property.
Given a tuple in one inductively defined relation, gives you a case
analysis of the possible “last rule” used.

Lemma (Inversion for −→)
If ⟨E , s⟩ −→ ⟨Ê , ŝ⟩ then either

1. (op+): there exists n1, n2 and n such that E = n1 op n2, Ê = n,
ŝ = s and n = n1 + n2,
(Note: +s have different meanings in this statements), or

2. (op1): there exists E1, E2, op and E′
1 such that E = E1 op E2,

Ê = E′
1 op E2 and ⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩, or

3. . . .

19

Inversion II

Lemma (Inversion for ⊢)
If Γ ⊢ E :T then either

• . . .

20

Determinacy – Intuition

The intuition behind structural induction over expressions. Consider
(!l + 2) + 3. How can we see that Φ((!l + 2) + 3) holds?

+

+

!l 2

3

21

Rule Induction

How to prove the following theorems?

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then Γ ⊢ E′ :T
and dom(Γ) ⊆ dom(s′).

22

Inductive Definition of −→

What does ⟨E , s⟩ −→ ⟨E′ , s′⟩ actually mean?

We defined the transition relation by providing some rules, such as
(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

(op1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E′
1 op E2 , s

′⟩

These rules (their concrete instances) inductively/recursively define a set
of derivation trees. The last step in the derivation tree defines a step in
the transition system.
We define the (infinite) set of all finite derivation trees

23

Derivation Tree (Transition Relation) – Example

⟨2 + 2 , {}⟩ −→ ⟨4 , {}⟩
(OP+)

⟨(2 + 2) + 3 , {}⟩ −→ ⟨4 + 3 , {}⟩
(OP1)

⟨(2 + 2) + 3 ≥ 5 , {}⟩ −→ ⟨4 + 3 ≥ 5 , {}⟩
(OP1)

24

Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢!l : int

(DERREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ (!l + 2) + 3 : int
(OP+)

25

Principle of Rule Induction I

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that {a | Φ(a)} is closed under the rules,
i.e., for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).

26

Principle of Rule Induction II

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).

27

Proving Progress I

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Proof.
Choose

Φ(Γ, E, T) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

We show that for all Γ, E, T , if Γ ⊢ E :T then Φ(Γ, E, T), by rule
induction on the definition of ⊢.

28

Proving Progress II

Rule induction for our typing rules means:

(int) ∀Γ, n. Φ(Γ, n, int)

(deref) ∀Γ, l. Γ(l) = intref =⇒ Φ(Γ, !l, int)

(op+) ∀Γ, E1, E2.
(
Φ(Γ, E1, int) ∧ Φ(Γ, E2, int) ∧ Γ ⊢ E1 : int ∧ Γ ⊢ E2 : int

)
=⇒ Φ(Γ, E1 + E2, int)

(seq) ∀Γ, E1, E2.
(
Φ(Γ, E1,unit) ∧ Φ(Γ, E2, T) ∧ Γ ⊢ E1 :unit ∧ Γ ⊢ E2 :T

)
=⇒ Φ(Γ, E1;E2, int)

. . . [10 rules in total]

29

Proving Progress III

Φ(Γ, E, T) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

Case (op+):

(op+)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

• assume Φ(Γ, E1, int), Φ(Γ, E2, int), Γ ⊢ E1 : int and Γ ⊢ E2 : int
• we have to show Φ(Γ, E1 + E2, int)
• assume an arbitrary but fixed s, and dom(Γ) ⊆ dom(s)
• E1 + E2 is not a value; hence we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩

30

Proving Progress IV

Case (op+) (cont’d):
• we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩

• Using Φ(Γ, E1, int) and Φ(Γ, E2, int) we have
case E1 reduces. Then E1 + E2 does, by (op1).
case E1 is a value and E2 reduces. Then E1 + E2 does, by (op2).
case E1 and E2 are values; we want to use

(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

we assumed Γ ⊢ E1 : int and Γ ⊢ E2 : int we need E1 = n1 and
E2 = n2; then E1 + E2 reduces, by (op+).

31

Proving Progress V

Lemma
For all Γ, E, T , if Γ ⊢ E :T is a value with T = int
then there exists n ∈ Z with E = n.

32

Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢ !l : int

(DEREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ (!l + 2) + 3 : int
(OP+)

33

Which Induction Principle to Use?

• matter of convenience (all equivalent)
• use an induction principle that matches the definitions

34

Structural Induction (Repetition)

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results

35

Why care about Proofs?

1. sometimes it seems hard or pointless to prove things because they
are ‘obvious’, . . .
(in particular with our language)

2. proofs illustrate (and explain) why ‘things are obvious’
3. sometimes the obvious facts are false . . .
4. sometimes the obvious facts are not obvious at all

(in particular for ‘real’ languages)
5. sometimes a proof contains or suggests an algorithm that you need

(proofs that type inference is decidable (for fancier type systems))
6. force a clean language design

36

	Functions

