

COMP3610/6361 Principles of Programming Languages

Peter Höfner

Aug 1, 2023

Section 4

Proofs (Structural Induction)

Why Proofs

- how do we know that the stated theorems are actually true?
 intuition is often wrong we need proof
- · proofs strengthen intuition about language features
- examines all the various cases
- can guarantee items such as type safety
- most of our definitions are inductive; we use structural induction

(Mathematical) Induction

Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis) and that from each rung we can climb up to the next one (the step).

[Concrete Mathematics (1994), R. Graham]

Natural Induction I

A proof by (natural) induction consists of **two cases**.

The **base case** proves the statement for n=0 without assuming any knowledge of other cases.

The **induction step** proves that if the statement holds for any given case n = k, then it must also hold for the next case n = k + 1.

Natural Induction II

Theorem

 $\forall n \in \mathbb{N} . \Phi(n).$

Proof.

Base case: show $\Phi(0)$

Induction step: $\forall k. \ \Phi(k) \Longrightarrow \Phi(k+1)$

For that we fix an arbitrary k. Assume $\Phi(k)$ derive $\Phi(k+1)$.

Example:
$$0 + 1 + 2 + \cdots + n = \frac{n \cdot (n+1)}{2}$$
.

Natural Induction III

Theorem

 $\forall n \in \mathbb{N} . \Phi(n).$

Proof.

Base case: show $\Phi(0)$

Induction step: $\forall i, k.0 \leq i \leq k. \ \Phi(i) \Longrightarrow \Phi(k+1)$

For that we fix an arbitrary k.

Assume $\phi(i)$ for all i < k derive $\phi(k+1)$.

Example: $F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi}$,

with F_n is the n-th Fibonacci number, $\varphi=\frac{1+\sqrt{5}}{2}$ (the golden ratio) and $\psi=\frac{1-\sqrt{5}}{2}$.

Structural Induction I

- · generalisation of natural induction
- prove that some proposition $\Phi(x)$ holds for all x of some sort of recursively defined structure
- · requires well-founded partial order

Examples: lists, formulas, trees

Structural Induction II

Determinacy Progress

Type Preservation
Safety
Uniqueness of typing
Decidability of typability
Decidability of type checking

structural induction for E rule induction for $\Gamma \vdash E:T$ (induction over the height of derivation tree) rule induction for $\langle E\,,\,s\rangle \longrightarrow \langle E'\,,\,s'\rangle$ mathematical induction on \longrightarrow^n

. . .

exhibiting an algorithm corollary of other results

Structural Induction over Expressions

Prove facts about all expressions, e.g. Determinacy?

Theorem (Determinacy)

If
$$\langle E , s \rangle \longrightarrow \langle E_1 , s_1 \rangle$$
 and $\langle E , s \rangle \longrightarrow \langle E_2 , s_2 \rangle$ then $\langle E_1 , s_1 \rangle = \langle E_2 , s_2 \rangle$.

Do not forget the elided universal quantifiers.

Theorem (Determinacy)

For all
$$E$$
, s , E_1 , s_1 , E_2 and s_2 , if $\langle E$, $s \rangle \longrightarrow \langle E_1$, $s_1 \rangle$ and $\langle E$, $s \rangle \longrightarrow \langle E_2$, $s_2 \rangle$ then $\langle E_1$, $s_1 \rangle = \langle E_2$, $s_2 \rangle$.

Abstract Syntax

Remember the definition of expressions:

$$\begin{split} E &::= n \mid b \mid E \ op \ E \mid \\ l &:= E \mid \ !l \mid \\ & \text{if} \ E \ \text{then} \ E \ \text{else} \ E \mid \\ & \text{skip} \mid E \ ; E \mid \\ & \text{while} \ E \ \text{do} \ E \end{split}$$

This defines an (infinite) set of expressions.

Abstract Syntax Tree I

Example: if $!l \ge 0$ then skip else (skip; l := 0)

Abstract Syntax Tree II

• equivalent expressions are not the same, e.g., $2+2 \neq 4$

• ambiguity, e.g., $(1+2) + 3 \neq 1 + (2+3)$

Parentheses are only used for disambiguation – they are not part of the grammar

Structural Induction (for abstract syntax)

Theorem

 $\forall E \in \mathit{IMP}.\ \Phi(E)$

Proof.

Base case(s): show $\Phi(E)$ for each unary tree constructor (leaf) **Induction step(s)**: show it for the remaining constructors

$$\forall c. \forall E_1, \dots E_k. (\Phi(E_1) \land \dots \land \Phi(E_k)) \Longrightarrow \Phi(c(E_1, \dots, E_k))$$

Structural Induction (syntax IMP)

```
To show \forall E \in \mathsf{IMP}.\ \Phi(E).
```

base cases

nullary: $\Phi(\mathbf{skip})$

 $\forall b \in \mathbb{B}. \ \Phi(b)$ $\forall n \in \mathbb{Z}. \ \Phi(n)$

 $\forall l \in \mathbb{L}. \ \Phi(!l)$

steps

unary: $\forall l \in \mathbb{L}. \ \forall E. \ \Phi(E) \Longrightarrow \Phi(l := E)$

binary: $\forall op. \ \forall E_1, E_2. \ (\Phi(E_1) \land \Phi(E_2)) \Longrightarrow \Phi(E_1 \ op \ E_2)$

 $\forall E_1, E_2. (\Phi(E_1) \land \Phi(E_2)) \Longrightarrow \Phi(E_1; E_2)$

 $\forall E_1, E_2. \ (\Phi(E_1) \land \Phi(E_2)) \Longrightarrow \Phi(\textbf{while} \ E_1 \ \textbf{do} \ E_2)$

ternary: $\forall E_1, E_2, E_3. \ (\Phi(E_1) \land \Phi(E_2) \land \Phi(E_3))$

 $\Longrightarrow \Phi(\text{if }E_1 \text{ then }E_2 \text{ else }E_3)$

Proving Determinacy – Outline

Theorem (Determinacy)

For all
$$E$$
, s , E_1 , s_1 , E_2 and s_2 , if $\langle E, s \rangle \longrightarrow \langle E_1, s_1 \rangle$ and $\langle E, s \rangle \longrightarrow \langle E_2, s_2 \rangle$ then $\langle E_1, s_1 \rangle = \langle E_2, s_2 \rangle$.

Proof.

Choose

$$\begin{split} \Phi(E) &\stackrel{\mathsf{def}}{=} \forall s, E', s', E'', s''. \\ & (\langle E\,,\, s\rangle \longrightarrow \langle E'\,,\, s'\rangle \, \wedge \, \langle E\,,\, s\rangle \longrightarrow \langle E''\,,\, s''\rangle) \\ & \Longrightarrow \langle E'\,,\, s'\rangle = \langle E''\,,\, s''\rangle \end{split}$$

and show $\Phi(E)$ by structural induction over E.

Proving Determinacy - Sketch

Some cases on whiteboard

Proving Determinacy – auxiliary lemma

Values do not reduce.

Lemma

For all $E \in IMP$, if E is a value then $\forall s. \neg (\exists E', s'. \langle E, s \rangle \longrightarrow \langle E', s' \rangle)$.

Proof.

- E is a value iff it is of the form n, b, **skip**
- By examination of the rules ... there is no rule with conclusion of the form $\langle E\,,\,s\rangle \longrightarrow \langle E'\,,\,s'\rangle$ for E a value

Inversion I

In proofs involving inductive definitions. one often needs an *inversion* property.

Given a tuple in one inductively defined relation, gives you a case analysis of the possible "last rule" used.

Lemma (Inversion for →)

If $\langle E, s \rangle \longrightarrow \langle \hat{E}, \hat{s} \rangle$ then either

- 1. (op+): there exists n_1 , n_2 and n such that $E=n_1$ op n_2 , $\hat{E}=n$, $\hat{s}=s$ and $n=n_1+n_2$, (Note: +s have different meanings in this statements), or
- 2. (op1): there exists E_1 , E_2 , op and E_1' such that $E=E_1$ op E_2 , $\hat{E}=E_1'$ op E_2 and $\langle E_1,s\rangle \longrightarrow \langle E_1',s'\rangle$, or
- 3. ...

Inversion II

```
Lemma (Inversion for \vdash)
If \Gamma \vdash E : T then either
```


Determinacy – Intuition

The intuition behind structural induction over expressions. Consider (!l+2)+3. How can we see that $\Phi((!l+2)+3)$ holds?

Rule Induction

How to prove the following theorems?

Theorem (Progress)

If $\Gamma \vdash E : T$ and $dom(\Gamma) \subseteq dom(s)$ then either E is a value or there exist E' and s' such that $\langle E, s \rangle \longrightarrow \langle E', s' \rangle$.

Theorem (Type Preservation)

If $\Gamma \vdash E : T$, $dom(\Gamma) \subseteq dom(s)$ and $\langle E, s \rangle \longrightarrow \langle E', s' \rangle$ then $\Gamma \vdash E' : T$ and $dom(\Gamma) \subseteq dom(s')$.

Inductive Definition of --->

What does $\langle E, s \rangle \longrightarrow \langle E', s' \rangle$ actually mean?

We defined the transition relation by providing some rules, such as

(op+)
$$\langle n_1 + n_2, s \rangle \longrightarrow \langle n, s \rangle$$
 if $n = n_1 + n_2$

(op1)
$$\frac{\langle E_1, s \rangle \longrightarrow \langle E'_1, s' \rangle}{\langle E_1 \ op \ E_2, s \rangle \longrightarrow \langle E'_1 \ op \ E_2, s' \rangle}$$

These rules (their concrete instances) inductively/recursively define a set of derivation trees. The last step in the derivation tree defines a step in the transition system.

We define the (infinite) set of all finite derivation trees

Derivation Tree (Transition Relation) – Example

$$\frac{\overline{\langle 2+2\,,\, \{\}\rangle \longrightarrow \langle 4\,,\, \{\}\rangle} \ \ ^{\text{(OP+)}}}{\overline{\langle (2+2)+3\,,\, \{\}\rangle \longrightarrow \langle 4+3\,,\, \{\}\rangle} \ \ ^{\text{(OP1)}}}{\overline{\langle (2+2)+3\geq 5\,,\, \{\}\rangle \longrightarrow \langle 4+3\geq 5\,,\, \{\}\rangle}} \ \ ^{\text{(OP1)}}$$

Derivation Tree (Typing Judgement) – Example

$$\frac{\frac{\Gamma(l) = \mathsf{intref}}{\Gamma \vdash !l : \mathsf{int}} \, (\mathsf{DERREF}) \frac{\Gamma \vdash 2 : \mathsf{int}}{\Gamma \vdash 2 : \mathsf{int}} \, (\mathsf{INT})}{\frac{\Gamma \vdash \ !l + 2 : \mathsf{int}}{\Gamma \vdash (!l + 2) + 3 : \mathsf{int}}} \, \frac{(\mathsf{INT})}{\Gamma \vdash 3 : \mathsf{int}} \, (\mathsf{OP+})$$

Principle of Rule Induction I

For any property $\Phi(a)$ of elements a of A, and any set of rules which define a subset S_R of A, to prove

$$\forall a \in S_R. \ \Phi(a)$$

it is enough to prove that $\{a \mid \Phi(a)\}$ is closed under the rules, i.e., for each

$$\frac{h_1 \dots h_k}{c}$$

if $\Phi(h_1) \wedge \cdots \wedge \Phi(h_k)$ then $\Phi(c)$.

Principle of Rule Induction II

For any property $\Phi(a)$ of elements a of A, and any set of rules which define a subset S_R of A, to prove

$$\forall a \in S_R. \ \Phi(a)$$

it is enough to prove that for each

$$\frac{h_1 \dots h_k}{c}$$

if $\Phi(h_1) \wedge \cdots \wedge \Phi(h_k)$ then $\Phi(c)$.

Proving Progress I

Theorem (Progress)

If $\Gamma \vdash E : T$ and $\operatorname{dom}(\Gamma) \subseteq \operatorname{dom}(s)$ then either E is a value or there exist E' and s' such that $\langle E, s \rangle \longrightarrow \langle E', s' \rangle$.

Proof.

Choose

$$\begin{split} \Phi(\Gamma, E, T) = \ \forall s. \ \mathsf{dom}(\Gamma) \subseteq \mathsf{dom}(s) \\ &\Longrightarrow \mathsf{value}(E) \lor (\exists E', s'. \ \langle E \,, \, s \rangle \longrightarrow \langle E' \,, \, s' \rangle) \end{split}$$

We show that for all Γ , E, T, if $\Gamma \vdash E : T$ then $\Phi(\Gamma, E, T)$, by rule induction on the definition of \vdash .

Proving Progress II

Rule induction for our typing rules means:

$$\begin{split} & (\text{int}) & \forall \Gamma, n. \; \Phi(\Gamma, n, \text{int}) \\ & (\text{deref}) & \forall \Gamma, l. \; \Gamma(l) = \text{intref} \Longrightarrow \Phi(\Gamma, !l, \text{int}) \\ & (\text{op+}) & \forall \Gamma, E_1, E_2. \; \left(\Phi(\Gamma, E_1, \text{int}) \land \Phi(\Gamma, E_2, \text{int}) \land \Gamma \vdash E_1 : \text{int} \land \Gamma \vdash E_2 : \text{int}\right) \\ & \Longrightarrow \Phi(\Gamma, E_1 + E_2, \text{int}) \\ & (\text{seq}) & \forall \Gamma, E_1, E_2. \; \left(\Phi(\Gamma, E_1, \text{unit}) \land \Phi(\Gamma, E_2, T) \land \Gamma \vdash E_1 : \text{unit} \land \Gamma \vdash E_2 : T\right) \\ & \Longrightarrow \Phi(\Gamma, E_1; E_2, \text{int}) \end{aligned}$$

...[10 rules in total]

Proving Progress III

$$\begin{split} \Phi(\Gamma, E, T) = \ \forall s. \ \mathrm{dom}(\Gamma) \subseteq \mathrm{dom}(s) \\ &\Longrightarrow \mathrm{value}(E) \vee (\exists E', s'. \ \langle E \,, \, s \rangle \longrightarrow \langle E' \,, \, s' \rangle) \end{split}$$

Case (op+):

(op+)
$$\frac{\Gamma \vdash E_1 : \mathsf{int} \qquad \Gamma \vdash E_2 : \mathsf{int}}{\Gamma \vdash E_1 + E_2 : \mathsf{int}}$$

- assume $\Phi(\Gamma, E_1, \text{int}), \Phi(\Gamma, E_2, \text{int}), \Gamma \vdash E_1 : \text{int and } \Gamma \vdash E_2 : \text{int}$
- we have to show $\Phi(\Gamma, E_1 + E_2, \text{int})$
- assume an arbitrary but fixed s, and $dom(\Gamma) \subseteq dom(s)$
- $E_1 + E_2$ is not a value; hence we have to show

$$\exists E', s'. \langle E_1 + E_2, s \rangle \longrightarrow \langle E', s' \rangle$$

Proving Progress IV

Case (op+) (cont'd):

· we have to show

$$\exists E', s'. \langle E_1 + E_2, s \rangle \longrightarrow \langle E', s' \rangle$$

• Using $\Phi(\Gamma, E_1, \text{int})$ and $\Phi(\Gamma, E_2, \text{int})$ we have case E_1 reduces. Then E_1+E_2 does, by (op1). case E_1 is a value and E_2 reduces. Then E_1+E_2 does, by (op2). case E_1 and E_2 are values; we want to use

(op+)
$$\langle n_1 + n_2, s \rangle \longrightarrow \langle n, s \rangle$$
 if $n = n_1 + n_2$

we assumed $\Gamma \vdash E_1$: int and $\Gamma \vdash E_2$: int we need $E_1 = n_1$ and $E_2 = n_2$; then $E_1 + E_2$ reduces, by (op+).

Proving Progress V

Lemma

For all Γ , E, T, if $\Gamma \vdash E : T$ is a value with T = int then there exists $n \in \mathbb{Z}$ with E = n.

Derivation Tree (Typing Judgement) – Example

$$\frac{\frac{\Gamma(l) = \mathsf{intref}}{\Gamma \vdash !l : \mathsf{int}} \; (\mathsf{DEREF}) \quad \frac{\Gamma \vdash 2 : \mathsf{int}}{\Gamma \vdash 2 : \mathsf{int}} \; (\mathsf{OP+})}{\frac{\Gamma \vdash 1! + 2 : \mathsf{int}}{\Gamma \vdash (!l + 2) + 3 : \mathsf{int}}} \; \frac{\mathsf{(INT)}}{\mathsf{(OP+)}}$$

Which Induction Principle to Use?

- matter of convenience (all equivalent)
- use an induction principle that matches the definitions

Structural Induction (Repetition)

Determinacy Progress

Type Preservation
Safety
Uniqueness of typing
Decidability of typability
Decidability of type checking

structural induction for E rule induction for $\Gamma \vdash E : T$ (induction over the height of derivation tree) rule induction for $\langle E \, , \, s \rangle \longrightarrow \langle E' \, , \, s' \rangle$ mathematical induction on \longrightarrow^n

. . .

exhibiting an algorithm corollary of other results

Why care about Proofs?

- sometimes it seems hard or pointless to prove things because they are 'obvious', ...
 (in particular with our language)
- 2. proofs illustrate (and explain) why 'things are obvious'
- 3. sometimes the obvious facts are false ...
- 4. sometimes the obvious facts are not obvious at all (in particular for 'real' languages)
- 5. sometimes a proof contains or suggests an algorithm that you need (proofs that type inference is decidable (for fancier type systems))
- 6. force a clean language design