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Section 4

Proofs (Structural Induction)
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Why Proofs

• how do we know that the stated theorems are actually true?
intuition is often wrong – we need proof

• proofs strengthen intuition about language features
• examines all the various cases
• can guarantee items such as type safety
• most of our definitions are inductive; we use structural induction
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(Mathematical) Induction

Mathematical induction proves that we can climb as high as we
like on a ladder, by proving that we can climb onto the bottom
rung (the basis) and that from each rung we can climb up to the
next one (the step).

[Concrete Mathematics (1994), R. Graham]
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Natural Induction I

A proof by (natural) induction consists of two cases.

The base case proves the statement for n = 0 without assuming any
knowledge of other cases.
The induction step proves that if the statement holds for any given case
n = k, then it must also hold for the next case n = k + 1.
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Natural Induction II

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀k. Φ(k) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume Φ(k) derive Φ(k + 1).

Example: 0 + 1 + 2 + · · ·+ n = n·(n+1)
2 .
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Natural Induction III

Theorem
∀n ∈ IN .Φ(n).

Proof.
Base case: show Φ(0)
Induction step: ∀i, k.0 ≤ i ≤ k. Φ(i) =⇒ Φ(k + 1)
For that we fix an arbitrary k.
Assume ϕ(i) for all i ≤ k derive ϕ(k + 1).

Example: Fn = φn−ψn

φ−ψ ,

with Fn is the n-th Fibonacci number, φ = 1+
√
5

2 (the golden ratio) and
ψ = 1−

√
5

2 .
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Structural Induction I

• generalisation of natural induction
• prove that some proposition Φ(x) holds for all x of some sort of

recursively defined structure
• requires well-founded partial order

Examples: lists, formulas, trees
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Structural Induction II

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results
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Structural Induction over Expressions

Prove facts about all expressions, e.g. Determinacy?

Theorem (Determinacy)
If ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Do not forget the elided universal quantifiers.

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.
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Abstract Syntax

Remember the definition of expressions:

E ::= n | b | E op E |
l := E | !l |
if E then E else E |
skip | E ; E |
while E do E

This defines an (infinite) set of expressions.
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Abstract Syntax Tree I

Example: if !l ≥ 0 then skip else (skip ; l := 0)

if then else

≥

!l 0

skip ;

skip l :=

0
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Abstract Syntax Tree II

• equivalent expressions are not the same, e.g., 2 + 2 ̸= 4

+

2 2 4

• ambiguity, e.g., (1 + 2) + 3 ̸= 1 + (2 + 3)

+

+

1 2

3

+

1 +

2 3

Parentheses are only used for disambiguation – they are not part of
the grammar
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Structural Induction (for abstract syntax)

Theorem
∀E ∈ IMP. Φ(E)

Proof.
Base case(s): show Φ(E) for each unary tree constructor (leaf)
Induction step(s): show it for the remaining constructors

∀c. ∀E1, . . . Ek. (Φ(E1) ∧ · · · ∧ Φ(Ek)) =⇒ Φ(c(E1, . . . , Ek))
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Structural Induction (syntax IMP)

To show ∀E ∈ IMP. Φ(E).
base cases
nullary: Φ(skip)

∀b ∈ B. Φ(b)
∀n ∈ Z. Φ(n)
∀l ∈ L. Φ( !l)

steps
unary: ∀l ∈ L. ∀E. Φ(E) =⇒ Φ(l := E)
binary: ∀op. ∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 op E2)

∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(E1 ; E2)
∀E1, E2. (Φ(E1) ∧ Φ(E2)) =⇒ Φ(while E1 do E2)

ternary: ∀E1, E2, E3. (Φ(E1) ∧ Φ(E2) ∧ Φ(E3))
=⇒ Φ(if E1 then E2 else E3)
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Proving Determinacy – Outline

Theorem (Determinacy)
For all E, s, E1, s1, E2 and s2,
if ⟨E , s⟩ −→ ⟨E1 , s1⟩ and ⟨E , s⟩ −→ ⟨E2 , s2⟩
then ⟨E1 , s1⟩ = ⟨E2 , s2⟩.

Proof.
Choose

Φ(E)
def
= ∀s, E′, s′, E′′, s′′.

(⟨E , s⟩ −→ ⟨E′ , s′⟩ ∧ ⟨E , s⟩ −→ ⟨E′′ , s′′⟩)
=⇒ ⟨E′ , s′⟩ = ⟨E′′ , s′′⟩

and show Φ(E) by structural induction over E.
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Proving Determinacy – Sketch

Some cases on whiteboard
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Proving Determinacy – auxiliary lemma

Values do not reduce.

Lemma
For all E ∈ IMP, if E is a value then
∀s. ¬(∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩).

Proof.
• E is a value iff it is of the form n, b, skip
• By examination of the rules . . .

there is no rule with conclusion of the form ⟨E , s⟩ −→ ⟨E′ , s′⟩ for E
a value
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Inversion I

In proofs involving inductive definitions. one often needs an inversion
property.
Given a tuple in one inductively defined relation, gives you a case
analysis of the possible “last rule” used.

Lemma (Inversion for −→)
If ⟨E , s⟩ −→ ⟨Ê , ŝ⟩ then either

1. (op+): there exists n1, n2 and n such that E = n1 op n2, Ê = n,
ŝ = s and n = n1 + n2,
(Note: +s have different meanings in this statements), or

2. (op1): there exists E1, E2, op and E′
1 such that E = E1 op E2,

Ê = E′
1 op E2 and ⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩, or

3. . . .
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Inversion II

Lemma (Inversion for ⊢)
If Γ ⊢ E :T then either

• . . .
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Determinacy – Intuition

The intuition behind structural induction over expressions. Consider
( !l + 2) + 3. How can we see that Φ(( !l + 2) + 3) holds?

+

+

!l 2

3
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Rule Induction

How to prove the following theorems?

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Theorem (Type Preservation)
If Γ ⊢ E :T , dom(Γ) ⊆ dom(s) and ⟨E , s⟩ −→ ⟨E′ , s′⟩ then Γ ⊢ E′ :T
and dom(Γ) ⊆ dom(s′).
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Inductive Definition of −→

What does ⟨E , s⟩ −→ ⟨E′ , s′⟩ actually mean?

We defined the transition relation by providing some rules, such as
(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

(op1)
⟨E1 , s⟩ −→ ⟨E′

1 , s
′⟩

⟨E1 op E2 , s⟩ −→ ⟨E′
1 op E2 , s

′⟩

These rules (their concrete instances) inductively/recursively define a set
of derivation trees. The last step in the derivation tree defines a step in
the transition system.
We define the (infinite) set of all finite derivation trees
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Derivation Tree (Transition Relation) – Example

⟨2 + 2 , {}⟩ −→ ⟨4 , {}⟩
(OP+)

⟨(2 + 2) + 3 , {}⟩ −→ ⟨4 + 3 , {}⟩
(OP1)

⟨(2 + 2) + 3 ≥ 5 , {}⟩ −→ ⟨4 + 3 ≥ 5 , {}⟩
(OP1)
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Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢!l : int

(DERREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ ( !l + 2) + 3 : int
(OP+)
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Principle of Rule Induction I

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that {a | Φ(a)} is closed under the rules,
i.e., for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).
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Principle of Rule Induction II

For any property Φ(a) of elements a of A, and any set of rules which
define a subset SR of A, to prove

∀a ∈ SR. Φ(a)

it is enough to prove that for each

h1 . . . hk

c

if Φ(h1) ∧ · · · ∧ Φ(hk) then Φ(c).
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Proving Progress I

Theorem (Progress)
If Γ ⊢ E :T and dom(Γ) ⊆ dom(s) then either E is a value or there exist
E′ and s′ such that ⟨E , s⟩ −→ ⟨E′ , s′⟩.

Proof.
Choose

Φ(Γ, E, T ) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

We show that for all Γ, E, T , if Γ ⊢ E :T then Φ(Γ, E, T ), by rule
induction on the definition of ⊢.
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Proving Progress II

Rule induction for our typing rules means:

(int) ∀Γ, n. Φ(Γ, n, int)

(deref) ∀Γ, l. Γ(l) = intref =⇒ Φ(Γ, !l, int)

(op+) ∀Γ, E1, E2.
(
Φ(Γ, E1, int) ∧ Φ(Γ, E2, int) ∧ Γ ⊢ E1 : int ∧ Γ ⊢ E2 : int

)
=⇒ Φ(Γ, E1 + E2, int)

(seq) ∀Γ, E1, E2.
(
Φ(Γ, E1,unit) ∧ Φ(Γ, E2, T ) ∧ Γ ⊢ E1 :unit ∧ Γ ⊢ E2 :T

)
=⇒ Φ(Γ, E1;E2, int)

. . . [10 rules in total]
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Proving Progress III

Φ(Γ, E, T ) = ∀s. dom(Γ) ⊆ dom(s)

=⇒ value(E) ∨ (∃E′, s′. ⟨E , s⟩ −→ ⟨E′ , s′⟩)

Case (op+):

(op+)
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

• assume Φ(Γ, E1, int), Φ(Γ, E2, int), Γ ⊢ E1 : int and Γ ⊢ E2 : int
• we have to show Φ(Γ, E1 + E2, int)
• assume an arbitrary but fixed s, and dom(Γ) ⊆ dom(s)
• E1 + E2 is not a value; hence we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩
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Proving Progress IV

Case (op+) (cont’d):
• we have to show

∃E′, s′. ⟨E1 + E2 , s⟩ −→ ⟨E′ , s′⟩

• Using Φ(Γ, E1, int) and Φ(Γ, E2, int) we have
case E1 reduces. Then E1 + E2 does, by (op1).
case E1 is a value and E2 reduces. Then E1 + E2 does, by (op2).
case E1 and E2 are values; we want to use

(op+) ⟨n1 + n2 , s⟩ −→ ⟨n , s⟩ if n = n1 + n2

we assumed Γ ⊢ E1 : int and Γ ⊢ E2 : int we need E1 = n1 and
E2 = n2; then E1 + E2 reduces, by (op+).
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Proving Progress V

Lemma
For all Γ, E, T , if Γ ⊢ E :T is a value with T = int
then there exists n ∈ Z with E = n.
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Derivation Tree (Typing Judgement) – Example

Γ(l) = intref
Γ ⊢ !l : int

(DEREF)
Γ ⊢ 2 : int

(INT)

Γ ⊢ !l + 2 : int
(OP+)

Γ ⊢ 3 : int
(INT)

Γ ⊢ ( !l + 2) + 3 : int
(OP+)
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Which Induction Principle to Use?

• matter of convenience (all equivalent)
• use an induction principle that matches the definitions
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Structural Induction (Repetition)

Determinacy structural induction for E
Progress rule induction for Γ ⊢ E :T

(induction over the height of derivation tree)
Type Preservation rule induction for ⟨E , s⟩ −→ ⟨E′ , s′⟩
Safety mathematical induction on −→n

Uniqueness of typing . . .
Decidability of typability exhibiting an algorithm
Decidability of type checking corollary of other results
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Why care about Proofs?

1. sometimes it seems hard or pointless to prove things because they
are ‘obvious’, . . .
(in particular with our language)

2. proofs illustrate (and explain) why ‘things are obvious’
3. sometimes the obvious facts are false . . .
4. sometimes the obvious facts are not obvious at all

(in particular for ‘real’ languages)
5. sometimes a proof contains or suggests an algorithm that you need

(proofs that type inference is decidable (for fancier type systems))
6. force a clean language design
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