

COMP3610/6361 Principles of Programming Languages

Peter Höfner

Aug 16, 2023

Section 7

Recursion

Scoping

Name Definitions

restrict the scope of variables

$$E ::= \ldots \mid \text{let val } x : T = E_1 \text{ in } E_2 \text{ end}$$

- x is a binder for E_2
- can be seen as syntactic sugar:

let val
$$x:T=E_1$$
 in E_2 end \equiv (fn $x:T\Rightarrow E_2$) E_1

Derived sos-rules and typing

let val
$$x:T=E_1$$
 in E_2 end \equiv (fn $x:T\Rightarrow E_2$) E_1

(let)
$$\frac{\Gamma \vdash E_1 : T \qquad \Gamma, x : T \vdash E_2 : T'}{\Gamma \vdash \textbf{let val } x : T = E_1 \textbf{ in } E_2 \textbf{ end } : T'}$$

(let1)
$$\frac{\langle E_1, s \rangle \longrightarrow \langle E_1', s' \rangle}{\langle \text{let val } x : T = E_1 \text{ in } E_2 \text{ end }, s \rangle \longrightarrow \langle \text{let val } x : T = E_1' \text{ in } E_2 \text{ end }, s'}$$

(let2)
$$\langle \text{let val } x : T = v \text{ in } E_2 \text{ end }, s \rangle \longrightarrow \langle \{v/x\} E_2, s \rangle$$

Recursion – An Attempt

Consider

$$r = (\text{fn } y : \text{int} \Rightarrow \text{if } y \ge 1 \text{ then } y + (r(y + -1)) \text{ else } 0)$$

where r is the recursive call (variable occurring in itself). What is the evaluation of r 3?

We could try

$$E ::= \dots \mid \text{let val rec } x : T = E \text{ in } E' \text{ end}$$

where x is a binder for both E and E'.

let val rec
$$r:$$
 int \to int $=$ (fn $y:$ int \Rightarrow if $y \ge 1$ then $y + (r(y+-1))$ else 0) in r 3 end

However ...

- What about let val rec x : T = (x, x) in x end?
- What about let val rec x: int list = 3 :: x in x end?
 Does this terminate? and if it does is it equal to
 - let val rec x: int list = 3 :: 3 :: x in x end
- Does let val rec x: int list = 3 :: (x+1) in x end terminate?
- In Call-by-Name (Call-by-Need) these are reasonable
- In Call-by-Value these would usually be disallowed

Recursive Functions

Idea specialise the previous let val rec

- $T = T_1 \rightarrow T_2$ (recursion only at function types)
- $E = (\mathbf{fn} \ y : T_1 \Rightarrow E_1)$ (and only for function values)

Recursive Functions – Syntax and Typing

 $E::=\ldots \mid \text{let val rec } x:T_1 \to T_2 = (\text{fn } y:T_1 \Rightarrow E_1) \text{ in } E_2 \text{ end}$ Here, y binds in E_1 and x bind in $(\text{fn } y:T_1 \Rightarrow E_1)$ and E_2

$$\begin{array}{ll} \text{(recT)} & \frac{\Gamma, \ x: T_1 \to T_2, \ y: T_1 \vdash E_1: T_2 \qquad \Gamma, x: T_1 \to T_2 \vdash E_2: T}{\Gamma \vdash \textbf{let val rec} \ x: T_1 \to T_2 = (\textbf{fn} \ y: T_1 \Rightarrow E_1) \ \textbf{in} \ E_2 \ \textbf{end}: T} \end{array}$$

Recursive Functions – Semantics

Redundancies?

```
• Do we need E_1; E_2?
No: E_1; E_2 \equiv (\operatorname{fn} y : \operatorname{unit} \Rightarrow E_2) E_1
```

• Do we need while E_1 do E_2 ? No:

Redundancies?

Do we need recursion?
 Yes! Previously, normalisation theorem effectively showed that
 while adds expressive power; now, recursion is even more powerful.

Side remarks I

- naive implementations (in particular substitutions) are inefficient (more efficient implementations are shown in courses on compiler construction)
- more concrete closer to implementation or machine code are possible
- usually refinement to prove compiler to be correct (e.g. CompCert or CakeML)

Side remarks I – CakeML

Side remarks II: Big-step Semantics

· we have seen a small-step semantics

$$\langle E, s \rangle \longrightarrow \langle E', s' \rangle$$

· alternatively, we could have looked at a big-step semantics

$$\langle E, s \rangle \Downarrow \langle E', s' \rangle$$

For example

$$\frac{\langle E_1, s \rangle \Downarrow \langle n_1, s' \rangle \quad \langle E_2, s' \rangle \Downarrow \langle n_2, s'' \rangle}{\langle E_1 + E_2, s \rangle \Downarrow \langle n, s'' \rangle} (n = n_1 + n_2)$$

- no major difference for sequential programs
- small-step much better for modelling concurrency and proving type safety