Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Aug 16, 2023



Australian
“ajtionaj

Section 7

Recursion



Australian
National

University

Scoping

Name Definitions
restrict the scope of variables

E:=...|letvalz:T=EFE, in E; end

e z is a binder for F,
e can be seen as syntactic sugar:

letvalz: T=FE,inEsend = (fnz: T = E,) F,



Australian
National

University

Derived sos-rules and typing

letvalz: T=FE,inEsend=(fnz: T = E) E;

(let) 'E:T D,z :TkFEy: T
I'tletvalz: T =F;in Esend: T

(let1) <E17 S> — <Eiv S/>
(letval x:T = F; in Es end, s) — (letval z:7T = E{ in E; end, s

(let2) (letval z : T=vin Eyend, s) — ({v/x} Es, s)



Australian

National
University

Recursion — An Attempt
Consider

r=(fny:int=ify>1theny+ (r(y+ —1)) else 0)

where r is the recursive call (variable occurring in itself).
What is the evaluation of r 3?

We could try
E:=...|letvalrecz:7T =FEin E end

where z is a binder for both E and E’.

letvalrec r :int — int =
(fny:int=ify>1theny+ (r(y+ —1)) else 0)
inr 3end



Australian
National

University

However ...

e What about let val rec = : T' = (z,z) in z end?

What about let val rec x : int list = 3 :: z in z end?
Does this terminate? and if it does is it equal to
—letvalrecz:intlist=3:3:zinzend

Does let val rec z : intlist = 3 :: (z + 1) in = end terminate?
In Call-by-Name (Call-by-Need) these are reasonable
In Call-by-Value these would usually be disallowed



Australian
National

University

Recursive Functions

Idea specialise the previous let val rec
e T =Ty — Ty (recursion only at function types)
e E=(fny: T, = E;) (and only for function values)



Australian
National

University

Recursive Functions — Syntax and Typing

E:=...|letvalrecx: Ty, - To = (fny: Ty = E;) in E> end
Here, y binds in 1 and z bindin (fny : T, = F;) and Es

F, J}ZTl —>T27 yZTl "EltTQ F,.’I}ZTl —)TQ H EQIT
Ptletvalrecz: Ty - Ty =(fny:Ty = E;)in Eyend: T

(recT)



Australian
National

University

Recursive Functions — Semantics

(rec) (letval rec =:T1 —To=(fn y:T1=FE;) in E; end, s)
—
({(fn y:T1= letvalrec z:T1 —T>=(fn y:T1=F,) in E1 end)/z} E3 , s)



Australian

National
University

Redundancies?

 Dowe need E ; E5?
No: FEq 3 FEs = (fn Yy unit = EQ) FEq

* Do we need while £, do Ey?
No:

while E; do E, = let val rec w : unit — unit =

(fn y : unit = if £, then (E>; (w skip)) else skip)

w sKip
end



Australian
National

= University

Redundancies?

» Do we need recursion?
Yes! Previously, normalisation theorem effectively showed that
while adds expressive power; now, recursion is even more powerful.



Australian
National

University

Side remarks |

 naive implementations (in particular substitutions) are inefficient
(more efficient implementations are shown in courses on compiler
construction)

« more concrete — closer to implementation or machine code — are
possible

« usually refinement to prove compiler to be correct
(e.g. CompCert or CakeML)




Australian
National

University

Side remarks | — CakeML

R -
S

ekl
5 o imtecn e
PRt
Pu i
> s
> Remove desdooss
S treesconn s
= e
1 e

i

Sy S inchons

‘Comps gosal s o
2 SRR

1> onemstoromrmsent

| Ry et

> st ramesirs

5 parom Stk enaming

g xa———
P S——

P —

PR

Iniroduco ()t past
Crclon preanties

ol g

> Fatancoss
> Do nosps ek, ske)

2

I
i

oo i e

Protsroduain
Vit gereras



Australian

National
University

Side remarks Il: Big-step Semantics
« we have seen a small-step semantics

(E,s) — (E',s)
« alternatively, we could have looked at a big-step semantics
(B, s) 4 (E, s)
For example

(Br, 8) b (ni, s') (B, 8T) U (n2, s")

(n,s)4(n,s) (Er + Ea, 5) U (n, s (n = n1+n2)

« no major difference for sequential programs

« small-step much better for modelling concurrency and proving type
safety



	Recursion

