Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Aug 22, 2023



Australian
National

University

Section 11

(Imperative) Objects
Case Study



Motivation

e use our language with subtyping, records and references to model
key keatures of OO programming

« encode/approximate concepts into our language

» OO concepts

» multiple representations (object carry their methods)
(in contrast to abstract data types (ADTs)

> encapsulation

» Subtyping
interface is the set of names and types of its operations

» inheritance share common parts (class and subclasses)
some languages use delegations (e.g. C*), which combine classes and
objects

> open recursion (self or this)



Australian
National

University

(Simple) Objects

data structure encapsulating some internal state
e access via methods

internal state typically a number of mutable instance variables (or
fields)

attention lies on building, rather than usage



Australian
National

University

Reminder

Scope Restriction
E:=...|letvalz:T =EFE,; in E>; end

* zx is a binder for E,
e can be seen as syntactic sugar:

letvalz: T=FE,inEsend= (fnz: T = E) By



Australian
National

University

Objects — Example
A Counter Object
let val ¢ : {get :unit — int, inc:unit — unit} =
letval = :intref =refOin
{get = (fn y : unit = lz),
inc=(fny:unit=z:=lx+1)}
end

(#inc ¢)() ; (#get ¢)()

end

Counter = {get:unit — int, inc:unit — unit}



Australian
National

University

Objects — Example

Subtyping |
let val ¢ : {get :unit — int, inc:unit — unit, reset :unit — unit} =

letval z :intref =ref 0 in
{get = (fn y : unit = lz),
inc=(fny:unit=z:=lx+1)}
reset = (fny : unit = z:=0)}

end

(##inc ¢)() ; (#get ¢)()

end

ResCounter = {get:unit — int, inc:unit — unit, reset : unit — unit}



Australian
National

University

Objects — Example

Subtyping Il

ResCounter <: Counter



Australian
National

University

Objects — Example

Object Generators

let val newCounter : unit — Counter =
(fny : unit =
letval z :intref =ref 0 in
{get = (fn y : unit = z),
inc=(fny:unit=z:=lx+1)}
end)

(#inc (newCounter()))()
end

newRCounter defined in similar fashion



Australian
National

University

Simple Classes

« pull out common features

e ignore complex features
such as visibility annotations, static fields and methods, friend
classes ...

» most primitive form, a class is a data structure that can
— be instantiated to yields a fresh object, or — extended to yield
another class



Australian
National

University

Reusing Method Code

Counter = {get : unit — int, inc: unit — unit}
CounterRep = {p:int ref}



Australian
National

University

(Simple) Classes

let val CounterClass : CounterRep — Counter =
(fn z : CounterRep =
{get = (fn y : unit = 1(#p z)),
inc = (fny:unit= (#pz) =l (#pz)+1)})

let val newCounter : unit — Counter =
(fny : unit =
let val = : CounterRep = {p =ref 0} in

CounterClass

end)



Australian
National

University

IMP vs. Java

class Counter
{ protected int p;
Counter() { this.p=0; }
int get () { return this.p; }
void inc () { this.p++ ; }



(Simple) Classes

(fn ResCounterClass : CounterRep — ResCounter =
(fn z : CounterRep =
let val super : Counter = CounterClass z in
{get = #get super,
inc = #inc super,
reset = (fny: unit = (#p z) :=0)}
end))

CounterRep = {p:int ref}
Counter = {get :unit — int, inc: unit — unit}
ResCounter = {get : unit — int, inc: unit — unit, reset : unit — unit}



Australian
National

University

IMP vs. Java

class ResetCounter
extends Counter
{ wvoid reset () {this.p=0;}
}s



Australian
National

University

(Simple) Classes

BuCounter = {get : unit — int, inc: unit — unit,
reset : unit — unit, backup : unit — unit}
BuCounterRep = {p:int ref, b:int ref}

let val BuCounterClass : BuCounterRep — BuCounter =
(fn z : BuCounterRep =
let val super : ResCounter = ResCounterClass z in
{get = #get super, inc = #inc super,
reset = (fny:unit= (#pz) .= (#bx))}
backup = (fn y : unit = (#b z) :=(#p z))}
end)



	Subtyping

