
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Sep 19, 2023

1

Section 14

Semantic Equivalence

2

Operational Semantics (Reminder)

• describe how to evaluate programs
• a valid program is interpreted as sequences of steps
• small-step semantics

▶ individual steps of a computation
▶ more rules (compared to big-step)
▶ allows to reason about non-terminating programs, concurrency, . . .

• big-step semantics
▶ overall results of the executions

‘divide-and-conquer manner’
▶ can be seen as relations
▶ fewer rules, simpler proofs
▶ no non-terminating behaviour

• allow non-determinism

3

Motivation

When are two programs considered the ‘same’

• compiler construction
• program optimisation
• refinement
• . . .

CakeML

4

Equivalence: Intuition I

l := !l + 2
?≃ l := !l + (1 + 1)

?≃ l := !l + 1 ; l := !l + 1

• are these expressions the same
• in what sense

▶ different abstract syntax trees
▶ different reduction sequences

• in any (sequential) program one could replace one by the other
without affecting the result

Note: mathematicians often take these equivalences for granted

5

Equivalence: Intuition II
l := 0 ; 4

?≃ l := 1 ; 3 + !l

• produce same result (for all stores)
• cannot be replaced in an arbitrary context C

For example, let C[] = + !l

C[l := 0 ; 4] = (l := 0 ; 4) + !l
̸≃

C[l := 1 ; 3 + !l] = (l := 1 ; 3 + !l) + !l

On the other hand (l := !l + 2) ≃ (l := !l + 1 ; l := !l + 1)

6

Equivalence: Intuition III

From particular expressions to general laws

• E1 ; (E2 ; E3)
?≃ (E1 ; E2) ; E3

• (if E1 then E2 else E3) ; E
?≃ if E1 then E2 ; E else E3 ; E

• E ; (if E1 then E2 else E3)
?≃ if E1 then E ; E2 else E ; E3

• E ; (if E1 then E2 else E3)
?≃ if E ; E1 then E2 else E3

7

Exercise

let val x : int ref = ref 0 in (fn y : int ⇒ (x := !x + y) ; !x) end

?≃

let val x : int ref = ref 0 in (fn y : int ⇒ (x := !x− y) ; (0− !x)) end

8

Exercise II

Extend our language with location equality

op := . . . | =

(op =)
Γ ⊢ E1 :T ref Γ ⊢ E2 :T ref

Γ ⊢ E1 = E2 :bool

(op=1) ⟨l = l′ , s⟩ −→ ⟨b , s⟩ if b = (l = l′)

(op=2) . . .

9

Exercise II

f
?≃ g

for

f = let val x : int ref = ref 0 in
let val y : int ref = ref 0 in
(fn z : int ref ⇒ if z = x then y else x)

end end

and

g = let val x : int ref = ref 0 in
let val y : int ref = ref 0 in
(fn z : int ref ⇒ if z = y then y else x)

end end

10

Exercise II (cont’d)

f
?≃ g NO

Consider C[] = t with

t = (fn h : (int ref → int ref) ⇒
let val z : int ref = ref 0 in h (h z) = h z end)

⟨t f , s⟩ −→∗ ?

⟨t g , s⟩ −→∗ ?

11

A ‘good’ notion of semantic equivalence

We might
• understand what a program is
• prove that some particular expressions to be equivalent

(e.g. efficient algorithm vs. clear specification)
• prove the soundness of general laws for equational reasoning about

programs
• prove some compiler optimisations are sound (see CakeML or

CertiCos)
• understand the differences between languages

12

What does ‘good’ mean?

1. programs that result in observably-different values (for some store)
must not be equivalent

(∃s, s1, s2, v1, v2.
⟨E1 , s⟩ −→∗ ⟨v1 , s1⟩ ∧
⟨E2 , s⟩ −→∗ ⟨v2 , s2⟩ ∧
v1 ̸= v2)

⇒ E1 ̸≃ E2

2. programs that terminate must not be equivalent to programs that do
not terminate

13

What does ‘good’ mean?

3. ≃ must be an equivalence relation, i.e.
reflexivity E ≃ E
symmetry E1 ≃ E2 ⇒ E2 ≃ E1

transitivity E1 ≃ E2 ∧ E2 ≃ E3 ⇒ E1 ≃ E3

4. ≃ must be a congruence, i.e,
if E1 ≃ E2 then for any context C we must have C[E1] ≃ C[E2]

(for example, (E1 ≃ E2) ⇒ (E1 ; E ≃ E2 ; E))

5. ≃ should relate as many programs as possible

– an equivalence relation that is a congruence is sometimes called congruence relation
– this semantic equivalence, is called observable operational or contextual equivalence
– congruence proofs are often tedious, and incredible hard when it comes to recursion

14

Semantic Equivalence for (simple) Typed IMP

Definition
E1 ≃T

Γ E2 iff for all stores s with dom(Γ) ⊆ dom(s) we have

Γ ⊢ E1 :T and Γ ⊢ E2 :T ,

and either
(i) ⟨E1 , s⟩ −→ω and ⟨E2 , s⟩ −→ω, or
(ii) for some v, s′ we have ⟨E1 , s⟩ −→∗ ⟨v , s′⟩ and ⟨E2 , s⟩ −→∗ ⟨v , s′⟩.

−→ω : infinite sequence
−→∗: finite sequence (reflexive transitive closure)

15

Justification

Part (ii) requires same value v and same store s′. If a program generates
different stores, we can distinguish them using contexts:

• If T = unit then C[] = ; !l

• If T = bool then C[] = if then !l else !l

• If T = int then C[] = (l1 := ; !l)

16

Equivalence Relation

Theorem
The relation ≃T

Γ is an equivalence relation.

Proof.
trivial

17

Congruence for (simple) Typed IMP
contexts are:

C[] ::= op E2 | E1 op |
if then E2 else E3 |
if E1 then else E3 |
if E1 then E2 else |
l := |
; E2 | E1 ;

while do E2 | while E1 do

Definition
The relation ≃T

Γ has the congruence property if, for all E1 and E2,
whenever E1 ≃T

Γ E2 we have for all C and T ′, if Γ ⊢ C[E1] :T
′ and

Γ ⊢ C[E2] :T
′ then

C[E1] ≃T ′

Γ C[E2]

18

Congruence Property
Theorem (Congruence for (simple) typed IMP)
The relation ≃T

Γ has the congruence property.

Proof.
By case distinction, considering all contexts C.

For each context C (and arbitrary expression E and store s) consider the
possible reduction sequence

⟨C[E] , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

and deduce the behaviour of E:

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ . . .

Use E ≃T
Γ E′ find a similar reduction sequence of E′ and use the

reduction rules to construct a sequence of C[E′].

19

Proof of Congruence Property

Case C = (l :=)

Suppose E ≃T
Γ E′, Γ ⊢ l := E :T ′ and Γ ⊢ l := E′ :T ′.

By examination of the typing rule, we have T = int and T ′ = unit.
To show (l := E) ≃T ′

Γ (l := E′) we have to show that for all stores s if
dom(Γ) ⊆ dom(s) then

• Γ ⊢ l := E :T ′, (obvious)
• Γ ⊢ l := E′ :T ′,(obvious)
• and either

(i) ⟨l := E , s⟩ −→ω and ⟨l := E′ , s⟩ −→ω

(ii) for some v, s′ we have ⟨l := E , s⟩ −→∗ ⟨v , s′⟩ and
⟨l := E′ , s⟩ −→∗ ⟨v , s′⟩.

20

Proof of Congruence Property

Subcase ⟨l := E , s⟩ −→ω

That is
⟨l := E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

All these must be instances of Rule (assign2), with

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ ⟨Ê2 , s2⟩ −→ . . .

and E1 = (l := Ê1), E2 = (l := Ê2), . . .
By E ≃T

Γ E′ there is an infinite reduction sequence of ⟨E′ , s⟩.
Using Rule (assign2) there is an infinite reduction sequence of
⟨l := E′ , s⟩.

We made the proof simple by staying in a deterministic language with
unique derivation trees.

21

Proof of Congruence Property

Subcase ¬(⟨l := E , s⟩ −→ω)

That is

⟨l := E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . . −→ ⟨Ek , sk⟩ ̸−→

All these must be instances of Rule (assign2), except the last step which
is an instance of (assign1)

⟨E , s⟩ −→ ⟨Ê1 , s1⟩ −→ ⟨Ê2 , s2⟩ −→ . . . −→ ⟨Êk−1 , sk−1⟩

and E1 = (l := Ê1), E2 = (l := Ê2), . . . , Ek−1 = (l := Êk−1) and
Êk−1 = n, Ek = skip and sk = sk−1 + {l 7→ n}, for some n.

22

Proof of Congruence Property

Subcase ¬(⟨l := E , s⟩ −→ω) (cont’d)

Hence there is some n and sk−1 such that

⟨E , s⟩ −→∗ ⟨n , sk−1⟩ and ⟨l := E , s⟩ −→ ⟨skip , sk−1 + {l 7→ n}⟩ .

By E ≃T
Γ E′ we have ⟨E′ , s⟩ −→∗ ⟨n , sk−1⟩.

Using Rules (assign2) and (assign1)

⟨l := E′ , s⟩ −→∗ ⟨l := n , sk−1⟩ → ⟨skip , sk−1 + {l 7→ n}⟩ .

23

Congruence Proofs

Congruence proofs are
• tedious
• long
• mostly boring (up to the point where they brake)
• error prone
• recursion is often the killer case

There are dozens of different semantic equivalences
(and each requires a proof)

24

Back to Examples

• 1 + 1 ≃int
Γ 2 for any Γ

• (l := 0 ; 4) ̸≃int
Γ (l := 1 ; 3 + !l) for any Γ

• (l := !l + 1) ; (l := !l + 1) ≃unit
Γ (l := !l + 2) for any Γ including

l : intref

25

General Laws

Conjecture
E1 ; (E2 ; E3) ≃T

Γ (E1 ; E2) ; E3

for any Γ, T , E1, E2 and E3 such that Γ ⊢ E1 :unit, Γ ⊢ E2 :unit and
Γ ⊢ E3 :T .

Conjecture
((if E1 then E2 else E3) ; E) ≃T

Γ (if E1 then E2 ; E else E3 ; E)
for any Γ, T , E, E1, E2 and E3 such that Γ ⊢ E1 :bool, Γ ⊢ E2 :unit,
Γ ⊢ E3 :unit, and Γ ⊢ E :T .

Conjecture
(E ; (if E1 then E2 else E3)) ̸≃T

Γ (if E1 then E ; E2 else E ; E3)

26

General Laws

Suppose Γ ⊢ E1 :unit and Γ ⊢ E2 :unit.
When is E1 ; E2 ≃unit

Γ E2 ; E1?

27

A Philosophical Question
What is a typed expression Γ ⊢ E :T?

for example l : intref ⊢ if !l ≥ 0 then skip else (skip ; l := 0) : unit.

1. a list of tokens (after parsing) [IF, DEREF, LOC "l", GTEQ, ...]

2. an abstract syntax tree
3. the function taking store s to the reduction sequence

⟨E , s⟩ −→ ⟨E1 , s1⟩ −→ ⟨E2 , s2⟩ −→ . . .

4. the equivalence class {E′ | E ≃T
Γ E′}

5. the partial function [[E]]Γ that takes any store s with
dom(s) = dom(Γ) and either is undefined if ⟨E , s⟩ −→ω, or is
⟨v , s′⟩, if ⟨E , s⟩ −→∗ ⟨v , s′⟩

28

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?
	Semantic Equivalence
	Denotational Semantics

