Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Sep 19, 2023

Australian
National

University

Section 14

Semantic Equivalence

Operational Semantics (Reminder)

describe how to evaluate programs
 avalid program is interpreted as sequences of steps
small-step semantics

» individual steps of a computation

» more rules (compared to big-step)

> allows to reason about non-terminating programs, concurrency, . ..
big-step semantics

» overall results of the executions

‘divide-and-conquer manner’

» can be seen as relations

» fewer rules, simpler proofs

» no non-terminating behaviour

allow non-determinism

Australian

National
g University

Motivation

When are two programs considered the ‘same’

« compiler construction
e program optimisation
« refinement

Australian
National

University

Equivalence: Intuition |

li=1+2 2 =U+(1+1) & l=U+1;0=14+1

« are these expressions the same
« in what sense

» different abstract syntax trees
» different reduction sequences

« in any (sequential) program one could replace one by the other
without affecting the result

Note: mathematicians often take these equivalences for granted

Australian
National

University

Equivalence: Intuition Il
1:=0:4 z) [:=1:3+1

« produce same result (for all stores)
 cannot be replaced in an arbitrary context C

For example, let C[.] = _+ U

Cll:=1;3+Ul=(1:=1;34+ 1)+

Ontheotherhand ({:=1+2)~(l:=U+1;l:=1+1)

Australian
National

University

Equivalence: Intuition IlI

From particular expressions to general laws

. E1;(E2;E3)';(E1;Ez);E3

- (if £, then E, else E) : E ~ if E, then B, ; E else E; ; E
« E; (if E; then E, else E;) ~ if £, then E ; E, else E ; E;
. E; (if E, then E, else E;) < if E ; E; then E, else E;

Australian
National

University

Exercise

letval z :intref=ref0in (fny:int= (z:=lz + y); lz) end
?

letval z :intref=ref0in (fny:int= (z:= 1z -y); (0— 'z)) end

Australian
National

University

Exercise |l

Extend our language with location equality

op:= ...|=

' Eq:T ref ' Ey: T ref
I' - E1 = E5:bool

(op =)

op=1) (I=10,s)—(b,s) ifb=@1=10)

(op=2)

Australian
National

University

Exercise Il
?
f =g
for
f=letval x :intref=ref0in

letval y : intref =ref 0 in

(fn z :int ref = if z = = then y else z)

end end
and

g=Iletval z:intref =ref0in
letval y : intref =ref 0 in
(fn z :int ref = if z = y then y else z)
end end

Australian
National

University

Exercise Il (cont'd)

Consider C[_] = ¢_ with

t= (fn h: (int ref — int ref) =
letval 2 :intref=refOin h (h 2) = h z end)

(tf,s)y—"7
(tg,s)—" 7

Australian
National

University

A ‘good’ notion of semantic equivalence

We might

understand what a program is

prove that some particular expressions to be equivalent
(e.g. efficient algorithm vs. clear specification)

prove the soundness of general laws for equational reasoning about
programs

prove some compiler optimisations are sound (see CakeML or
CertiCos)

understand the differences between languages

Australian
National

University

What does ‘good’ mean?

1. programs that result in observably-different values (for some store)
must not be equivalent

(3s, s1, 82, v1, V2.
(B, s) —" (v1, 81) A
(Ba, sy —" (va, s2) A
vy # vg)

= F # Es

2. programs that terminate must not be equivalent to programs that do
not terminate

Australian
National

= University

What does ‘good’ mean?

3. ~ must be an equivalence relation, i.e.

reflexivity FE~F
Symmetry F1~FEy= FEyy~ F;
transitivity FE; ~ FEx AFEy; ~ F35 = E; ~ E3

4. ~ must be a congruence, i.e,
if F1 ~ E5 then for any context C' we must have C[E1] ~ C[E:]
(for example, (E1 ~ E>) = (E1 ; E ~ Es> ; E))

5. ~ should relate as many programs as possible

— an equivalence relation that is a congruence is sometimes called congruence relation
— this semantic equivalence, is called observable operational or contextual equivalence
— congruence proofs are often tedious, and incredible hard when it comes to recursion

Australian

National
University

Semantic Equivalence for (simple) Typed IMP

Definition
E, ~L E, iff for all stores s with dom(I") C dom(s) we have

THE:T and TFEy:T,

and either
(i) (E1,s) —*“and (Ey, s) —*, 0r
(i) for some v, s’ we have (E;, s) —* (v, §') and (Ez, s) —* (v, §).

—“: infinite sequence
—*: finite sequence (reflexive transitive closure)

Australian
National

University

Justification

Part (ii) requires same value v and same store s’. If a program generates
different stores, we can distinguish them using contexts:

e If T =unitthenC[.]=_; !

e If T'=bool then C[] = |f then !l else !

o If T =intthen C[] = (I ;1)

Australian
National

University

Equivalence Relation

Theorem

The relation ~L is an equivalence relation.

Proof.
trivial

O

Australian

National
University

Congruence for (simple) Typed IMP

contexts are:

C[] w=-op Es| Eyop _|

if _then E, else Ej |

if £; then _else Ej |

if £, then E; else _ |

l:=_|

-y Ea [Ers

while _do E; | while E; do _
Definition
The relation ~L has the congruence property if, for all E, and E,
whenever E; ~L E, we have forall C and 7", if ' - C[E;]: T’ and
I' - C[E2]:T' then

ClE)] ~f ClEs

Australian
National

University

Congruence Property

Theorem (Congruence for (simple) typed IMP)
The relation ~I. has the congruence property.

Proof.
By case distinction, considering all contexts C. O

For each context C' (and arbitrary expression E and store s) consider the
possible reduction sequence

(CIE], s) —> (Er, s1) — (B2, 82) — ...
and deduce the behaviour of E:
(B, s) — (B, s1) — ...

Use E ~I E’ find a similar reduction sequence of E’ and use the
reduction rules to construct a sequence of C[E'].

Australian
National

University

Proof of Congruence Property

CaseC' = (I:=)

Suppose E ~L E/,T+il:=FE:T"and T+ [:=E':T".
By examination of the typing rule, we have T = int and 7" = unit.
To show (I := E) ~I" (1 := E') we have to show that for all stores s if
dom(T") C dom(s) then
e T'H1l:=FE:T' (obvious)
e I'1:=E": T, (obvious)
 and either
(i) {:==E,s)—“and (l:=E', s) —*
(iiy for some v, s’ we have (I := E, s) —* (v, s’) and
(l:=E",s) —"* (v,).

20

Australian
National

University

Proof of Congruence Property

Subcase (| := F, s) —

That is
<l;:E7s>—><E1,81>—><E2a52>—>"'

All these must be instances of Rule (assign2), with
<E, S> — <E1, 51> — <E2, 52> — ...

and By = (1:= E)), By = (1:= Ey), ...

By E ~I E’ there is an infinite reduction sequence of (E’, s).
Using Rule (assign2) there is an infinite reduction sequence of
(l:=F', s).

We made the proof simple by staying in a deterministic language with
unique derivation trees.

21

Australian
National

University

Proof of Congruence Property

Subcase —((I := E, s) —¥)
That is

(l:=E,s) — (F1, s1) — (Ea, s2) — ... — (Ek, sg) /—
All these must be instances of Rule (assign2), except the last step which
is an instance of (assign1)
<E, $> — <E1, S1> — <E2, $2> —_— ... — <Ek_1, Sk_1>

qnd FE = (l = E1>, = (l = Eg), B = (l = EA‘k,]_) and
Ey_1 =n, E, = skip and s, = s;_1 + {l — n}, for some n.

22

Australian

National
University

Proof of Congruence Property

Subcase ~(({l := F, s) —*) (cont’d)

Hence there is some n and s;_; such that
(E,s) —" (n, sg—1) and (l:=F, s) — (skip, sp_1 +{{— n}).

By E ~L E’' we have (E’, s) —* (n, si_1).
Using Rules (assign2) and (assign1)

(l:=FE",s) —*(l:=n, sp_1) — (skip, sx_1 + {l — n}).

23

Australian
National

University

Congruence Proofs

Congruence proofs are
« tedious
* long
« mostly boring (up to the point where they brake)
e error prone
« recursion is often the killer case

There are dozens of different semantic equivalences
(and each requires a proof)

24

Australian
National

University

Back to Examples

e 14+ 1~M2forany T
o (I:=0;4)¢" (1:=1;3+ W) foranyT

o (L:=1+1);(I:=1+1) (] := 1] + 2) for any T including
[:intref

25

Australian
National

University

General Laws

Conjecture

Ey; (Ey; Es) > (Ey; Ey) ; Es

forany T, T, £y, E5 and E5 such thatT' - FEy : unit, T' = E5 : unit and
C+-Es:T.

Conjecture

((if E; then E; else E;) ; E) ~L (if E; then E» ; E else Es ; E)
forany ', T, E, E1, F> and E5 such thatT' - E; : bool, T - Es : unit,
' Es:unit,andT - E:T.

Conjecture
(E ; (if B, then E; else E3)) 2L (if £, then E ; E> else E ; E3)

26

Australian
National

University

General Laws

Suppose I' - E; :unitand I' = E5 @ unit.
Whenis E; ; E; ~ By 5 B, ?

27

Australian
National

University

A Philosophical Question
What is a typed expressionI' - E:T'?

for example [: intref - if 1l > 0 then skip else (skKip ; ! := 0) : unit.

1. alist of tokens (after parsing) [IF, DEREF, LOC "1", GTEQ, ...]
2. an abstract syntax tree
3. the function taking store s to the reduction sequence

<E35>*)<E1751>‘><E2,82>—)...

4. the equivalence class {E’ | E ~L E'}

5. the partial function [E]r that takes any store s with
dom(s) = dom(T') and either is undefined if (E', s) —, oris
(v,), if(E,s) —* (v, s)

28

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?
	Semantic Equivalence
	Denotational Semantics

