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Section 15

Denotational Semantics



Operational Semantics (Reminder)

describe how to evaluate programs
 avalid program is interpreted as sequences of steps
small-step semantics

» individual steps of a computation

» more rules (compared to big-step)

> allows to reason about non-terminating programs, concurrency, . ..
big-step semantics

» overall results of the executions

‘divide-and-conquer manner’

» can be seen as relations

» fewer rules, simpler proofs

» no non-terminating behaviour

allow non-determinism
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Operational vs Denotational

An operational semantics is like an interpreter

(E,s) — (E', s and (E,s) | (v, s)

A denotational semantics is like a compiler.
A denotational semantics defines what a program means as a (partial)
function:

C[com] € Store — Store

Allows the use of ‘standard’ mathematics
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Big Picture

op. sem denot. sem

[z

NForm +——  E/ ~] ——— Semantics
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IMP — Syntax (aexp and bexp)

Booleans beB

Integers (Values) neZ

Locations lel ={ll,l1,ls,...}
Operations aop ==+

Expressions
aexp ::=n |!l | aexp aop aexp

bexp ::= b | bexp A bexp | aexp > aexp
com ::=1[ := aexp |
if bexp then com else com |
skip | com ; com |
while bexp do com
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Semantic Domains

C[c] € Store — Store C[]-: com — Store — Store
Ala] € Store — int A[]-: aexp — Store — int
B[b] € Store — bool B[]- : bexp — Store — bool

Convention: (Partial) Functions are defined point-wise.
C[.] is the denotation function.
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Partial Functions

Remember that partial functions can be represented as sets.
 C[c] can be described as a set

» the equation C[c] = S,
for a set S gives the definition for command ¢

e C[c](s) is a store
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Denotational Semantics for IMP

Arithmetic Expressions

Aln] = {(s,n)}
ANl = {(s,5(1)) | 1 € dom(s)}

Alar + as] = {(s,n) | (s,n1) € AJa1] A (s,n2) € AJas] An=n1 + na}

n is syntactical, n semantical value.



Denotational Semantics for IMP

Boolean Expressions

Bltrue] = {(s, true)}
Bfalse] = {(s,false)}
B[by A ba] = {(s,b) | (s,b) € B[b1] A (5,0") € B[b2] A (b=b"Ab")}

Blai > az] = {(s,true) | (s,n1) € Afa1] A (s,n2) € AJaz] An1 > na} U
{(s,false) | (s,n1) € Ala1] A (s,n2) € AJaz] Any < na}



Denotational Semantics for IMP
Arithmetic and Boolean Expressions in Function-Style

Aln](s)
AL (s) = s(1) i1 € dom(s)
Alar + a2](s) = Ala1](s) + Afaz](s)

n

B[true](s) = true
B[false](s) = false
Blax A az](s) = B[bi](s) A B[b2](s)

true  if AJai](s) > Afaz](s)
Blby = a2](s) = {false IothGE[rvt/]i]s(e i



Denotational Semantics for IMP

Commands

C[skip] = {(s,5)}
Cll :=a] ={(s,s +{l—=n}) | (s,n) € Ala]}
Cler s ea] = {(s,8") | 35 (s,8") € Clea] A (s, 8") € Clea] }

C[if b then ¢; else co] = {(s,s") | (s, true) € B[b] A (s,s") € C[er]} U
{(s,8") | (s,false) € B[b] A (s,s") € Cle2]}



Denotational Semantics for IMP
Commands in Function-Style

C[skip](s) = s
Cll:=a](s) =s+ {l— (A]a](s))}

Cler ; e2] = Clea] o Clleq]
(or Clex ; e2](s) = Cle2] (Clea](s)) )

C[if b then ¢, else ;] (s) = {%ng; :]: g%g; z}::lfe

denotational semantics is often compositional
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Denotational Semantics for IMP

Commands
(cont'd)

Clwhile bdo c] = {(s,s) | (s,false) € B[b]} U
{(s,8") | (s,true) € B[b] A
3s”. (s,8") € C[c] A (5", 8") € C[while b do ]}

Clwhile b do ¢|(s) = C[if b then ¢ ; (while b do c) else skip](s)

_ {C[[While bdo c](C[c](s)) if B[b](s) = true
| C[skip](s) if B[b](s) = false

Problem: this is not a function definition;
it is a recursive equation, we require its solution
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Recursive Equations — Example
0 ifx=0
flw) = {f(:r —1)+2z—1 otherwise

Question: What function(s) satisfy this equation?
Answer: f(z) = x?
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Recursive Equations — Example I

Question: What function(s) satisfy this equation?
Answer: none
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Recursive Equations — Example I

Question: What function(s) satisfy this equation?
Answer: multiple
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Solving Recursive Equations
Build a solution by approximation (interpret functions as sets)

fo=10
{0 ifz=0
fi= {fo(w —1)+2z—1 otherwise
_fo ifz=0
f2= filx —1)+2x —1 otherwise
= {(0,0), (1, 1)}

fy = 0 ifz=0
37 V\fole—1)+22 —1 otherwise

={(0,0),(1,1),(2,4)}
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Solving Recursive Equations

Model this process as higher-order function F' that takes the
approximation f; as input and returns the next approximation.

F:(IN—=N) - (N—-N)

where

0 ifz=0
(F()(x) = {f(x —1)+2x—1 otherwise

Iterate till a fixed point is reached (f = F(f))
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Fixed Point

Definition
Given a function F: A — A, a € Ais a fixed point of F if F(a) = a.
Notation: Write « = fix (F') to indicate that a is a fixed point of F.

Idea: Compute fixed points iteratively, starting from the completely
undefined function. The fixed point is the limit of this process:

f=fix(F)
=foUfiufoU...
=QUF@)UFF@®)U...

~UJro

i>0

20
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Denotational Semantics for while

C[while b do ¢] = fix (F)

where

F(f) ={(s,s) | (s,false) € B[b]} U
{(s,8) | (s,true) € B[b] A
3s". (s,s") e Clc] A (8", ") € f}

21
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Denotational Semantics — Example
Clwhile!l > 0do m =l +!m ;= + (-1)]

s+{l——-1,m—1+s(m)}
s+{l——-1,m—3+s(m)} ifli=2
undefined otherwise

=0
ifll <0
ndefined otherwise
ifll <0
fo= s+{l'—>—1 m o s(m)} ifll=0
undefined otherwise
ifll <0
s+{lb—>—1} ifll =0
f3=
8 s+ {l——1,m— 1+s(m)} ifll=1
undefined otherwise
s ifll <0
s+ {l— —1} ifll =0
fa= ifll=1

22
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Fixed Points

« Why does (fix F') have a solution?

» What if there are several solutions?
(which should we take)

23



Australian

National
University

Fixed Point Theory

Definition (sub preserving)
A function F' preserves suprema if for every chain X; C X, C ...

F(UXz) :UF(Xz)

Lemma
Every suprema-preserving function F' is monotone increasing.

X CY = F(X)CF(Y)

(works for arbitrary partially ordered sets)

24



Australian
National

University

Kleene’s fixed point theorem

Theorem
Let F be a suprema-preserving function. The least fixed point of F' exists

and is equal to
U F(0)

i>0

25
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C[while b do (]

C[while b do ¢](s)
= fix (F)
{C[[C]]k(s) if & > 0 such that B[b](C[c]*(s)) = false

and B[b](C[e]i(s)) = true forall 0 <i < k
undefined if B[b](C[c]i(s)) = true for alli > 0

This may be what you would have expected, but now it is grounded on
well-known mathematics

26
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Exercises

» Show that skip ; ¢ and ¢ ; skip are equivalent.

« What does equivalent mean in the context of denotational
semantics?

e Show that (¢1 ; ¢2) ; 3 is equivalent to ¢; ; (co ; ¢3).

27
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