Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Oct 09, 2023

Australian
National

University

Section 15

Denotational Semantics

Operational Semantics (Reminder)

describe how to evaluate programs
 avalid program is interpreted as sequences of steps
small-step semantics

» individual steps of a computation

» more rules (compared to big-step)

> allows to reason about non-terminating programs, concurrency, . ..
big-step semantics

» overall results of the executions

‘divide-and-conquer manner’

» can be seen as relations

» fewer rules, simpler proofs

» no non-terminating behaviour

allow non-determinism

Australian
National

University

Operational vs Denotational

An operational semantics is like an interpreter

(E,s) — (E', s and (E,s) | (v, s)

A denotational semantics is like a compiler.
A denotational semantics defines what a program means as a (partial)
function:

C[com] € Store — Store

Allows the use of ‘standard’ mathematics

Australian

National
University

Big Picture

op. sem denot. sem

[z

NForm +—— E/ ~] ——— Semantics

Australian
National

University

IMP — Syntax (aexp and bexp)

Booleans beB

Integers (Values) neZ

Locations lel ={ll,l1,ls,...}
Operations aop ==+

Expressions
aexp ::=n |!l | aexp aop aexp

bexp ::= b | bexp A bexp | aexp > aexp
com ::=1[:= aexp |
if bexp then com else com |
skip | com ; com |
while bexp do com

Australian
National

University

Semantic Domains

C[c] € Store — Store C[]-: com — Store — Store
Ala] € Store — int A[]-: aexp — Store — int
B[b] € Store — bool B[]- : bexp — Store — bool

Convention: (Partial) Functions are defined point-wise.
C[.] is the denotation function.

Australian
National

University

Partial Functions

Remember that partial functions can be represented as sets.
 C[c] can be described as a set

» the equation C[c] = S,
for a set S gives the definition for command ¢

e C[c](s) is a store

Australian
National

University

Denotational Semantics for IMP

Arithmetic Expressions

Aln] = {(s,n)}
ANl = {(s,5(1)) | 1 € dom(s)}

Alar + as] = {(s,n) | (s,n1) € AJa1] A (s,n2) € AJas] An=n1 + na}

n is syntactical, n semantical value.

Denotational Semantics for IMP

Boolean Expressions

Bltrue] = {(s, true)}
Bfalse] = {(s,false)}
B[by A ba] = {(s,b) | (s,b) € B[b1] A (5,0") € B[b2] A (b=b"Ab")}

Blai > az] = {(s,true) | (s,n1) € Afa1] A (s,n2) € AJaz] An1 > na} U
{(s,false) | (s,n1) € Ala1] A (s,n2) € AJaz] Any < na}

Denotational Semantics for IMP
Arithmetic and Boolean Expressions in Function-Style

Aln](s)
AL (s) = s(1) i1 € dom(s)
Alar + a2](s) = Ala1](s) + Afaz](s)

n

B[true](s) = true
B[false](s) = false
Blax A az](s) = B[bi](s) A B[b2](s)

true if AJai](s) > Afaz](s)
Blby = a2](s) = {false IothGE[rvt/]i]s(e i

Denotational Semantics for IMP

Commands

C[skip] = {(s,5)}
Cll :=a] ={(s,s +{l—=n}) | (s,n) € Ala]}
Cler s ea] = {(s,8") | 35 (s,8") € Clea] A (s, 8") € Clea] }

C[if b then ¢; else co] = {(s,s") | (s, true) € B[b] A (s,s") € C[er]} U
{(s,8") | (s,false) € B[b] A (s,s") € Cle2]}

Denotational Semantics for IMP
Commands in Function-Style

C[skip](s) = s
Cll:=a](s) =s+ {l— (A]a](s))}

Cler ; e2] = Clea] o Clleq]
(or Clex ; e2](s) = Cle2] (Clea](s)))

C[if b then ¢, else ;] (s) = {%ng; :]: g%g; z}::lfe

denotational semantics is often compositional

Australian

National
u

Denotational Semantics for IMP

Commands
(cont'd)

Clwhile bdo c] = {(s,s) | (s,false) € B[b]} U
{(s,8") | (s,true) € B[b] A
3s”. (s,8") € C[c] A (5", 8") € C[while b do]}

Clwhile b do ¢|(s) = C[if b then ¢ ; (while b do c) else skip](s)

_ {C[[While bdo c](C[c](s)) if B[b](s) = true
| C[skip](s) if B[b](s) = false

Problem: this is not a function definition;
it is a recursive equation, we require its solution

Australian
National

University

Recursive Equations — Example
0 ifx=0
flw) = {f(:r —1)+2z—1 otherwise

Question: What function(s) satisfy this equation?
Answer: f(z) = x?

Australian
National

University

Recursive Equations — Example I

Question: What function(s) satisfy this equation?
Answer: none

Australian
National

University

Recursive Equations — Example I

Question: What function(s) satisfy this equation?
Answer: multiple

Australian

National
University

Solving Recursive Equations
Build a solution by approximation (interpret functions as sets)

fo=10
{0 ifz=0
fi= {fo(w —1)+2z—1 otherwise
_fo ifz=0
f2= filx —1)+2x —1 otherwise
= {(0,0), (1, 1)}

fy = 0 ifz=0
37 V\fole—1)+22 —1 otherwise

={(0,0),(1,1),(2,4)}

Australian
National

University

Solving Recursive Equations

Model this process as higher-order function F' that takes the
approximation f; as input and returns the next approximation.

F:(IN—=N) - (N—-N)

where

0 ifz=0
(F()(x) = {f(x —1)+2x—1 otherwise

Iterate till a fixed point is reached (f = F(f))

Australian

National
University

Fixed Point

Definition
Given a function F: A — A, a € Ais a fixed point of F if F(a) = a.
Notation: Write « = fix (F') to indicate that a is a fixed point of F.

Idea: Compute fixed points iteratively, starting from the completely
undefined function. The fixed point is the limit of this process:

f=fix(F)
=foUfiufoU...
=QUF@)UFF@®)U...

~UJro

i>0

20

Australian
National

University

Denotational Semantics for while

C[while b do ¢] = fix (F)

where

F(f) ={(s,s) | (s,false) € B[b]} U
{(s,8) | (s,true) € B[b] A
3s". (s,s") e Clc] A (8", ") € f}

21

Australian
National

University

Denotational Semantics — Example
Clwhile!l > 0do m =l +!m ;= + (-1)]

s+{l——-1,m—1+s(m)}
s+{l——-1,m—3+s(m)} ifli=2
undefined otherwise

=0
ifll <0
ndefined otherwise
ifll <0
fo= s+{l'—>—1 m o s(m)} ifll=0
undefined otherwise
ifll <0
s+{lb—>—1} ifll =0
f3=
8 s+ {l——1,m— 1+s(m)} ifll=1
undefined otherwise
s ifll <0
s+ {l— —1} ifll =0
fa= ifll=1

22

Australian
National

University

Fixed Points

« Why does (fix F') have a solution?

» What if there are several solutions?
(which should we take)

23

Australian

National
University

Fixed Point Theory

Definition (sub preserving)
A function F' preserves suprema if for every chain X; C X, C ...

F(UXz) :UF(Xz)

Lemma
Every suprema-preserving function F' is monotone increasing.

X CY = F(X)CF(Y)

(works for arbitrary partially ordered sets)

24

Australian
National

University

Kleene’s fixed point theorem

Theorem
Let F be a suprema-preserving function. The least fixed point of F' exists

and is equal to
U F(0)

i>0

25

Australian
National

University

C[while b do (]

C[while b do ¢](s)
= fix (F)
{C[[C]]k(s) if & > 0 such that B[b](C[c]*(s)) = false

and B[b](C[e]i(s)) = true forall 0 <i < k
undefined if B[b](C[c]i(s)) = true for alli > 0

This may be what you would have expected, but now it is grounded on
well-known mathematics

26

Australian
National

University

Exercises

» Show that skip ; ¢ and ¢ ; skip are equivalent.

« What does equivalent mean in the context of denotational
semantics?

e Show that (¢1 ; ¢2) ; 3 is equivalent to ¢; ; (co ; ¢3).

27

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?

	Semantic Equivalence
	Denotational Semantics
	Partial and Total Correctness
	Axiomatic Semantics
	Weakest Preconditions
	Concurrency
	The Process Algebra CCS
	Pure CCS

