

# COMP3610/6361 Principles of Programming Languages

Peter Höfner

Sep 27, 2023

1



## Section 16

### Partial and Total Correctness



### **Operational**

Meanings for program phrases defined in terms of the steps of computation they can take during program execution.

#### **Denotational**

Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

#### **Axiomatic**

Meanings for program phrases defined indirectly via the axioms and rules of some logic of program properties.



### **Operational**

- how to evaluate programs (interpreter)
- close connection to implementations

#### **Denotational**

Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

#### **Axiomatic**

Meanings for program phrases defined indirectly via the axioms and rules of some logic of program properties.

4



### **Operational**

- how to evaluate programs (interpreter)
- close connection to implementations

#### **Denotational**

- what programs calculate (compiler)
- simplifies equational reasoning (semantic equivalence)

#### **Axiomatic**

Meanings for program phrases defined indirectly via the axioms and rules of some logic of program properties.



### **Operational**

- how to evaluate programs (interpreter)
- close connection to implementations

#### **Denotational**

- what programs calculate (compiler)
- simplifies equational reasoning (semantic equivalence)

#### **Axiomatic**

- describes properties of programs
- allows reasoning about the correctness of programs



## **Assertions**

Axiomatic semantics describe properties of programs. Hence it requires

- a language for expressing properties
- proof rules to establish the validity of properties w.r.t. programs

#### **Examples**

- value of l is greater than 0
- value of l is even
- value of l is prime
- eventually the value of l will 0

• . .



# **Applications**

- proving correctness
- documentation
- test generation
- · symbolic execution
- bug finding
- · malware detection
- . . .



# **Assertion Languages**

- (English)
- first-order logic  $(\forall, \exists, \land, \neg, =, R(x), \dots)$
- temporal and modal logic  $(\Box, \diamond, \bigcirc, \textbf{Until}, \dots)$
- special-purpose logics (Alloy, Z3, ...)



### Assertions as Comments

assertions are (should) be used in code regularly

```
/* Precondition: 0 <= i < A.length */
/* Postcodition: returns A[i] */
public int get (int i) {
        return A[i];
}</pre>
```

- useful as documentation or run-time checks
- · no guarantee that they are correct
- sometimes not useful (e.g. /\*increment i\*/)

**aim:** make this rigorous by defining the semantics of a language using pre- and post-conditions



## Partial Correctness

$$\{P\}\ c\ \{Q\}$$

**Meaning:** if P holds before c, and c executes and terminates then Q holds afterwards

# Partial Correctness – Examples

```
• \{l=21\} l:=!l+!l \{l=42\}

• \{l=0 \land m=i\}

k:=0;

while !l \neq !m

do

k:=!k-2;

l:=!l+1

\{k=-i-i\}
```

Note: i is a ghost variable we do not use dereferencing in conditions

# Partial Correctness – Examples

The second example is a valid partial correctness statement.

#### Lemma

$$\forall s,s'. \quad k,l,m \in \textit{dom}(s) \land s(l) = 0 \land \\ \mathcal{C}\llbracket k := 0 \text{ ; while } !l \neq !m \text{ do } (k := !k-2 \text{ ; } l := !l+1) \rrbracket(s) = s' \\ \Longrightarrow s'(k) = -s(m) - s(m)$$



# Partial Correctness – Examples

Is the following partial correctness statement valid?

```
 \begin{array}{l} \bullet \ \{l = 0 \wedge m = i\} \\ k := 0 \ ; \\ \text{while} \ !l \neq !m \\ \text{do} \\ k := !k + !l \ ; \\ l := !l + 1 \\ \{k = i\} \end{array}
```



### **Total Correctness**

- partial correctness specifications do not ensure termination
- sometimes termination is needed

**Meaning:** if P holds, then c will terminate and Q holds afterwards



# Total Correctness – Example

```
 \begin{aligned} \bullet & & [l = 0 \land m = i \land \mathbf{i} \ge \mathbf{0}] \\ k := 0 \; ; \\ & & \textbf{while} \; !l \ne !m \\ & \textbf{do} \\ & & k := !k - 2 \; ; \\ & & l := !l + 1 \\ & [k = -i - i] \end{aligned}
```



### **Assertions**

What properties do we want to state in pre-conditions and post-conditions; so far

- locations (program variables)
- equality
- logical/ghost variables (e.g. i)
- comparison
- · we have not used 'pointers'

choice of assertion language influences the sort of properties we can specify

# Assertions – Syntax

```
Booleans
                 b \in \mathbb{B}
Integers (Values) n \in \mathbb{Z}
               l \in \mathbb{L} \qquad = \{l, l_0, l_1, l_2, \dots\}
Locations
Logical variables i \in \mathbf{LVar} = \{i, i_0, i_1, i_2, \dots\}
Operations
                        aop := +
Expressions
                        aexp_i ::= n \mid l \mid i \mid aexp_i \ aop \ aexp_i
                         assn ::= b \mid aexp_i \geq aexp_i \mid
                                     assn ∧ assn | assn ∨ assn |
                                     assn \Rightarrow assn \mid \neg assn \mid
                                     \forall i. assn | \exists i. assn
```

Note: bexpincluded in assn; assn not minimal



### Assertions – Satisfaction

when does a store s satisfy an assertion

· need interpretation for logical variables

$$I: \mathbf{LVar} o \mathbb{Z}$$

• denotation function  $\mathcal{A}_I\llbracket_-\rrbracket$  (similar to  $\mathcal{A}\llbracket_-\rrbracket$ 

$$\begin{split} \mathcal{A}_{I}[\![n]\!](s,I) &= n \\ \mathcal{A}_{I}[\![l]\!](s,I) &= s(l), \qquad l \in \mathsf{dom}(s) \\ \mathcal{A}_{I}[\![i]\!](s,I) &= I(i), \qquad i \in \mathsf{dom}(I) \\ \mathcal{A}_{I}[\![a_{1} + a_{2}]\!](s,I) &= \mathcal{A}_{I}[\![a_{1}]\!](s,I) + \mathcal{A}[\![a_{2}]\!](s,I) \end{split}$$

### **Assertion Satisfaction**

define satisfaction relation for assertions on a given state s

$$\begin{array}{lll} s \models_I \text{ true} \\ s \models_I a_1 \geq a_2 & \text{ if } \mathcal{A}_I \llbracket a_1 \rrbracket (s,I) \geq \mathcal{A}_I \llbracket a_2 \rrbracket (s,I) \\ s \models_I P_1 \wedge P_2 & \text{ if } s \models_I P_1 \text{ and } s \models_I P_2 \\ s \models_I P_1 \vee P_2 & \text{ if } s \models_I P_1 \text{ or } s \models_I P_2 \\ s \models_I P_1 \Rightarrow P_2 & \text{ if } s \not\models_I P_1 \text{ or } s \models_I P_2 \\ s \models_I \neg P & \text{ if } s \not\models_I P \\ s \models_I \forall i. P & \text{ if } \forall n \in \mathbb{Z}. \ s \models_{I+\{i\mapsto n\}} P \\ s \models_I \exists i. P & \text{ if } \exists n \in \mathbb{Z}. \ s \models_{I+\{i\mapsto n\}} P \end{array}$$

an assertion is  $\mathit{valid} \ (\models P)$  if it is valid in any store, under any interpretation

$$\forall s, I. \ s \models_I P$$



# Partial Correctness – Satisfiability

A partial correctness statement  $\{P\}$  c  $\{Q\}$  is *satisfied* in store s and under interpretation I ( $s \models_I \{P\}$  c  $\{Q\}$ ) if

$$\forall s'$$
. if  $s \models_I P$  and  $\mathcal{C}\llbracket c \rrbracket(s) = s'$  then  $s' \models_I Q$ .

# Partial Correctness - Validity

#### **Assertion validity**

An assertion P is  $\mathit{valid}$  ( $\mathit{holds}$ ) ( $\mathrel{\models} P$ ) if it is  $\mathit{valid}$  in any store under interpretation.

$$\models P :\iff \forall s, I. \ s \models_I P$$

### Partial correctness validity

A partial correctness statement  $\{P\}$  c  $\{Q\}$  is  $\mathit{valid}$  ( $\models$   $\{P\}$  c  $\{Q\}$ ) if it is valid in any store under interpretation.

$$\models \{P\} \ c \ \{Q\} \ :\iff \forall s, I. \ s \models_I \{P\} \ c \ \{Q\}$$

# **Proving Specifications**

how to proof the (partial) correctness of  $\{P\}$  c  $\{Q\}$ 

- show  $\forall s, I.s \models_I \{P\} \ c \{Q\}$
- $s \models_I \{P\} \ c \{Q\}$  requires denotational semantics C
- · we can do this manually, but ...
- we can derive inference rules and axioms (axiomatic semantics)
- allows derivation of correctness statements without reasoning about stores and interpretations