Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Sep 27, 2023

Australian
ational

Section 18

Weakest Preconditions

Australian
National

University

Generating Preconditions

{7}e{Q}

« many possible preconditions
» some are more useful than others

Australian
National

University

Weakest Liberal Preconditions

Intuition: the weakest liberal precondition for ¢ and @ is the weakest
assertion P such that {P} ¢ {Q} is valid

Definition (Weakest Liberal Precondition)
P is a weakest liberal precondition of ¢ and @ (wlp(c, Q)) if

Vs, I.s |Er P <= C[c](s) is undefined Vv C[c](s) =1 Q

Australian

Weakest Preconditions

=P
= Pla/l]
= wlp(cy, wlp(ca, P))
= (b = wlp(c1, P)) A
(mb = wlp(cz, P))
(b = wip(c, wip(while b do ¢, P))) A
(b= P)

= /\F’L(‘P)

Fy(P) = true
Fit1(P) = (=b = P) A (b = wlp(c, Fi(P)))
(Greatest fixed point)

wip(skip, P
wlp(l := a, P
wip((ey 5 o), P
wip(if b then ¢; else ¢y, P

//_/_/

wlp(while bdo ¢, P) =

where

Australian

National
University

Properties of Weakest Preconditions

Lemma (Correctness of wip)
Ve € com, () € assn.

= {wip(c,Q)} ¢ {Q} and
VR € assn. = {R} ¢ {Q} implies (R = wip(c, Q))

Lemma (Provability of wip)
Ve € com,Q € assn. F {wip(c,Q)} ¢ {Q}

Australian

National
University

Soundness and Completeness

Theorem (Relative Completeness)
P,Q € assn,c € com. = {P} ¢ {Q} implies - {P} ¢ {Q}.

Proof Sketch.
« let {P} ¢ {Q} be a valid partial correctness specification
* by the first lemma we have = P = wlp(c, Q)
* by the second lemma we have + {wlp(c, @)} ¢ {Q}

e hence - {P} ¢ {Q}, using the Rule (cons)
O

Australian
National

University

Total Correctness

Definition (Weakest Precondition)
P is a weakest precondition of ¢ and @ (wp(c, Q)) if

Vs, I.s | P < C|[](s) Er @

all rules are the same, except the one for while. This requires a fresh
ghost variable that guarantees termination

Lemma (Correctness of wp)
Ve € com,) € assn.

= [wp(c, Q)] ¢ [Q] and
VR € assn. = [R] ¢ [Q] implies (R = wp(c, Q))
(for appropriate definition of =)

Australian
National

University

Strongest Postcondition

{Pre{?}

« wlp motivates backwards reasoning

« this seems unintuitive and unnatural

» however, often it is known what a program is supposed to do

« sometimes forward reasoning is useful, e.g. reverse engineering

Australian

Strongest Postcondition

sp(skip, P) = P
sp(l :=a, P) = Jv. (I = alv/l] A Plv/l])
sp((c1 ; c2), P) = sp(cz,sp(c1, P))
sp(if b then ¢; else ¢y, P) = (sp(c1,b A P)) V (sp(ca, —b A P))
sp(while b do ¢, P) = sp(while b do ¢,sp(c, P A b)) V (b A P)
where Fy(P) = false
Fit1(P) = (<b A P) V (sple, Fi(P A D))

(Least fixed point)

	Weakest Preconditions

