
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Sep 27, 2023

1

Section 18

Weakest Preconditions

2

Generating Preconditions

{ ? } c {Q}

• many possible preconditions
• some are more useful than others

3

Weakest Liberal Preconditions

Intuition: the weakest liberal precondition for c and Q is the weakest
assertion P such that {P} c {Q} is valid

Definition (Weakest Liberal Precondition)
P is a weakest liberal precondition of c and Q (wlp(c,Q)) if

∀s, I. s |=I P ⇐⇒ C[[c]](s) is undefined ∨ C[[c]](s) |=I Q

4

Weakest Preconditions

wlp(skip, P) = P

wlp(l := a, P) = P [a/l]

wlp((c1 ; c2), P) = wlp(c1,wlp(c2, P))

wlp(if b then c1 else c2, P) = (b =⇒ wlp(c1, P)) ∧
(¬b =⇒ wlp(c2, P))

wlp(while b do c, P) = (b =⇒ wlp(c,wlp(while b do c, P))) ∧
(¬b =⇒ P)

=
∧
i

Fi(P)

where
F0(P) = true

Fi+1(P) = (¬b =⇒ P) ∧ (b =⇒ wlp(c, Fi(P)))

(Greatest fixed point)
5

Properties of Weakest Preconditions

Lemma (Correctness of wlp)
∀c ∈ com, Q ∈ assn.

|= {wlp(c,Q)} c {Q} and
∀R ∈ assn. |= {R} c {Q} implies (R =⇒ wlp(c,Q))

Lemma (Provability of wlp)
∀c ∈ com, Q ∈ assn. ⊢ {wlp(c,Q)} c {Q}

6

Soundness and Completeness

Theorem (Relative Completeness)
P,Q ∈ assn, c ∈ com. |= {P} c {Q} implies ⊢ {P} c {Q}.

Proof Sketch.
• let {P} c {Q} be a valid partial correctness specification
• by the first lemma we have |= P =⇒ wlp(c,Q)

• by the second lemma we have ⊢ {wlp(c,Q)} c {Q}
• hence ⊢ {P} c {Q}, using the Rule (cons)

⊓⊔

7

Total Correctness

Definition (Weakest Precondition)
P is a weakest precondition of c and Q (wp(c,Q)) if

∀s, I. s |=I P ⇐⇒ C[[c]](s) |=I Q

all rules are the same, except the one for while. This requires a fresh
ghost variable that guarantees termination

Lemma (Correctness of wp)
∀c ∈ com, Q ∈ assn.

|= [wp(c,Q)] c [Q] and
∀R ∈ assn. |= [R] c [Q] implies (R =⇒ wp(c,Q))

(for appropriate definition of |=)

8

Strongest Postcondition

{P} c { ? }

• wlp motivates backwards reasoning
• this seems unintuitive and unnatural
• however, often it is known what a program is supposed to do
• sometimes forward reasoning is useful, e.g. reverse engineering

9

Strongest Postcondition

sp(skip, P) = P

sp(l := a, P) = ∃v. (l = a[v/l] ∧ P [v/l])

sp((c1 ; c2), P) = sp(c2, sp(c1, P))

sp(if b then c1 else c2, P) = (sp(c1, b ∧ P)) ∨ (sp(c2,¬b ∧ P))

sp(while b do c, P) = sp(while b do c, sp(c, P ∧ b)) ∨ (¬b ∧ P)

where
F0(P) = false

Fi+1(P) = (¬b ∧ P) ∨ (sp(c, Fi(P ∧ b)))

(Least fixed point)

10

	Weakest Preconditions

