
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Sep 27, 2023

1

Section 19

Concurrency

2

Concurrency and Distribution

so far we concentrated on semantics for sequential computation
but the world is not sequential. . .

• hardware is intrinsically parallel
• multi-processor architectures
• multi-threading (perhaps on a single processor)
• networked machines

3

Problems
aim: languages that can be used to model computations that execute in
parallel and on distributed architectures
problems

• state-spaces explosion
with n threads, each of which can be in 2 states, the system has 2n states

• state-spaces become complex
• computation becomes nondeterministic
• competing for access to resources may deadlock or suffer starvation
• partial failure (of some processes, of some machines in a network, of some

persistent storage devices)
• communication between different environments
• partial version change
• communication between administrative regions with partial trust (or, indeed,

no trust)
• protection against malicious attack
• . . .

4

Problems

this course can only scratch the surface

concurrency theory is a broad and active field for research

5

Process Calculi

• Observation (1970s): computers with shared-nothing architectures
communicating by sending messages to each other would be
important
[Edsger W. Dijkstra, Tony Hoare, Robin Milner, and others]

• Hoare’s Communicating Sequential Processes (CSP) is an early
and highly-influential language that capture a message passing form
of concurrency

• many languages have built on CSP including Milner’s CCS and
π-calculus, Petri nets, and others

6

IMP – Parallel Commands

we extend our while-language that is based on aexp, bexp and com

Syntax
com ::= . . . | com ∥ com

Semantics
(par1)

⟨c0 , s⟩ −→ ⟨c′0 , s′⟩
⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c1 , s′⟩

(par2)
⟨c1 , s⟩ −→ ⟨c′1 , s′⟩

⟨c0 ∥ c1 , s⟩ −→ ⟨c0 ∥ c′1 , s′⟩

7

IMP – Parallel Commands

Typing

(thread)
Γ ⊢ c :unit
Γ ⊢ c :proc

(par)
Γ ⊢ c0 :proc Γ ⊢ c1 :proc

Γ ⊢ c0 ∥ c1 :proc

8

Parallel Composition: Design Choices

• threads do not return a value
• threads do not have an identity
• termination of a thread cannot be observed within the language
• threads are not partitioned into ‘processes’ or machines
• threads cannot be killed externally

9

Asynchronous Execution

• semantics allow interleavings
⟨skip ∥ l := 2 , {l 7→ 1}⟩ // ⟨skip ∥ skip , {l 7→ 2}⟩

⟨l := 1 ∥ l := 2 , {l 7→ 0}⟩
,,

22

⟨l := 1 ∥ skip , {l 7→ 2}⟩ // ⟨skip ∥ skip , {l 7→ 1}⟩

• assignments and dereferencing are atomic
⟨skip ∥ l := 2 , {l 7→N}⟩ // ⟨skip ∥ skip , {l 7→ 2}⟩

⟨l := N ∥ l := 2 , {l 7→ 0}⟩
,,

22

⟨l := N ∥ skip , {l 7→ 2}⟩ // ⟨skip ∥ skip , {l 7→N}⟩
for N = 3498734590879238429384.
(not something as the first word of one and the second word of the other)

10

Asynchronous Execution

• there interleaving in (l := e) ∥ e′

⟨(skip ∥ (l := 7+!l) , {l 7→ 1}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

⟨(l := 1) ∥ (l := 7+!l) , {l 7→ 0}⟩

w

66

r

((

⟨skip ∥ (l := 7 + 0) , {l 7→ 1}⟩
+

&&
⟨(l := 1 + 0) ∥ (l := 7+!l) , {l 7→ 0}⟩

+

55

r

))

⟨(l := 1) ∥ (l := 7 + 0) , {l 7→ 0}⟩

w

66

+

((

⟨skip ∥ (l := 7) , {l 7→ 1}⟩ w // ⟨skip ∥ skip , {l 7→ 7}⟩

⟨(l := 1+!l) ∥ (l := 7+!l) , {l 7→ 0}⟩

r

55

r

))

⟨(l := 1 + 0 ∥ (l := 7 + 0) , {l 7→ 0}⟩

+

66

+

((

⟨(l := 1) ∥ (l := 7) , {l 7→ 0}⟩

w

88

w

&&
⟨(l := 1+!l) ∥ (l := 7 + 0) , {l 7→ 0}⟩

r

55

+

))

⟨(l := 1 + 0) ∥ (l := 7) , {l 7→ 0}⟩

+

66

w

((

⟨(l := 1) ∥ skip , {l 7→ 7}⟩ w // ⟨skip ∥ skip , {l 7→ 1}⟩

⟨(l := 1+!l) ∥ (l := 7) , {l 7→ 0}⟩

r

66

w

((

⟨(l := 1 + 0) ∥ skip , {l 7→ 7}⟩

+

88

⟨(l := 1+!l) ∥ skip , {l 7→ 0}⟩ r // • + // • w // ⟨(skip ∥ (skip , {l 7→ 8}⟩

11

Morals

• combinatorial explosion
• drawing state-space diagrams only works for really tiny examples
• almost certainly the programmer does not want all those 3

outcomes to be possible
• complicated/impossible to analyse without formal methods

12

Parallel Commands – Nondeterminism

Semantics
(par1)

⟨c0 , s⟩ −→ ⟨c′0 , s′⟩
⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c1 , s′⟩

(par2)
⟨c1 , s⟩ −→ ⟨c′1 , s′⟩

⟨c0 ∥ c1 , s⟩ −→ ⟨c0 ∥ c′1 , s′⟩
(+maybe rules for termination)

• study of nondeterminism
• ∥ is not a partial function from state to state; big-step semantics

needs adaptation
• can we achieve parallelism by nondeterministic interleaving
• communication via shared variable

13

Study of Parallelism (or Concurrency)

includes

Study of Nondeterminism

14

Dijkstra’s Guarded Command Language (GCL)

• defined by Edsger Dijkstra for predicate transformer semantics
• combines programming concepts in a compact/abstract way
• simplicity allows correctness proofs
• closely related to Hoare logic

15

GCL – Syntax

• arithmetic expressions: aexp (as before)
• Boolean expressions: bexp (as before)
• Commands:

com ::= skip | abort | l := aexp | com ; com |
if gc fi | do gc od

• Guarded Commands:

gc ::= bexp → com |
gc [] gc

16

GCL – Semantics
• assume we have semantic rules for bexp and aexp (standard)

we skip the deref-operator from now on
• assume a new configuration fail

Guarded Commands

(pos)
⟨b , s⟩ −→ ⟨true , s⟩
⟨b → c , s⟩ −→ ⟨c , s⟩

(neg)
⟨b , s⟩ −→ ⟨false , s⟩
⟨b → c , s⟩ −→ fail

(par1)
⟨gc0 , s⟩ −→ ⟨c , s′⟩

⟨gc0 [] gc1 , s⟩ −→ ⟨c , s′⟩
(par2)

⟨gc1 , s⟩ −→ ⟨c , s′⟩
⟨gc0 [] gc1 , s⟩ −→ ⟨c , s′⟩

(par3)
⟨gc0 , s⟩ −→ fail ⟨gc1 , s⟩ −→ fail

⟨gc0 [] gc1 , s⟩ −→ fail

17

GCL – Semantics
Commands

• skip and sequencing ; as before (can drop determinacy)
• abort has no rules

(cond)
⟨gc , s⟩ −→ ⟨c , s′⟩

⟨if gc fi , s⟩ −→ ⟨c , s′⟩

(loop1)
⟨gc , s⟩ −→ fail

⟨do gc od , s⟩ −→ ⟨⟨s⟩⟩ †

(loop2)
⟨gc , s⟩ −→ ⟨c , s′⟩

⟨do gc od , s⟩ −→ ⟨c ; do gc od , s′⟩
† new notation: behaves like skip

18

Processes

do b1 → c1 [] · · · [] bn → cn od

• form of (nondeterministically interleaved) parallel composition
• each ci occurs atomically (uninterruptedly),

provided bi holds each time it starts

Some languages support/are based on GCL
• UNITY (Misra and Chandy)
• Hardware languages (Staunstrup)

19

GCL – Examples
• compute the maximum of x and y

if
x ≥ y → max := x

[]

y ≥ x → max := y

fi

• Euclid’s algorithm

do
x > y → x := x− y

[]

y > x → y := y − x

od

20

GCL and Floyd-Hoare logic

guarded commands support a neat Hoare logic and decorated programs

Hoare triple for Euclid

{x = m ∧ y = n ∧m > 0 ∧ n > 0}
Euclid
{x = y = gcd(m,n)}

21

Proving Euclid’s Algorithm Correct

• recall gcd(m,n)|m, gcd(m,n)|n and

ℓ|m,n ⇒ ℓ| gcd(m,n)

• invariant: gcd(m,n) = gcd(x, y)

• key properties:

gcd(m,n) = gcd(m− n, n) if m > n

gcd(m,n) = gcd(m,n−m) if n > m

gcd(m,m) = m

22

Synchronised Communication

• communication by “handshake”
• possible exchange of value

(localised to process-process (CSP) or to a channel (CCS))
• abstracts from the protocol underlying coordination
• invented by Hoare (CSP) and Milner (CCS)

23

Extending GCL

• allow processes to send and receive values on channels
α!a evaluate expression a and send value on channel α
α?x receive value on channel α and store it in x

• all interactions between parallel processes is by sending / receiving
values on channels

• communication is synchronised (no broadcast yet)
• allow send and receive in commands c and in guards g:

do y < 100 ∧ α?x → α!(x · x) ∥ y := y + 1 od

24

Extending GCL – Semantics
transitions may carry labels when possibility of interaction

⟨α?x , s⟩ α?n−→ ⟨⟨s+ {x 7→ n}⟩⟩

⟨a , s⟩ −→ ⟨n , s⟩

⟨α!a , s⟩ α!n−→ ⟨⟨s⟩⟩

⟨c0 , s⟩
λ−→ ⟨c′0 , s′⟩

⟨c0 ∥ c1 , s⟩
λ−→ ⟨c′0 ∥ c1 , s′⟩

(+ symmetric)

⟨c0 , s⟩
α?n−→ ⟨c′0 , s′⟩ ⟨c1 , s⟩

α!n−→ ⟨c′1 , s⟩
⟨c0 ∥ c1 , s⟩ −→ ⟨c′0 ∥ c′1 , s′⟩

(+ symmetric)

⟨c , s⟩ λ−→ ⟨c′ , s′⟩

⟨c\α , s⟩ λ−→ ⟨c′\α , s′⟩
λ ̸∈ {α?n, α!n}

λ may be the empty label
25

Examples

• forwarder:
do α?x → β!x od

• buffer of capacity 2: (
do α?x → β!x od

∥ do β?x → γ!x od
)
\β

26

External vs Internal Choice

the following two processes are not equivalent w.r.t. deadlock capabilities

if (true ∧ α?x → c0) [] (true ∧ β?x → c1) fi

if (true → α?x ; c0) [] (true → β?x ; c1) fi

27

	Concurrency

