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Concurrency and Distribution

so far we concentrated on semantics for sequential computation
but the world is not sequential. ..

 hardware is intrinsically parallel

e multi-processor architectures

« multi-threading (perhaps on a single processor)
» networked machines



Problems

aim: languages that can be used to model computations that execute in
parallel and on distributed architectures

problems

e state-spaces explosion
with n threads, each of which can be in 2 states, the system has 2" states

» state-spaces become complex
e computation becomes nondeterministic
e competing for access to resources may deadlock or suffer starvation

e partial failure (of some processes, of some machines in a network, of some
persistent storage devices)

e communication between different environments
e partial version change

e communication between administrative regions with partial trust (or, indeed,
no trust)

e protection against malicious attack
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Problems

this course can only scratch the surface

concurrency theory is a broad and active field for research
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Process Calculi

» Observation (1970s): computers with shared-nothing architectures
communicating by sending messages to each other would be
important
[Edsger W. Dijkstra, Tony Hoare, Robin Milner, and others]

» Hoare’s Communicating Sequential Processes (CSP) is an early
and highly-influential language that capture a message passing form
of concurrency

e many languages have built on CSP including Milner’s CCS and
w-calculus, Petri nets, and others
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IMP — Parallel Commands

we extend our while-language that is based on aexp, bexp and com

Syntax
com ::=... | com || com
Semantics ( > s
co, 8) — {cy, S
ari
Par) eoller, sy = (ch et o)
(par2 ) <Cl ) $> — <C/1 ) S/>

{coller, s) —(collers ')



Australian
National

University

IMP — Parallel Commands

Typing
Tt c:unit
(thread) T'F c:proc
(par) ' ¢o:proc ' ¢y :proc

Tt ¢yl er:proc
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Parallel Composition: Design Choices

threads do not return a value

threads do not have an identity

 termination of a thread cannot be observed within the language
threads are not partitioned into ‘processes’ or machines
threads cannot be killed externally
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Asynchronous Execution

« semantics allow interleavings
(skip ||l := 2, {I—1}) — (skip || skip, {{— 2})
(I:=1|1:=2, {I—0})

T—
(l:=1] skip, {{—2}) — (skip || skip, {{—1})

e assignments and dereferencing are atomic

(skip || I :=2, {I— N}) — (skip || skip, {{+— 2})
7
(l:==N|l:=2,{l—0})

(l:= N | skip, {{—~2}) — (skip || skip, {{—~ N})
for N = 3498734590879238429384.
(not something as the first word of one and the second word of the other)
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Asynchronous Execution
« there interleaving in (I :=e¢) || ¢

+

((sKip || (1:=74+10), 1o 1)) Lme— T e ((skip | (skip, {—8})
(= 1) | (1= 7+1), {I—0}) (skip | (1:=7+0), {I~1})

]
/2
\
N

(L= 140) || (1:= 741), {1 0}) ((L=1)|| (L:=T+0), {I~0}) (skip || (1:=7), {I—1}) = (skip || skip, {I—T})
(1= 140 || (1= 74+10), {1 0}) (=140 (1:=7+0), {I-0}) (=1 (1:=7), {10}

(=141 | (1:=T+0), {10} ((=140) || (1:=7), {I>0}) (1=

1

skip . {1 7}) “= (skip || skip . {I—1})

/
\
/1Y
N

(=140 | (=7). {1 0}) ((l:=1+0) || skip, {I~7})

/

(1= 141 || skip, {15 0}) —=e——F o . ((skip | (skip, {I-+8})
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Morals

e combinatorial explosion
e drawing state-space diagrams only works for really tiny examples

almost certainly the programmer does not want all those 3
outcomes to be possible

complicated/impossible to analyse without formal methods
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Parallel Commands — Nondeterminism

Semantics ( > @ )
co, 8y — (¢, S
ari
Part) o Ters s) — (ch lTexs &)
<01, S> — <Cll7 S/>
ar2
Par2) e s = (e lldh. o)

(+maybe rules for termination)

« study of nondeterminism

|| is not a partial function from state to state; big-step semantics
needs adaptation

 can we achieve parallelism by nondeterministic interleaving
e communication via shared variable
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Study of Parallelism (or Concurrency)
includes

Study of Nondeterminism
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Dijkstra’s Guarded Command Language (GCL)

defined by Edsger Dijkstra for predicate transformer semantics
» combines programming concepts in a compact/abstract way
simplicity allows correctness proofs

closely related to Hoare logic
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GCL — Syntax

arithmetic expressions: aexp (as before)
Boolean expressions: bexp (as before)
e Commands:

com ::= skip | abort | [ := aexp | com ; com
if gc fi | do gc od

Guarded Commands:

gc ::= bexp — com
gc [l ge
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GCL — Semantics

e assume we have semantic rules for bexp and aexp (standard)
we skip the deref-operator from now on

e assume a new configuration fail

Guarded Commands

(b, s) — (true, s) (b, s) — (false, s)

(pos) (b—=c,s) —{c,s) (neg) (b—c, s) —» fail

(g9co, 8) — (¢, &) (g9c1, 8) — (e, &)
(part) (gco [ gers s) — (e, &) (par2) (gco [| gc1, 8) — {c, §)
(par3) (gco, s) —> fail  {(gey, s) — fail

(gco [| g1, 8) — fail
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GCL — Semantics

Commands

» skip and sequencing ; as before (can drop determinacy)
 abort has no rules

(g9c, 8y — (c, §")

(cond) (if gefi, s) — (c, &)

(lo0p1) (gc, s) — fail
(dogcod, s) — ((s) 1

(loop2) {ge, 8) — (e, &)

(dogcod, s) — (c;do gcod, s)

 new notation: behaves like skip
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Processes

d0b1—>01|:|~'~|:|bn—>cn0d

« form of (nondeterministically interleaved) parallel composition

 each ¢; occurs atomically (uninterruptedly),
provided b; holds each time it starts

Some languages support/are based on GCL
e UNITY (Misra and Chandy)
» Hardware languages (Staunstrup)
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GCL — Examples

e compute the maximum of z and y

if

T >y —max:i=a
[

Yy > —max:=1y
fi

« Euclid’s algorithm
do
T>Y =T i=x—Y

[

Yy>r Yy =y—x
od

20
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GCL and Floyd-Hoare logic

guarded commands support a neat Hoare logic and decorated programs

Hoare triple for Euclid

{r=mAy=nAm>0An>0}
Euclid

{z =y =ged(m,n)}

21
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Proving Euclid’s Algorithm Correct

e recall gcd(m,n)|m, ged(m,n)|n and
lm,n = ¢ ged(m, n)

e invariant: ged(m,n) = ged(z, y)
 Kkey properties:

ged(m,n) = ged(m — n,n) if m>n
ged(m, n) = ged(m,n —m) if n>m

ged(m,m) =m

22
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Synchronised Communication

e communication by “handshake”

 possible exchange of value
(localised to process-process (CSP) or to a channel (CCS))

« abstracts from the protocol underlying coordination
« invented by Hoare (CSP) and Milner (CCS)

23
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Extending GCL

« allow processes to send and receive values on channels
ala evaluate expression a and send value on channel «
a?r receive value on channel a and store itin

« all interactions between parallel processes is by sending / receiving
values on channels

e communication is synchronised (no broadcast yet)
« allow send and receive in commands ¢ and in guards g:

doy<100Aa?r — al(z-z)||y:=y+1od

24
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Extending GCL — Semantics

transitions may carry labels when possibility of interaction

(a, sy — (n, s)

(@?z, s) 28 (s + {z > n}) (ala, s) odng {(s)

A
<COa 5> — <067 S/>

Y, ; (+ symmetric)
{collerss) —=(chller, s)

(o, 8) B (ch,s") e, s) 2B, 8) .
(coller, s) — (ch I ch, o) (+ symmetric)
A , ,
(c, s) T) {, s ¢ {a7n, aln)
(\a, s) = (\a, s')

A may be the empty label

25
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Examples

» forwarder:
do a7z — [lz od

« buffer of capacity 2:

( do a7z — Blz od
| do 87z — ylz od )\B

26



Australian
National

University

External vs Internal Choice

the following two processes are not equivalent w.r.t. deadlock capabilities

if (true A a?z — ¢) [| (true A B?72 — c1) fi

if (true — a?x; ¢p) [| (true — [?2; ¢;) fi

27
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