Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Sep 27, 2023

Australian
“ajtionaj

Section 19

Concurrency

Australian
National

University

Concurrency and Distribution

so far we concentrated on semantics for sequential computation
but the world is not sequential. ..

 hardware is intrinsically parallel

e multi-processor architectures

« multi-threading (perhaps on a single processor)
» networked machines

Problems

aim: languages that can be used to model computations that execute in
parallel and on distributed architectures

problems

e state-spaces explosion
with n threads, each of which can be in 2 states, the system has 2" states

» state-spaces become complex
e computation becomes nondeterministic
e competing for access to resources may deadlock or suffer starvation

e partial failure (of some processes, of some machines in a network, of some
persistent storage devices)

e communication between different environments
e partial version change

e communication between administrative regions with partial trust (or, indeed,
no trust)

e protection against malicious attack

Australian
National

University

Problems

this course can only scratch the surface

concurrency theory is a broad and active field for research

Australian
National

University

Process Calculi

» Observation (1970s): computers with shared-nothing architectures
communicating by sending messages to each other would be
important
[Edsger W. Dijkstra, Tony Hoare, Robin Milner, and others]

» Hoare’s Communicating Sequential Processes (CSP) is an early
and highly-influential language that capture a message passing form
of concurrency

e many languages have built on CSP including Milner’s CCS and
w-calculus, Petri nets, and others

Australian

National
University

IMP — Parallel Commands

we extend our while-language that is based on aexp, bexp and com

Syntax
com ::=... | com || com
Semantics (> s
co, 8) — {cy, S
ari
Par) eoller, sy = (ch et o)
(par2) <Cl) $> — <C/1) S/>

{coller, s) —(collers ')

Australian
National

University

IMP — Parallel Commands

Typing
Tt c:unit
(thread) T'F c:proc
(par) ' ¢o:proc ' ¢y :proc

Tt ¢yl er:proc

Australian
National

University

Parallel Composition: Design Choices

threads do not return a value

threads do not have an identity

 termination of a thread cannot be observed within the language
threads are not partitioned into ‘processes’ or machines
threads cannot be killed externally

Australian
National

University

Asynchronous Execution

« semantics allow interleavings
(skip ||l := 2, {I—1}) — (skip || skip, {{— 2})
(I:=1|1:=2, {I—0})

T—
(l:=1] skip, {{—2}) — (skip || skip, {{—1})

e assignments and dereferencing are atomic

(skip || I :=2, {I— N}) — (skip || skip, {{+— 2})
7
(l:==N|l:=2,{l—0})

(l:= N | skip, {{—~2}) — (skip || skip, {{—~ N})
for N = 3498734590879238429384.
(not something as the first word of one and the second word of the other)

Australian
National

University

Asynchronous Execution
« there interleaving in (I :=e¢) || ¢

+

((sKip || (1:=74+10), 1o 1)) Lme— T e ((skip | (skip, {—8})
(= 1) | (1= 7+1), {I—0}) (skip | (1:=7+0), {I~1})

]
/2
\
N

(L= 140) || (1:= 741), {1 0}) ((L=1)|| (L:=T+0), {I~0}) (skip || (1:=7), {I—1}) = (skip || skip, {I—T})
(1= 140 || (1= 74+10), {1 0}) (=140 (1:=7+0), {I-0}) (=1 (1:=7), {10}

(=141 | (1:=T+0), {10} ((=140) || (1:=7), {I>0}) (1=

1

skip . {1 7}) “= (skip || skip . {I—1})

/
\
/1Y
N

(=140 | (=7). {1 0}) ((l:=1+0) || skip, {I~7})

/

(1= 141 || skip, {15 0}) —=e——F o . ((skip | (skip, {I-+8})

Australian
National

University

Morals

e combinatorial explosion
e drawing state-space diagrams only works for really tiny examples

almost certainly the programmer does not want all those 3
outcomes to be possible

complicated/impossible to analyse without formal methods

Australian
National

University

Parallel Commands — Nondeterminism

Semantics (> @)
co, 8y — (¢, S
ari
Part) o Ters s) — (ch lTexs &)
<01, S> — <Cll7 S/>
ar2
Par2) e s = (e lldh. o)

(+maybe rules for termination)

« study of nondeterminism

|| is not a partial function from state to state; big-step semantics
needs adaptation

 can we achieve parallelism by nondeterministic interleaving
e communication via shared variable

Australian
National

University

Study of Parallelism (or Concurrency)
includes

Study of Nondeterminism

Australian
National

University

Dijkstra’s Guarded Command Language (GCL)

defined by Edsger Dijkstra for predicate transformer semantics
» combines programming concepts in a compact/abstract way
simplicity allows correctness proofs

closely related to Hoare logic

Australian
National

University

GCL — Syntax

arithmetic expressions: aexp (as before)
Boolean expressions: bexp (as before)
e Commands:

com ::= skip | abort | [:= aexp | com ; com
if gc fi | do gc od

Guarded Commands:

gc ::= bexp — com
gc [l ge

Australian
National

University

GCL — Semantics

e assume we have semantic rules for bexp and aexp (standard)
we skip the deref-operator from now on

e assume a new configuration fail

Guarded Commands

(b, s) — (true, s) (b, s) — (false, s)

(pos) (b—=c,s) —{c,s) (neg) (b—c, s) —» fail

(g9co, 8) — (¢, &) (g9c1, 8) — (e, &)
(part) (gco [gers s) — (e, &) (par2) (gco [| gc1, 8) — {c, §)
(par3) (gco, s) —> fail {(gey, s) — fail

(gco [| g1, 8) — fail

Australian
National

University

GCL — Semantics

Commands

» skip and sequencing ; as before (can drop determinacy)
 abort has no rules

(g9c, 8y — (c, §")

(cond) (if gefi, s) — (c, &)

(lo0p1) (gc, s) — fail
(dogcod, s) — ((s) 1

(loop2) {ge, 8) — (e, &)

(dogcod, s) — (c;do gcod, s)

 new notation: behaves like skip

Australian
National

University

Processes

d0b1—>01|:|~'~|:|bn—>cn0d

« form of (nondeterministically interleaved) parallel composition

 each ¢; occurs atomically (uninterruptedly),
provided b; holds each time it starts

Some languages support/are based on GCL
e UNITY (Misra and Chandy)
» Hardware languages (Staunstrup)

Australian
National

University

GCL — Examples

e compute the maximum of z and y

if

T >y —max:i=a
[

Yy > —max:=1y
fi

« Euclid’s algorithm
do
T>Y =T i=x—Y

[

Yy>r Yy =y—x
od

20

Australian
National

University

GCL and Floyd-Hoare logic

guarded commands support a neat Hoare logic and decorated programs

Hoare triple for Euclid

{r=mAy=nAm>0An>0}
Euclid

{z =y =ged(m,n)}

21

Australian
National

University

Proving Euclid’s Algorithm Correct

e recall gcd(m,n)|m, ged(m,n)|n and
lm,n = ¢ ged(m, n)

e invariant: ged(m,n) = ged(z, y)
 Kkey properties:

ged(m,n) = ged(m — n,n) if m>n
ged(m, n) = ged(m,n —m) if n>m

ged(m,m) =m

22

Australian
National

University

Synchronised Communication

e communication by “handshake”

 possible exchange of value
(localised to process-process (CSP) or to a channel (CCS))

« abstracts from the protocol underlying coordination
« invented by Hoare (CSP) and Milner (CCS)

23

Australian
National

University

Extending GCL

« allow processes to send and receive values on channels
ala evaluate expression a and send value on channel «
a?r receive value on channel a and store itin

« all interactions between parallel processes is by sending / receiving
values on channels

e communication is synchronised (no broadcast yet)
« allow send and receive in commands ¢ and in guards g:

doy<100Aa?r — al(z-z)||y:=y+1od

24

Australian
National

University

Extending GCL — Semantics

transitions may carry labels when possibility of interaction

(a, sy — (n, s)

(@?z, s) 28 (s + {z > n}) (ala, s) odng {(s)

A
<COa 5> — <067 S/>

Y, ; (+ symmetric)
{collerss) —=(chller, s)

(o, 8) B (ch,s") e, s) 2B, 8) .
(coller, s) — (ch I ch, o) (+ symmetric)
A , ,
(c, s) T) {, s ¢ {a7n, aln)
(\a, s) = (\a, s')

A may be the empty label

25

Australian
National

University

Examples

» forwarder:
do a7z — [lz od

« buffer of capacity 2:

(do a7z — Blz od
| do 87z — ylz od)\B

26

Australian
National

University

External vs Internal Choice

the following two processes are not equivalent w.r.t. deadlock capabilities

if (true A a?z — ¢) [| (true A B?72 — c1) fi

if (true — a?x; ¢p) [| (true — [?2; ¢;) fi

27

	Concurrency

