
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 25, 2023

1



Section 1

Pure CCS

2



Towards a more basic language
aim: removal of variables to reveal symmetry of input and output

• transitions for value-passing carry labels τ , a?n, a!n

α?x → p
α?0 //

α?n %%

p[0/x]

p[n/x]

• this suggests introducing prefix α?n.p (as well as α!n.p) and
view α?x → p as a (infinite) sum

∑
n α?n.p[n/x]

• view α?n and α!n as complementary actions
• synchronisation can only occur on complementary actions

3



Pure CCS
• Actions: a, b, c, . . .
• Complementary actions: ā, b̄, c̄,. . .
• Internal action: τ
• Notational convention: ¯̄a = a

• Processes:
p ::= λ.p prefix λ ranges over τ, a, ā for any action

|
∑

i∈I pi sum I is an index set
| p0 ∥ p1 parallel
| p\L restriction L a set of actions
| p[f ] relabelling f a relabelling function on actions
| P process identifier

• Process definitions:
P

def
= p

4



Pure CCS – Semantics
Guarded processes (prefixing)

λ.p
λ−→ p

Sum
pj

λ−→ p′∑
i∈I pi

λ−→ p′
j ∈ I

Parallel composition

p0
λ−→ p′0

p0 ∥ p1
λ−→ p′0 ∥ p1

p1
λ−→ p′1

p0 ∥ p1
λ−→ p0 ∥ p′1

p0
a−→ p′0 p1

ā−→ p′1

p0 ∥ p1
τ−→ p′0 ∥ p′1

5



Pure CCS – Semantics
Restriction

p
λ−→ p′

p\L λ−→ p′\L
λ ̸∈ L ∪ L

where L = {ā | a ∈ L}

Relabelling
p

λ−→ p′

p[f ]
λ−→ p′[f ]

where f is a function such that f(τ) = τ and f(ā) = f(a)

Identifiers
p

λ−→ p′

P
λ−→ p′

P
def
= p

6



From Value-passing to Pure CCS
translation from a value-passing CCS closed termp to a pure CCS term p̂

p p̂

nil nil
(τ → p) τ.p̂
(α!a → p) αm.p̂ where a evaluates to m

(α?x → p)
∑

m∈int αm.p̂[m/x]
(b → p) p̂ if b evaluates to true

nil if b evaluates to false
p0 + p1 p̂0 + p̂1
p0 ∥ p1 p̂0 ∥ p̂1
p\L p̂\{αm | α ∈ L ∧m ∈ int}
P (a1, . . . , ak) Pm1,...,mk

where ai evaluates to mi

For every definition P (x1, . . . , xk) we have a collection of definitions
Pm1,...,mk

indexed by m1,. . . ,mk ∈ int
7



Correspondence

Theorem

p
λ−→ p′ iff p̂

λ̂−→ p̂′

8


	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?

	Semantic Equivalence
	Denotational Semantics
	Partial and Total Correctness
	Axiomatic Semantics
	Weakest Preconditions
	Concurrency
	The Process Algebra CCS
	Pure CCS
	Semantic Equivalences
	The Owicki-Gries Method
	Rely-Guarantee
	Conclusion
	
	

	Add-On Program Algebras: Floyd-Hoare Logic meets Regular Expressions

