

COMP3610/6361 Principles of Programming Languages

Peter Höfner

Oct 25, 2023

Section 1

Pure CCS

Towards a more basic language

aim: removal of variables to reveal symmetry of input and output

• transitions for value-passing carry labels τ , a?n, a!n

- this suggests introducing *prefix* α ?n.p (as well as α !n.p) and view α ? $x \to p$ as a (infinite) sum $\sum_{n} \alpha$?n.p[n/x]
- view α ?n and α !n as complementary actions
- synchronisation can only occur on complementary actions

Pure CCS

- Actions: a, b, c, ...
- Complementary actions: $\bar{a}, \bar{b}, \bar{c}, \dots$
- Internal action: τ
- Notational convention: $\bar{a} = a$
- · Processes:

$$\begin{array}{lll} p := \lambda.p & \text{prefix} & \lambda \text{ ranges over } \tau, a \\ \mid \sum_{i \in I} p_i & \text{sum} & I \text{ is an index set} \\ \mid p_0 \parallel p_1 & \text{parallel} \\ \mid p \backslash L & \text{restriction} & L \text{ a set of actions} \\ \mid p[f] & \text{relabelling} & f \text{ a relabelling fun} \\ \mid P & \text{process identifier} \end{array}$$

 λ ranges over τ, a, \bar{a} for any action I is an index set

 ${\cal L}$ a set of actions f a relabelling function on actions process identifier

· Process definitions:

$$P \stackrel{\mathsf{def}}{=} p$$

Pure CCS – Semantics Guarded processes (prefixing)

$$\lambda.p \xrightarrow{\lambda} p$$

Sum

$$\frac{p_j \xrightarrow{\lambda} p'}{\sum_{i \in I} p_i \xrightarrow{\lambda} p'} \quad j \in I$$

Parallel composition

$$\frac{p_0 \xrightarrow{\lambda} p_0'}{p_0 \parallel p_1 \xrightarrow{\lambda} p_0' \parallel p_1} \qquad \frac{p_1 \xrightarrow{\lambda} p_1'}{p_0 \parallel p_1 \xrightarrow{\lambda} p_0 \parallel p_1'}$$

$$\frac{p_0 \xrightarrow{a} p_0' \qquad p_1 \xrightarrow{\bar{a}} p_1'}{p_0 \parallel p_1 \xrightarrow{\tau} p_0' \parallel p_1'}$$

Pure CCS – Semantics

Restriction

$$\frac{p \stackrel{\lambda}{\longrightarrow} p'}{p \backslash L \stackrel{\lambda}{\longrightarrow} p' \backslash L} \; \lambda \not \in L \cup \overline{L}$$

where $\overline{L} = \{ \overline{a} \mid a \in L \}$

Relabelling

$$\frac{p \xrightarrow{\lambda} p'}{p[f] \xrightarrow{\lambda} p'[f]}$$

where f is a function such that $f(\tau) = \tau$ and $f(\bar{a}) = \overline{f(a)}$

Identifiers

$$\frac{p \xrightarrow{\lambda} p'}{P \xrightarrow{\lambda} p'} P \stackrel{\text{def}}{=} p$$

From Value-passing to Pure CCS

translation from a value-passing CCS *closed* term p to a pure CCS term \widehat{p}

p	$\mid \widehat{p} \mid$	
nil	nil	
(au o p)	$ au.\widehat{p}$	
$(\alpha! a \to p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \to p)$	$\sum_{m \in \text{int}} \alpha m. \widehat{p[m/x]}$	
$(b \rightarrow p)$	\widehat{p}	if b evaluates to true
	nil	if b evaluates to false
$p_0 + p_1$	$\widehat{p}_0 + \widehat{p}_1$	
$p_0 \parallel p_1$	$\mid \widehat{p}_0 \parallel \widehat{p}_1$	
$p \backslash L$	$\widehat{p} \setminus \{\alpha m \mid \alpha \in L \land m \in int\}$	
$P(a_1,\ldots,a_k)$	P_{m_1,\ldots,m_k}	where a_i evaluates to m_i

For every definition $P(x_1,...,x_k)$ we have a collection of definitions $P_{m_1,...,m_k}$ indexed by $m_1,...,m_k \in \text{int}$

Correspondence

Theorem

$$p \xrightarrow{\lambda} p' \quad \textit{iff} \quad \widehat{p} \xrightarrow{\widehat{\lambda}} \widehat{p'}$$