Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Oct 25, 2023

| Australian
National

University

Section 1

Pure CCS

Australian
National

University

Towards a more basic language

aim: removal of variables to reveal symmetry of input and output
« transitions for value-passing carry labels 7, a?n, aln

alr —p ﬂ>p[0/:c]

aln

pln/x]

« this suggests introducing prefix a’n.p (as well as a!n.p) and
view a?z — p as a (infinite) sum " a?n.pin/x

e view a’n and a!n as complementary actions

 synchronisation can only occur on complementary actions

Australian
National

University

Pure CCS

Actions: a, b, ¢, ...
Complementary actions: a, b, ¢,. . .
Internal action: 7

Notational convention: a = a

e Processes:
pi=Ap prefix A ranges over 7, a, a for any action
| D crpi sum I'is an index set
| pollp1 parallel
| p\L restriction L a set of actions
| plf] relabelling f arelabelling function on actions
| P process identifier

Process definitions:
P=p

Australian

National
University

Pure CCS — Semantics

Guarded processes (prefixing)

A.p i> P
Sum
RN
B R - jelr
A /
Ziel pi — D
Parallel composition
Ay Ay
Po — Do P11 — D
A / A /
po || p1 ——) || P1 po || p1 = po || P}

a / a /
Po — Do pP1— D1
po || p1 — Pl || P}

Australian
National

University

Pure CCS — Semantics

Restriction R
L P N¢LUT
p\L — p'\L
where L = {a | a € L}
Relabelling
Py
plf] = p'lf]

where f is a function such that f(7) = 7 and f(a) = f(a)

Identifiers
Ay
-

P@p’

Australian

ational

From Value-passing to Pure CCS

translation from a value-passing CCS closed termp to a pure CCS termp

Lp P |

nil nil

(t—p) T.p

(ala — p) am.p where a evaluates to m

(a?z — p) > meint @m-p[m/

(b—p) D if b evaluates to true

nil if b evaluates to false

Do + p1 Do+ D1

po |l p1 po || b1

p\L p\{am | a € L Am €int}

Pai,...,ar) | Pmy,. my where a; evaluates to m;
For every definition P(x1,...,x;) we have a collection of definitions

Pp,....m, indexed by my,...,my € int

Australian
National

University

Correspondence

Theorem

)
lw
=)

p 2y ff

	Admin
	Lecturer
	CoLecturer and Tutors
	Plan/Schedule
	About the Course
	Academic Integrity

	Introduction
	Foundational Knowledge of Disciplines
	Programming Languages

	IMP and its Operational Semantics
	Types
	Proofs (Structural Induction)
	Functions
	Typing for Call-By-Value
	Recursion
	Data
	Exceptions
	Subtyping
	(Imperative) Objects Case Study
	Implementing IMP
	IMP in Isabelle/HOL
	Big-step semantics (in Isabelle/HOL)
	Are big and small-step semantics equivalent?

	Semantic Equivalence
	Denotational Semantics
	Partial and Total Correctness
	Axiomatic Semantics
	Weakest Preconditions
	Concurrency
	The Process Algebra CCS
	Pure CCS
	Semantic Equivalences
	The Owicki-Gries Method
	Rely-Guarantee
	Conclusion
	
	

	Add-On Program Algebras: Floyd-Hoare Logic meets Regular Expressions

