

COMP3610/6361 Principles of Programming Languages

Peter Höfner

Oct 20, 2023

Section 1

Semantic Equivalences

Labelled Transition Systems

CCS naturally implies a graphical model of computation.

a labelled transition system (LTS) is a pair (S, \Rightarrow) with

- S a set (of states or processes), and
- $\Rightarrow \subseteq S \times Act \times S$, the *transition relation*.

here $Act=A\uplus\{\tau\}$ is a set of *actions*, containing visible actions $a,b,c,\ldots\in A$, and the *invisible action* $\tau.$

a finite *path* is a sequence $p_0 \xrightarrow{\lambda_1} p_1 \xrightarrow{\lambda_2} \cdots \xrightarrow{\lambda_n} p_n$ with $p_i \in S$ for i=0,...,n and $(p_{i-1},\lambda_i,p_i) \in \Rightarrow$ for all i=1,...,n.

Trace equivalence

- if such a path exists, then the sequence $\lambda_1 \lambda_2 \dots \lambda_n$ is a (partial) trace of the process p_0
- two processes p and q are (partial) *trace equivalent* if they have the same (partial) traces.

Four Kinds of Trace Equivalence

Let $T^*(p)$ be the set of (partial) traces of process $p \in S$. Let $T^\infty(p)$ be the set of infinite traces of p. Let $CT^*(p)$ be the set of completed traces of p. Let $CT^\infty(p) := CT^*(p) \uplus T^\infty(p)$.

A finite trace is *complete* if it last state has no outgoing transition.

Write $p=_T^*q$ if $T^*(p)=T^*(q)$ — (partial) trace equivalence. Write $p=_{CT}^*q$ if $CT^*(p)=CT^*(q)$ and $T^*(p)=T^*(q)$ — completed trace equivalence Write $p=_T^\infty q$ if $T^\infty(p)=T^\infty(q)$ and $T^*(p)=T^*(q)$ — infinitary trace equivalence Write $p=_{CT}^\infty$ if $CT^\infty(p)=CT^\infty(q)$ — infinitary completed tr. eq.

A Lattice of Semantic Equivalence Relations

A relation $\sim \subseteq S \times S$ on processes is an *equivalence relation* if it is

- reflexive: $p \sim p$,
- *symmetric*: if $p \sim q$ then $q \sim p$,
- and *transitive*: if $p \sim q$ and $q \sim r$ then $p \sim r$.

Let $[p]_{\sim}$ be the *equivalence class* of p: the set of all processes that are \sim -equivalent to p.

$$[p]_{\sim} := \{ q \in S \mid q \sim p \}.$$

Equivalence relation \sim is *finer than* equivalence relation \approx iff

$$p \sim q \Rightarrow p \approx q$$
.

Thus if \sim \subseteq \approx . In that case each equivalence class of \sim is included in an equivalence class of \approx .

Four Additional Trace Equivalence

A *weak* trace is obtained from a strong one by deleting all τ s. Let $WT^*(p) := \{ detau(\sigma) \mid \sigma \in T^*(p) \}$.

This leads to weak trace equivalences $=_{WT}^*$, $=_{WT}^{\infty}$, $=_{WCT}^*$, $=_{WCT}^{\infty}$.

Safety and Liveness Properties

A **safety** property says that something bad will never happen. A **liveness** property says that something good will happen eventually.

If we deem two processes p and q semantically equivalent we often want them to have the same safety and/or liveness properties.

$$ab \stackrel{?}{\sim} ab + a$$

Weak partial trace equivalence respects safety properties.

$$ag \stackrel{?}{\sim} ag + a$$

We need at least completed traces to deal with liveness properties

Compositionality

If $p \sim q$ then $C[p] \sim C[q]$. Here $C[\]$ is a context, made from operators of some language.

For instance $(-|\bar{b}.\bar{a}.\mathbf{nil})\setminus\{a,b\}$ is a CCS-context. If $p\sim q$ then $(p|\bar{b}.\bar{a}.\mathbf{nil})\setminus\{a,b\}\sim (q|\bar{b}.\bar{a}.\mathbf{nil})\setminus\{a,b\}$.

Then \sim is a *congruence* for the language, or the language if *compositional* for \sim .

$$p \sim p' \Rightarrow (p|p|...|p) \backslash L \sim (p'|p'|...|p') \backslash L.$$

$$\begin{split} a.b + a.c =^*_{CT} a.(b+c) \quad \text{but} \\ ((a.b + a.c)|\bar{a}.\bar{b})\backslash\{a,b\} \neq^*_{CT} (a.(b+c)|\bar{a}.\bar{b})\backslash\{a,b\}. \end{split}$$

Thus $=_{CT}^*$ is a not a congruence for CCS.

Congruence closure

Theorem: Given any equivalence \approx that need not be a congruence for some language \mathcal{L} , there exists a coarsest congruence \sim for \mathcal{L} that is finer than \sim .

In fact, \sim can be defined by

$$p \sim q \quad :\Leftrightarrow \quad C[p] \approx C[q] \text{ for any } \mathcal{L}\text{-context } C[\].$$

Bisimulation equivalence

A relation $\mathcal{R} \subseteq S \times S$ is a *bisimulation* if it satisfies:

- if $p\mathcal{R}q$ and $p \xrightarrow{\lambda} p'$ then $\exists q'$ s.t. $q \xrightarrow{\lambda} q'$ and $p'\mathcal{R}q'$, and
- if $p\mathcal{R}q$ and $q \xrightarrow{\lambda} q'$ then $\exists p'$ s.t. $p \xrightarrow{\lambda} p'$ and $p'\mathcal{R}q'$.

Two processes $p,q \in S$ are bisimulation equivalent or bisimilar—notation $p =_B q$ —if $p\mathcal{R}q$ for some bisimulation \mathcal{R} .

$$a.b + a.c \neq_B a.(b+c)$$

$$a.b + a.b =_B a.b$$

Weak bisimulation equivalence

A relation $\mathcal{R} \subseteq S \times S$ is a *weak bisimulation* if it satisfies:

- if $p\mathcal{R}q$ and $p \xrightarrow{\lambda} p'$ then $\exists q'$ s.t. $q \Longrightarrow \xrightarrow{(\lambda)} \Longrightarrow q'$ and $p'\mathcal{R}q'$, and
- if $p\mathcal{R}q$ and $q \xrightarrow{\lambda} q'$ then $\exists p'$ s.t. $p \Longrightarrow \stackrel{(\lambda)}{\Longrightarrow} p'$ and $p'\mathcal{R}q'$.

Here \Longrightarrow denotes a finite sequence of τ -steps, and (λ) means λ , except that it is optional in case $\lambda = \tau$.

(That is, $p \xrightarrow{(\lambda)} q$ iff $p \xrightarrow{\lambda} q \lor (\lambda = \tau \land q = p)$.) Two processes $p, q \in S$ are weakly bisimilar—notation $p =_{WB} q$ —if $p\mathcal{R}q$ for some bisimulation \mathcal{R} .

Examples:

$$\tau . b + c \neq_{WB} b + c$$

$$\tau . b + b =_{WB} b$$

Semantic Equivalences – Summary

- relate to systems (via LTSs)
- can be extended to states carrying stores
- sos-rules give raise to LTSs in a straightforward way
- reduce complicated (big) systems to simpler ones
- smaller systems may be easier to verify
- understand which properties are preserved