
COMP3610/6361
Principles of Programming Languages

Peter Höfner

Oct 17, 2023

1

Section 23

The Owicki-Gries Method

2

Motivation

• nondeterminism and concurrency required
• handle interleaving
• Floyd-Hoare logic only for sequential programs

• Owicki-Gries Logic/Method
▶ a.k.a. interference freedom
▶ Susan Owicki and PhD supervisor David Gries
▶ add a construct to the programming language for threads
▶ study the impact for Hoare triples

3

Floyd-Hoare Logic and Decorated Programs

Notation: processes: individual program
system: overall (concurrent) program will be

Floyd-Hoare logic
• each of the individual processes has an assertion

▶ before its first statement (precondition)
▶ between every pair of its statements (pre-/postcondition), and
▶ after its last statement (postcondition)

• Hoare-triples can be checked (local correctness)
• Floyd-Hoare logic is compositional

4

Motivation
add pre- and postcondition for system, and a rule

{P1} c1 {Q1} {P2} c2 {Q2}
{P1 ∧ P2} c1 ∥ c2 {Q1 ∧Q2}

but this rule is incorrect

Note: we are considering an interleaving semantics

5

Simple Example

{x == 0}

{x == 0 ∨ x == 2} {x == 0 ∨ x == 1}

x := x+ 1 ∥ x := x+ 2

{x == 1 ∨ x == 3} {x == 2 ∨ x == 3}

{x == 3}

What would we have to show?

6

The Rule of Owicki Gries

all rules of Floyd-Hoare logic remain valid

{P1} c1 {Q1} . . . {Pn} cn {Qn} interference freedom
{P1 ∧ · · · ∧ Pn} c1 ∥ · · · ∥ cn {Q1 ∧ · · · ∧Qn}

(par)

7

Interference Freedom

Interference freedom is a property of proofs of the {Pi} ci {Qi}
• suppose we have a proof for {Pi} ci {Qi}
• prove that the execution of any other statement cj does not validate

the reasoning for {Pi} ci {Qi}

it is a bit tricky
• interference freedom is a property of proofs, not Hoare triples
• identifying which parts of a proof need to be considered requires

some effort

8

Formalising Interference Freedom

In a decorated program D and command c of the program, let
• pre(D, c) be the precondition (assumption/predicate) immediately

before c, and
• post(D, c) the postcondition immediately after c
• remember {P} c {Q} valid if there is a decorated program D with

pre(D, c) = P and post(D, c) = Q

9

Formalising Interference Freedom

{P1} c1 {Q1} . . . {Pn} cn {Qn} interference freedom
{P1 ∧ · · · ∧ Pn} c1 ∥ · · · ∥ cn {Q1 ∧ · · · ∧Qn}

(par)

Suppose every ci has a decorated program Dci .

Definition
Dci is interference-free with respect to Dcj (i ̸= j) if for each statement c′i
in ci and c′j in cj

• {pre(Dci , c
′
i) ∧ pre(Dcj , c

′
j)} c′j {pre(Dci , c

′
i)}

• {post(Dci , c
′
i) ∧ pre(Dcj , c

′
j)} c′j {post(Dci , c

′
i))}

The Dc1 , Dc1 , . . .Dcn are interference-free if they are pairwise
interference-free with respect to one other.

10

Interference Freedom – Remark

• applying the Rule (par) requires the development of
interference-free decorated programs for the ci

• proving interference-freedom of Dci with respect to Dcj focusses on
▶ preconditions of each statement in ci and postcondition of Dci

11

Simple Example

Why is interference freedom violated?

{x == 0}

{x == 0} {x == 0}

x := x+ 1 ∥ x := x+ 2

{x == 1} {x == 1}

{x == 1}

12

Soundness

Theorem
If {P} c {Q} is derivable using the proof rules seen so far then c is valid

13

Completeness

Can every correct Hoare triple be derived?

• completeness does not hold
• neither does relative completeness

14

Incompleteness
Lemma
The following valid Hoare triple cannot be derived using the rules so far.

{true} x := x+ 2 ∥ x := 0 {x == 0 ∨ x == 2}

Proof.
By contradiction. Suppose there were such a proof. Then there would be Q, R such that

{true} x := x+ 2 {Q}
{true} x := 0 {R}

Q ∧R =⇒ x == 0 ∨ x == 2

By (assign)
(
{P [a/l]} l := a {P}

)
, true =⇒ Q[x+ 2/x] holds. Similarly, R[0/x] holds.

By (par), {R ∧ true} x := x+ 2 {R} holds, meaning R ⇒ R[x+ 2/x] is valid.
But then by induction, ∀x. (x ≥ 0 ∧ even(x)) =⇒ R is true. Since
Q ∧R =⇒ x = 0 ∨ x = 2, it follows that

∀x. (x ≥ 0 ∧ even(x)) =⇒ (x == 0 ∨ x == 2) ,

which is a contradiction. ⊓⊔
15

Fixing the Problem

We showed
• R must hold for all even, positive x

• R must hold after execution of x := 0

• R must also hold both before and after execution of x := x+ 2

we need the capability in R to say that
until x := x+ 2 is executed, x = 0 holds.

16

Auxiliary Variables
variables that are put into a program just to reason about progress in
other processes

done := 0 ;

(

x,done := x+ 2, 1

∥
x := 0

)

• requires synchronous/atomic assignment
• proof is now possible

17

Decorated Programs with Auxiliary Variables

{true}
done := 0 ;

{done == 0}
(

{done == 0}
x, done := x+ 2, 1

{true}
∥

{true}
x := 0

{(x == 0 ∨ x == 2) ∧ (done == 0 ⇒ x == 0)}
)

{c == 0 ∨ x == 2}

Note: some implications skipped in the decorated program

18

Relative Completeness
• adding auxiliary variables enables proofs
• we do not want these variables to be in our code

{P} c {Q} x not free in Q x auxiliary in c

{P} c′ {Q}
(aux)

where c′ is c with all references to x removed.

Theorem (Relative Completeness)
Adding Rules (par) and (aux) to the other rules of Floyd-Hoare logic
yields a relatively complete proof system.

19

Problem

The Owicki-Griess Methods is not compositional.

20

Peterson’s Algorithm for Mutual exclusion

the following 4 lines of (symmetric) code took 15 years to discover
(mid 60’s to early 80s)

let a, b be Booleans and t : {A,B}

{¬a ∧ ¬b}
other code of A other code of B
a := true b := true

t := A t := B
await (¬b ∨ t == B) await (¬a ∨ t == A)

critical section A critical section B
a := false b := false

21

Notes on Peterson’s Algorithm

• protects critical sections from mutual destructive interference
• guarantees fair treatment of A and B

• how do we show that A (or B) is never perpetually ignored in favour
of B (A)?

▶ requires liveness in this case
▶ a topic for another course/research project
▶ in fact there is one line that could potentially violate liveness

(requires knowledge about hardware)

• 4 correct lines of code in 15 years is a coding rate of roughly
1 LoC every 4 years

22

Yet Another Example

FindFirstPositive

i := 0 ; j := 1 ; x := |A| ; y := |A| ;

while i < min(x, y) do
if A[i] > 0 then
x := i

else
i := i+ 2

∥
while j < min(x, y) do

if A[j] > 0 then
y := j

else
j := j + 2

r := min(x, y)

23

i := 0 ; j := 1 ; x := |A| ; y := |A| ;
{P1 ∧ P2}

{P1}
while i < min(x, y) do
{P1 ∧ i < x ∧ i < |A|}
if A[i] > 0 then
{P1 ∧ i < x ∧ i < |A| ∧A[i] > 0}
x := i
{P1}

else
{P1 ∧ i < x ∧ i < |A| ∧A[i] ≤ 0}
i := i+ 2
{P1}

{P1}
{P1 ∧ i ≥ min(x, y)}

∥

{P2}
while j < min(x, y) do
{P2 ∧ j < y ∧ j < |A|}
if A[j] > 0 then

{P2 ∧ j < y ∧ j < |A| ∧A[j] > 0}
y := j
{P2}

else
{P2 ∧ j < y ∧ j < |A| ∧A[j] ≤ 0}
j := j + 2
{P2}

{P2}
{P2 ∧ j ≥ min(x, y)}

{P1 ∧ P2 ∧ i ≥ min(x, y) ∧ j ≥ min(x, y)}
r := min(x, y)

{r ≤ |A| ∧ (∀k. 0 ≤ k < r ⇒ A[k] ≤ 0) ∧ (r < |A| ⇒ A[r] > 0)}

P1 = x ≤ |A| ∧ (∀k. 0 ≤ k < i ∧ k even ⇒ A[k] ≤ 0) ∧ i even ∧ (x < |A| ⇒ A[x] > 0)

P2 = y ≤ |A| ∧ (∀k. 0 ≤ k < j ∧ k odd ⇒ A[k] ≤ 0) ∧ j odd ∧ (y < |A| ⇒ A[y] > 0)

24

	Semantic Equivalences

