Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Oct 17, 2023

Australian
ational

Section 23

The Owicki-Gries Method

Australian

National
University

Motivation

» nondeterminism and concurrency required
handle interleaving
Floyd-Hoare logic only for sequential programs

Owicki-Gries Logic/Method
» a.k.a. interference freedom
» Susan Owicki and PhD supervisor David Gries
» add a construct to the programming language for threads
» study the impact for Hoare triples

Australian
National

University

Floyd-Hoare Logic and Decorated Programs

Notation: processes: individual program
system: overall (concurrent) program will be

Floyd-Hoare logic
« each of the individual processes has an assertion

» before its first statement (precondition)
» between every pair of its statements (pre-/postcondition), and
» after its last statement (postcondition)

e Hoare-triples can be checked (local correctness)
« Floyd-Hoare logic is compositional

Australian

National
University

Motivation

add pre- and postcondition for system, and a rule

{Pi}ei {Q1} {2} 2 {Qa}
{PLrA P}t |l e {Q1 AQ2}

but this rule is incorrect

Note: we are considering an interleaving semantics

Australian
National

University

Simple Example

fr==0}
{r==0vz==2} {r==0vz==1}
ri=z+1 H Ti=T+2
{r==1vz==3} {r==2Vvz==3}
fr==3)

What would we have to show?

Australian
National

University

The Rule of Owicki Gries

all rules of Floyd-Hoare logic remain valid

{P1} 1 {Q1} .. . {Pn} cn {Qn} interference freedom
{Pl/\"'/\Pn}Cl |||| Cn {Ql/\.../\Qn}

(par)

Australian
National

University

Interference Freedom

Interference freedom is a property of proofs of the {P;} ¢; {Q;}
 suppose we have a proof for {P;} ¢; {Q;}

« prove that the execution of any other statement c¢; does not validate
the reasoning for {P;} ¢; {Q.;}

it is a bit tricky
« interference freedom is a property of proofs, not Hoare triples

« identifying which parts of a proof need to be considered requires
some effort

Australian
National

University

Formalising Interference Freedom

In a decorated program D and command c of the program, let

» pre(D, c) be the precondition (assumption/predicate) immediately
before ¢, and

 post(D, ¢) the postcondition immediately after ¢

» remember {P} ¢ {Q} valid if there is a decorated program D with
pre(D,c) = P and post(D,¢) = Q

Australian

National
University

Formalising Interference Freedom

{Pi} i {Q1} .. AP} en {Qn} interference freedom
{PLA--APterll-len {QuA---AQn}

(par)

Suppose every ¢; has a decorated program D..,.
Definition
D, is interference-free with respect to D, (i # j) if for each statement ¢;
in ¢; and c;. in ¢;

¢ {pre(De,,c;) Apre(De,,c;)} ; {pre(De,, ¢;)}

¢ {post(D,, ;) A pre(e €} € g {post(e €))}
The D.,, D.,, ... D., are mterference free if they are pairwise
interference-free with respect to one other.

Australian
National

University

Interference Freedom — Remark

« applying the Rule (par) requires the development of
interference-free decorated programs for the ¢;

« proving interference-freedom of D,, with respect to D.. focusses on

J

» preconditions of each statement in ¢; and postcondition of D,

Australian
National

University

Simple Example

Why is interference freedom violated?

{r ==0}

{r==0} {r==0}
rz:=x+1 || r:=x+2
fo==1} fr==1}

fr==1}

Australian
National

University

Soundness

Theorem
If{P} c{Q} is derivable using the proof rules seen so far then c is valid

Australian
National

University

Completeness

Can every correct Hoare triple be derived?

« completeness does not hold
« neither does relative completeness

Australian

National
University

Incompleteness

Lemma
The following valid Hoare triple cannot be derived using the rules so far.

{true} z:=z+2||z:=0 {r==0vVz==2}

Proof.
By contradiction. Suppose there were such a proof. Then there would be @, R such that

{true} z : =z +2{Q}
{true} z := 0 {R}
QANR=— 2z ==0Vz==
By (assign) ({P[a/l]} | := a {P}), true = Q[z + 2/x] holds. Similarly, R[0/x] holds.
By (par), {R A true} « := = + 2 { R} holds, meaning R = Rz + 2/«] is valid.

But then by induction, Vz. (x > 0 A even(z)) = R is true. Since
QAR =— z=0Vuz=2,itfollows that

Ve. (x> 0Aeven(z)) = (z==0Va==2),

which is a contradiction. 0

Australian
National

University

Fixing the Problem

We showed
e R must hold for all even, positive =
« R must hold after execution of z := 0
* R must also hold both before and after execution of z := = + 2

we need the capability in R to say that
until x :== x + 2 is executed, x = 0 holds.

Australian
National

University

Auxiliary Variables

variables that are put into a program just to reason about progress in
other processes

done :=0;

(
z,done :=z +2,1
z:=0

 requires synchronous/atomic assignment
 proof is now possible

Australian

National
University

Decorated Programs with Auxiliary Variables

{true}

done :=0;

{done == 0}

(
{done == 0}
z,done:=z +2,1
{true}

Il
{true}
xz:=0
{z==0vVaz==2)A(done==0=2==0)}

)

{c==0Vz==2}

Note: some implications skipped in the decorated program

Australian
National

University

Relative Completeness

 adding auxiliary variables enables proofs
+ we do not want these variables to be in our code

{P} c{Q} x not free in Q x auxiliary in ¢
{P} ¢ {Q}

where ¢ is ¢ with all references to = removed.

(auz)

Theorem (Relative Completeness)

Adding Rules (par) and (aux) to the other rules of Floyd-Hoare logic
yields a relatively complete proof system.

Australian
National

University

Problem

The Owicki-Griess Methods is not compositional.

20

Australian
National

University

Peterson’s Algorithm for Mutual exclusion

the following 4 lines of (symmetric) code took 15 years to discover

(mid 60’s to early 80s)

let a,b be Booleans and ¢ : {4, B}

other code of A

a := true

t:=A

await (-b vt == B)
critical section A

a := false

{—a A —b}

other code of B

b:= true
t:=B
await (—a vVt == A)

critical section B
b:= false

21

Australian
National

University

Notes on Peterson’s Algorithm

« protects critical sections from mutual destructive interference
e guarantees fair treatment of A and B

» how do we show that A (or B) is never perpetually ignored in favour
of B (4)?
> requires liveness in this case
» a topic for another course/research project
» in fact there is one line that could potentially violate liveness
(requires knowledge about hardware)

4 correct lines of code in 15 years is a coding rate of roughly
1 LoC every 4 years

22

Australian
National

University

Yet Another Example

FindFirstPositive

1:=0;75:=1;2:=4];y:=|A];

while i < min(z,y) do while j < min(z,y) do
if A[:] > 0 then if A[j] > 0then
=1 ‘ Yy:i=7j
else else
1:=1+2 ji=7+2

r = min(x, y)

23

Australian
National

University

i=03j:=1 0= |A];y:= Al

{Pl /\Pz}
{P1} {P2}
while ¢ < min(z,y) do while j < min(z,y) do
{PLAi<azAi<|A]} {P2Aj<yni<|Al}
if Aj] > 0then if A[j] > 0then
{PLANi<xzANi<]|AlAA[] >0} {P2Aj<ynj<|A[AA[f] >0}
T:i=1 y:=7
(P} |
else else
{PLAi<zANi<|AAA[] <0} {P2Aj<ynj<|AINA[j] <0}
=1+ 2 Ji=73+2
{P1} {P:}
{P1} {P2}
{P1 Ai > min(z,y)} {P2 Aj > min(z,y)}

{P1 A P> Ai > min(z,y) A j > min(z,y)}
r := min(z, y)
{r<|AIANVE.O<k<r=Ak]<0)A(r<|Al = Alr] >0)}

Py
Py

x <|A|A(VE.O<k<iAnkeven= A[k] <0)AievenA (z < |A| = Alz] > 0)
y<|AIANNVE.O<k<jAkodd= A[k] <0)AjoddA (y < |A| = Afy] > 0)

24

	Semantic Equivalences

