Australian
ati

COMP3610/6361
Principles of Programming Languages

Peter Hofner

Oct 20, 2023

Australian
“ajtionaj

Section 25

Conclusion

Australian
National

University

Learning Outcome |

1. Understand the role of theoretical formalisms,
such as operational and denotational semantics

IMP language

operational semantics

denotational semantics

axiomatic semantics

functions

(call-by-name, call-by-value)

references

» extensions

(data structures, error handling, object-orientation,...)

vyvYy VY VvVYYy

\4

Australian

National
University

Learning Outcome Il

2. Apply these semantics in the context of programming languages

» IMP language + extensions
» configurations

» derivations

» transitions

Australian
National

University

Learning Outcome llI

3. Evaluate differences (advantages/disadvantages) of these
theoretical formalisms

» small-step vs big-step
» operational vs denotational vs axiomatic (vs algebraic)

Australian
National

University

Learning Outcome IV

4. Create operational or denotational semantics of simple imperative
programs

» IMP + extensions + types
» derivations
» transitions

Australian
National

University

Learning Outcome V

5. Analyse the role of types in programming languages

types

subtypes

progress and preservation properties
Curry-Howard correspondence

vYyVvVvly

Australian

National
University

Learning Outcome VI

6. Formalise properties and reason about programs

Isabelle/HOL

semantic equivalences
decorated programs
Floyd-Hoare logic, wip
Owicki-Gries, Rely-Guarantee

vy VY VvY VY

Australian
National

University

Learning Outcome VII

7. Apply basic principles for formalising concurrent programming
languages

» Guarded Command Language
» process algebra
(value-passing CCS and pure CCS)
» semantic equivalences
» Owicki-Gries, Rely-Guarantee

Australian
National

University

Learning Outcome VIII

8. Additional Outcomes

» structural induction
» substitution
> ..

-] Australian
National

¢ i\/’é University

We covered A LOT

... but it’s only the tip of the iceberg

Australian
National

University

The Message |

Good language design?

« precise definition of what the language is
(so can communicate among the designers)

« technical properties
(determinacy, decidability of type checking, etc.)

e pragmatic properties
(usability in-the-large, implementability)

(that’s also an answer to LO1)

Australian
National

University

The Message |l

What can you use semantics for?
« to understand a particular language
» what you can depend on as a programmer
» what you must provide as a compiler writer
« as a tool for language design:
» for clean design
» for expressing design choices, understanding language features and
how they interact
» for proving properties of a language, eg type safety, decidability of type
inference.
« as a foundation for proving properties of particular programs
verified software

Australian
National

University

Trend: Verified Software
e increasingly important

 “rough consensus and running code” (trial and error)
is not sufficient

« develop operational models of real-world languages/applications

 progress in verification makes it possible
build end-to-end verified systems

v

formal semantics for (a large subset of C) [see M. Norrish]
CompCert/CakeML: verified compilers

(full compiler verified in Cog/HOL4)

selL4: high-assurance, high-performance operating system microkernel
(proofs in Isabelle/HOL)

formal semantics for hardware (PPC, x86, ARM)

v

v

v

Australian
National

= University

Are We Done

* more ‘standard’ features

dependent types
continuations
lazy evaluation
side effects

vy vy VY

e more support for separation of concerns

> low-level features, such as memory models
> high-level features, such as broadcast

« more applications
» optimisations
» code generation

Australian
National

University

More Features — Dependent Types

« having “compile-time” types that depend on “run-time” values
 can avoid out-of-bounds errors

Australian
National

University

More Features — Dependent Types

example: typing Lists with Lengths

non-dependant type for list (similar to trees)
nil :IList
cons :int — IList — IList
hd :IList — int
tl : IList — IList
isnil : IList — bool

Australian

National
University

More Features — Dependent Types

Example: Typing Lists with Lengths

dependant type for list (carry around length)
nil :IList0
cons : IIn:nat. int — (IList n) — (IList (succ n))
hd :IIn:nat. (IList (succ n)) — int
tl : IIn:nat. (IList (succ n)) — (IList n)
isnit :

Australian
National

University

More Features — Dependent Types

Example: typing lists with lengths
« using and checking dependent types

(fnn :nat= (fn{ : IList(succ (succ n)) =
(hd (succ n) 1)+
(hd n (1l (succ n) 1))

)

 propositions as dependent types
(Curry—Howard lens)

get : IIm : nat. IIn : nat. (Less m n) — (IList n) — int

Australian
National

University

More Feature — Hardware Model

Fundamental Question

What is the behaviour of memory?
 ...at the programmer abstraction
 ...when observed by concurrent code

20

Australian

National
University

More Feature — Hardware Model

First Model: Sequential Consistency

Multiple threads acting on a sequentially consistent (SC) shared
memory:
the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, re-
specting the order specified by the program

[Lamport, 1979]

21

Australian

National
University

More Feature — Hardware Model

(sKip || (1:=7+1), {lm1}) e o % . ((skip| (skip, {{—8})

s

(= 1)1 =T+1), {10} (skip || (1 :=7+0), {1 1})

\
/
\
%

(=14 0) | (:=T+1), {i—0}) ((1=1) [(1= T+0), {Im0}) (skip || (1 := 7). {1~ 1}) —“— (skip || skip, {I~7})

/

(=140 | (=741, {10}

\

(=141 || (1:=T+0). {L0}) ((U=140) (1:=7), {L=0})

/
\
/
\

((1=140] (1:==7+0), {I—0}) (=1 (1=7), {I=0})

\
/
\
/

(1= 1) | skip. {1+ 7}) —“— (skip || skip. {I~+1})

/
s
1/
\

(@ W (1:=7), {l=0}) {(1:=1+0)| skip, {I~+T})

(=141 | skip, {I—0}) ——se— bt e v ((skip| (skip. {I-8})

/

22

Australian
National

University

More Feature — Hardware Model

e implement naive mutual exclusion

« specify concepts such as “atomic”
(see GCL)
« but on x86 hardware you have these behaviours

» hardware busted?
» program bad?
» model is wrong?

SC is not a good model of x86 (or of Power, ARM, Sparc, Itanium...)

23

Australian
National

University

More Feature — Hardware Model
New problem?

No: IBM System 370/158MP in 1972, already non-SC

24

Australian
National

University

More Feature — Hardware Model

But still a research question

« mainstream architectures and languages are key interfaces
e ...but it is been very unclear exactly how they behave

¢ more fundamentally:
» it is been (and in significant ways still is) unclear how we can specify
that precisely
» if we can do that, we can build on top:
explanation, testing, emulation, static/dynamic analysis,
model-checking, proof-based verification,. . .

25

Australian
National

University

More Features — Broadcast

Motivation:
model communication

¢ network protocols
e communication protocols

26

Australian
National

University

Broadcast in CCS

&3 / o /
aP 2 p % M
P+Q - P P+Q-5qQ

p- p PP Q-5qQ Q-5qQ
PlQ - P'|Q P|Q — P'|Q P|Q - P|Q/

l V4 ¢
PP PP . P—= P g
f(e ¢ (el#e) —F— (4 Zp)
P18 Py Pe -5 Pe AL pr

P bﬁl P/ Q_/_> P bﬁl P/ Q bﬁ2 Q/ 7Q bﬂQ Q
PIQ 25 P|Q PIQ % P PIQ 5 Pl

frofa=ti#. With

27

Australian
National

University

Broadcast in CCS

« parallel composition associative, commutative?
« all operators are a congruence?

28

Australian
National

University

Case Study: AODV

Ad Hoc On-Demand Distance Vector Protocol

« routing protocol for wireless mesh networks
(wireless networks without wired backbone)

ad hoc (network is not static)
on-Demand (routes are established when needed)
distance (metric is hop count)

developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

« one of the four protocols standardised by the IETF MANET working
group (IEEE 802.115s)

29

Australian

National
University

Case Study: AODV

Main Mechanism
« if route is needed
BROADCAST RREQ
« if node has information about a destination
UNICAST RREP
« if unicast fails or link break is detected
GROUPCAST RERR

 performance improvement via
intermediate route reply

Australian
National

University

Case Study: AODV

Formal Specification Language (Process Algebra)

X (expy,...,exp,)

P+@Q

o] P

[var := exp] P
broadcast(ms).P
groupcast(dests, ms).P
unicast(dest,ms).P » Q
send(ms).P
receive(msg).P
deliver(data).P

process calls
nondeterministic
if-construct (guard)
assignment followed
broadcast
groupcast

unicast

send

receive

deliver

31

Australian
National

University

Case Study: AODV
Specification
+ [(oip, rreqid) ¢ rregs | /# the RREQ 1s new to this node */
[rt ;= update(rt,(oip,0sn, kno, val, hops +1,5ip,@)] /* update the route o eip inrt */
[rregs := rreqsl{(oip.rTeqid)}] /* update rreqs by adding (oip, rreqid) */
(
[dip=1ip] /#* this node is the destination node */
[sn := max(sn,dsn)] /* update the sqn of ip */
/* unicast a RREP towards oip of the RREQ #/
unicast(nhop(rt,eip),rrep(0,dip.sn,o0ip,ip)) . AODV(ip,sn,rt,rreqs,store)
» /= I the transmission is unsuccessful, a RERR message is generated */
[dests := {(rip.inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]
rt := invalidate(rt,dests)]]
[store := setRRF{store,dests)]
llpre := | J{precs(rt,rip)|(rip,*) € dests}]
[dests := {(rip.rsn)|(rip,rsn) € dests A precs(rt,rip)+# 0}]
groupcast(pre,rerr(dests,ip)) . AODV(ip,.sn,rt.rreqs,store)
+[dip#ipl /#* this node is not the destination node */
(
[dip&vD(rt) Adsn < sqn(rt.dip) A sqnf(rtdip)=kno] /#valid route to dip that is fresh enough */
/* update rt by adding precursors */
[rt := addpreRT(rt.dip.{sip})]
[rt := addpreRT(rt,oip,{nhop(rt.dip)})]l
/* unicast a RREP towards the oip of the RREQ *#/
unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn{rt.dip).oip,ip)) .

32

Australian

National
University

Case Study: AODV

Full specification of AODV (IETF Standard)

Specification details
« around 5 types and 30 functions

« around 120 lines of specification
(in contrast to 40 pages English prose)

Properties of AODV
route correctness v
loop freedom v/ (for some interpretations)
route discovery X
packet delivery X

33

Australian
National

University

Final Oral Exam

e 6-10 November, 2021

30 minutes oral examination

read the guidelines (available via Wattle)
send through the signed statement in time

GOOD LUCK

34

Australian
National

University

Feedback

Please provide feedback

« types of possible feedback

» suggestions
> improvements

» send feedback

» SELT
> to me (orally, written)

35

Australian
National

University

The ‘Final’ Slide

* Q/A sessions

» Thursday, November 2 (11am-12pm),
» topics: all questions you prepare
> no questions, no session

| hope you...

» had some fun (I had),
even despite the challenging times
» learnt something useful

36

Australian
National

University

COMP3610/6361 done — what’s next?

» COMP3630/6363 (S1 2024)
Theory of Computation

- COMP4011/8011 (S2 2022)
Special Topic: Software Verification using Proof Assistants

« Individual Projects/Honour’s Theses/PhD projects ...
(potentially casual jobs)

37

Australian
National

University

Logic Summer School
December 04 — December 15, 2021

Lectures include
¢ Fundamentals of Metalogic
(John Slaney, ANU)
* Defining and Reasoning About Programming Languages
(Fabian Muehlboeck, ANU)
¢ Propositions and Types, Proofs and Programs
(Ranald Clouston, ANU)
Godel’'s Theorem Without Tears
(Dominik Kirst, Ben-Gurion University)
¢ Foundations for Type-Driven Probabilistic Modelling
(Ohad Kammar, U Edinburgh)

Registration is A$150

http://comp.anu.edu.au/lss
38

http://comp.anu.edu.au/lss

Australian
National

University

— THE END —

39

	Conclusion

