

COMP3610/6361 Principles of Programming Languages

Peter Höfner

Oct 17, 2023

Section 26

Add-On Program Algebras: Floyd-Hoare Logic meets Regular Expressions

Motivation

CCS and other process algebra yield algebraic expressions, e.g.

$$a.b.$$
nil $+ c.$ nil

they also give rise to algebraic (semantic) equalities, e.g.

$$a.nil + a.nil = a.nil$$

but how does algebra relate to Hoare triples

Beyond Floyd-Hoare Logic

some 'optimisations' are not possible within Floyd-Hoare logic

$$\frac{\{P\} \text{ if } b \text{ then } c \text{ else } c \; \{Q\}}{\{P\} \; c \; \{Q\}}$$

(trivially) unprovable in Floyd-Hoare logic

Trace Model – Intuition

a program can be interpreted as set of program runs/traces

sets of traces
$$s_0c_1s_1c_2\ldots s_{n-1}c_{n_1}s_n$$

$$A \subseteq \Sigma \times (Act \times \Sigma)^*$$

non-deterministic choice sequential composition iteration skip fail/abort

$$\begin{array}{l} A \cup B \\ AB = \{asb \mid xs \in A \wedge sb \in B\} \\ A^* = \bigcup_{n \geq 0} = A^0 \cup A^1 \cup A^2 \dots \\ 1 = \Sigma \text{ (all traces of length 0)} \\ 0 = \emptyset \end{array}$$

Guarded Commands - Intuition

a program can be interpreted as set of guarded commands

sets of guarded strings
$$\alpha_0c_1\alpha_1c_2\ldots\alpha_{n-1}c_{n_1}\alpha_n$$
 $(\alpha,\beta,\ldots$ Boolean expressions)

 $\begin{array}{ll} \text{non-deterministic choice} & A \cup B \\ \text{sequential composition} & AB = \{a\alpha b \mid x\alpha \in A \land \alpha b \in B\} \\ \text{iteration} & A^* = \bigcup_{n \geq 0} = A^0 \cup A^1 \cup A^2 \dots \\ \text{skip} & 1 = \{\text{all Boolean expressions}\} \\ \text{fail/abort} & 0 = \emptyset \end{array}$

Properties

- associativity: a(bc) = (ab)c
- neutrality: 1a = a = a1
- distributivity: (a+b)c = ac + bca(b+c) = ab + ac (?)
- absorption: 0a = 0 = a0
- iteration: $(ab)^*a = a(ba)^*$

Regular expressions

we know these rules from regular expressions, finite automata and formal languages

Kleene Algebra (KA)

is the algebra of *regular expressions* (traces/guarded commands without 'states')

Examples

- ab + ba $\{ab, ba\}$
- $(ab)^*a = a(ba)^*$ $\{a, aba, ababa, \dots\}$
- $(a+b)^* = (a^*b)^*a^*$ {all strings over a,b}

Regular Sets - Intuition

regular sets over Σ

```
\begin{array}{ll} \text{non-deterministic choice (+, |)} & A \cup B \\ \text{sequential composition} & AB = \{ab \mid x \in A \land b \in B\} \\ \text{iteration} & A^* = \bigcup_{n \geq 0} = A^0 \cup A^1 \cup A^2 \dots \\ \text{neutral} & 1 = \{\varepsilon\} \\ & \text{(language containing the empty word)} \\ \text{empty language} & 0 = \emptyset \end{array}
```

Axioms of Kleene Algebra

A *Kleene algebra* is a structure $(K, +, \cdot, 0, 1, *)$ such that

• K is an *idempotent semiring* under +, \cdot , 0, 1

$$(a + b) + c = a + (b + c)
a + b = b + a
a + a = a
a + 0 = a
$$a \cdot (b + c) = a \cdot b + a \cdot c
(a, b) \cdot c = a \cdot (b \cdot c)
a \cdot 1 = 1 \cdot a = a
a \cdot 0 = 0 \cdot a = 0
a \cdot (b + c) = a \cdot b + a \cdot c
(a + b) \cdot c = a \cdot c + b \cdot c$$$$

- a*b =least x such that $b + ax \le x$
- $ba^* = \text{least } x \text{ such that } b + xa \le x$

 $x \le y \Leftrightarrow x + y = y$ multiplication symbol is omitted

Characterising Iteration

complete semiring/quantales (suprema exist)

$$a^* = \sum_{n>0} a^n$$

supremum with respect to \leq

- · Horn axiomatisation
 - $a^*b = \text{least } x \text{ such that } b + ax \leq x$:

$$1 + aa^* \le a*$$
$$b + ax \le x \Rightarrow a^*b \le x$$

▶ $ba^* = \text{least } x \text{ such that } b + xa \leq x$:

$$1 + a^* a \le a *$$
$$b + ax \le x \Rightarrow ba^* \le x$$

Models & Properties

regular expressions, traces and guarded strings form Kleene algebras

abstract laws: $(ab)^*a \le a(ba)^*$ (proof is a simple exercise)

applies to all models

guarded strings/commands have more structure (assertions)

Kleene Algebra with Tests (KAT)

A Kleene algebra with tests is a structure $(K, B, +, \cdot, *, \neg, 0, 1)$, such that

- $(K, +, \cdot, *, 0, 1)$ is a Kleene algebra
- $(B, +, \cdot, \neg, 0, 1)$ is a Boolean algebra
- $B \subseteq K$

- a, b, c, \ldots range over K
- p, q, r, \ldots range over B

Kleene Algebra with Tests (KAT)

- $+, \cdot, 0, 1$ serve double duty
 - applied to programs, denote choice, composition, fail, and skip, resp.
 - applied to tests, denote disjunction, conjunction, falsity, and truth, resp.
 - · these usages do not conflict

$$pq = p \land q$$
 $p + q = p \lor q$

Models

Trace models
 K: sets of traces s₀c₁s₁c₂...s_{n-1}c_{n₁}s_n
 B: sets of traces of length 0

• Language-theoretic models K: sets of guarded strings $\alpha_0c_1\alpha_1c_2\ldots\alpha_{n-1}c_{n_1}\alpha_n$ B: atoms of a finite free Boolean algebra

Modelling Programs

[Fischer & Ladner 79]

- a : b = ab
- if p then a else $c = pa + \neg pc$
- while p do $c = (pc)^* \neg p$

Floyd-Hoare Logic vs KAT

Theorem

KAT subsumes propositional Floyd-Hoare logic (PHL) (Floyd-Hoare logic without assignment rule)

 $\{p\}\ c\ \{q\}\ {\sf modeled}\ {\sf by}\ pc=pcq\ ({\sf or}\ pc\neg q=0,\, {\sf or}\ pc\neg q\leq 0)$

Floyd-Hoare logic

$$\frac{\{p\} \ a \ \{q\} \quad \{q\} \ b \ \{r\}}{\{p\} \ ab \ \{r\}}$$

$$\frac{\{p \wedge r\} \ a \ \{q\} \quad \{p \wedge \neg r\} \ b \ \{q\}}{\{p\} \text{ if } r \text{ then } a \text{ else } b \ \{q\}}$$

$$\frac{\{p \wedge r\} \ a \ \{p\}}{\{p\} \ \text{while} \ r \ \text{do} \ a \ \{\neg r \wedge p\}}$$

$$pa\neg q = 0 \land qb\neg r = 0 \Longrightarrow pab\neg r = 0$$

$$pra \neg q = 0 \land p \neg rb \neg q = 0 \Longrightarrow p(ra + \neg rb) \neg q = 0$$

$$pra\neg p = 0 \Longrightarrow p(ap)^*\neg(\neg rp) = 0$$

Crucial Theorems

Theorem

These are all theorems of KAT (proof is an exercise)

Theorem (Completeness Theorem)

All valid rules of the form

$$\frac{\{p_1\}\ c_1\ \{q_1\}\ \dots\ \{p_n\}\ c_n\ \{q_n\}}{\{p\}\ c\ \{q\}}$$

are derivable in KAT (not so in PDL)

Advantages of Kleene Algebra

- · unifying approach
- equational reasoning + Horn clauses some decidability & automation
- but, missing out assignment rule of Floyd-Hoare logic

Other Applications of KA(T)

There are more applications

- · automata and formal languages
 - regular expressions
- · relational algebra
- program logic and verification
 - dynamic Logic
 - program analysis
 - optimisation
- · design and analysis of algorithms
 - shortest paths
 - connectivity
- others
 - hybrid systems
 - ▶ ..

Rely-Guarantee Reasoning

Hoare triple

$$\{p\}\ c\ \{q\}\ \Leftrightarrow\ pc\neg q=0$$

But what about $\{P,R\}$ c $\{G,Q\}$?

$$\{p, a_R\} \ c \ \{b_G, q\} \ \Leftrightarrow \{p\} \ a_R \parallel c \ \{q\} \land c \le b_G$$

$$\Leftrightarrow p(a_R \parallel c) \neg q = 0 \land c \le b_G$$

needs algebra featuring parallel (we have seen one)

- $R \parallel (S+T) = R \parallel S + R \parallel T$
- $R \parallel (S \cdot T) = (R \parallel S) \cdot (R \parallel T)$
- $R \parallel (S \parallel T) = (R \parallel S) \parallel (R \parallel T)$

Rely-Guarantee Reasoning

Hoare triple

$$\{p\}\ c\ \{q\}\ \Leftrightarrow\ pc\neg q=0$$

But what about $\{P, R\}$ c $\{G, Q\}$?

$$\{p, a_R\} \ c \ \{b_G, q\} \ \Leftrightarrow \{p\} \ a_R \parallel c \ \{q\} \land c \le b_G$$

$$\Leftrightarrow p(a_R \parallel c) \neg q = 0 \land c \le b_G$$

needs algebra featuring parallel (we have seen one)

- $R \parallel (S+T) = R \parallel S + R \parallel T$
- $R \parallel (S \cdot T) = (R \parallel S) \cdot (R \parallel T)$
- $R \parallel (S \parallel T) = (R \parallel S) \parallel (R \parallel T)$