COMP 3610 Tutorial 1

4 August, 2023

Exercise 1

1. According to the sos-rules of IMP, what is the successor state of the following configuration?

$$\langle \mathbf{if} \ ! l \geq 5 \mathbf{then} \ l := ! m \mathbf{else} \ m := ! l \ , \{ l \mapsto 3, m \mapsto 1 \} \rangle$$

- 2. Prove your answer from the previous step, i.e. provide a derivation tree.
- 3. What are the following steps/successor states?

Exercise 2

We want to extend syntax and semantics of IMP for *Boolean negation*. That means, we want to have an additional (unary) operator 'Not'.

The full syntax is as follows:

$$\begin{array}{ll} E & ::= & n \mid b \mid E+E \mid E \geq E \mid \neg E \mid \\ & l ::= E \mid \ !l \mid \\ & \mathbf{skip} \mid E; E \mid \\ & \mathbf{if} \ E \ \mathbf{then} \ E \ \mathbf{else} \ E \mid \\ & \mathbf{while} \ E \ \mathbf{do} \ E \end{array}$$

Provide the sos-rules for the new operator.

Exercise 3

Give a derivation tree to prove that

 \vdash while true do skip

is well-typed.

Exercise 4

- 1. Write a program P that assumes it is given two integers stored in locations l_1 and l_2 , respectively, determines the bigger value of the two, stores this bigger value in l_1 , and returns the value. Make sure that you only use the syntax given on slide 33 in the first lecture.
- 2. Prove that your program P is well typed. That means, give a type derivation for

 $l_1: intref, l_2: intref \vdash P: int$