COMP 3610 Tutorial 4

24 August, 2023

Exercise 1

1. Extend IMP with a new operator "/" for integer division. This operator has a special case for when the divisor is 0 . In this case, it should raise an exception. Pick one of the two exception semantics with try-catch-blocks from Section 9 to model this. Give the extensions to the grammar, typing rules, and operational semantics.
2. Write a program that uses the division operator within a try-block. Show how it type-checks.

Exercise 2

In Section 10, we proposed and dismissed the following two possible rules for subtyping between reference types:

$$
\frac{T<: T^{\prime}}{T \boldsymbol{\operatorname { r e f }}<: T^{\prime} \mathbf{r e f}} \quad \frac{T^{\prime}<: T}{T \operatorname{ref}<: T^{\prime} \mathbf{r e f}}
$$

For each of them, write a program that would type-check if we used the respective rule, but that would go wrong if you run it. Show a bad state it would step to, and explain what is wrong.

Exercise 3

For each of the following subtypings, either show the proof tree or give a program that would type-check but also go wrong (similar to Exercise 2) if that subtyping would hold. Assume nat $<$: int.

1. $\} \rightarrow\{p:$ int $\}<:\{q:$ bool $\} \rightarrow\{p:$ int $\}$
2. $\} \rightarrow\{p:$ int $\}<:\{q:$ bool $\} \rightarrow\{p:$ int $, q:$ bool $\}$
3. $\{q:$ bool $\} \rightarrow\{p:$ int $\}<:\{ \} \rightarrow\{p:$ int $\}$
4. $\{q:$ bool $\} \rightarrow\{p: \operatorname{int}\}$ ref $<:\{ \} \rightarrow\{p: \operatorname{int}\}$
5. $(\{q:$ bool $\} \rightarrow\{p:$ int $\}) \rightarrow$ nat $<:(\{ \} \rightarrow\{p:$ int $\}) \rightarrow$ int
6. $(\{q:$ bool $\} \rightarrow\{p:$ int $\}$ ref $) \rightarrow$ nat $<:(\{ \} \rightarrow\{p:$ int $\}$ ref $) \rightarrow$ int

Exercise 4

Prove the following statement: For all $\Gamma, E, E^{\prime}, T, T^{\prime}, T^{\prime \prime}, x$, if $x \notin \operatorname{dom}(\Gamma)$, $\Gamma \vdash E: T, T<: T^{\prime \prime}$, and $\Gamma, x: T^{\prime \prime} \vdash E^{\prime}: T^{\prime}$, then $\Gamma \vdash\{E / x\} E^{\prime}: T^{\prime \prime}$

Bonus Exercise

So far, when we "built" a typing proof or tried to find a step in the operational semantics, we could simply derive every part by just searching for applicable rules and doing pattern matching. The s-trans rule for subtyping prevents this, because it requires us to come up with the middle type T^{\prime}. In our system, the only reason we need this rule explicitly is because we split up record subtyping into three rules. Suppose that instead of $s-r c d 1$, $s-r c d 2$, and $s-r c d 3$, we used the following rule:

$$
\mathrm{S-RCD} \frac{\forall 1 \leq i \leq m \cdot \exists 1 \leq j \leq n \cdot l a b_{j}=l a b_{i}^{\prime} \wedge T_{j}<: T_{i}}{\left\{l a b_{1}: T_{1}, \ldots, l a b_{n}: T_{n}\right\}<:\left\{l a b_{1}^{\prime}: T_{1}^{\prime}, \ldots, l a b_{m}^{\prime}: T_{m}^{\prime}\right\}}
$$

Consider a variant of $<$: that not use the rules s-trans, s-rcd1, s-rcd2, and $\mathrm{s}-\mathrm{rcd} 3$, but instead possibly $\mathrm{s}-\mathrm{rcd}$. Let us call this variant $<:^{A}$, while the original version without $\mathrm{s}-\mathrm{rcd}$ is still called $<$:.

1. Prove (by rule induction) that for any T_{1}, T_{2}, and T_{3}, if $T_{1}<$: $^{A} T_{2}$ and $T_{2}<{ }^{A} T_{3}$, then $T_{1}<{ }^{A}{ }^{A} T_{3}$.
2. Prove (by rule induction) that for any T and T^{\prime}, if $T<: T^{\prime}$, then $T<:^{A} T^{\prime}$.
