
COMP 3610 Tutorial 4

24 August, 2023

Exercise 1

1. Extend IMP with a new operator “/” for integer division. This operator
has a special case for when the divisor is 0. In this case, it should raise an
exception. Pick one of the two exception semantics with try-catch-blocks
from Section 9 to model this. Give the extensions to the grammar, typing
rules, and operational semantics.

2. Write a program that uses the division operator within a try-block. Show
how it type-checks.

Exercise 2

In Section 10, we proposed and dismissed the following two possible rules for
subtyping between reference types:

T <: T ′

T ref <: T ′ ref

T ′ <: T

T ref <: T ′ ref

For each of them, write a program that would type-check if we used the respec-
tive rule, but that would go wrong if you run it. Show a bad state it would step
to, and explain what is wrong.

Exercise 3

For each of the following subtypings, either show the proof tree or give a program
that would type-check but also go wrong (similar to Exercise 2) if that subtyping
would hold. Assume nat <: int.

1. {} → {p : int} <: {q : bool} → {p : int}

2. {} → {p : int} <: {q : bool} → {p : int, q : bool}

3. {q : bool} → {p : int} <: {} → {p : int}

4. {q : bool} → {p : int} ref <: {} → {p : int}

5. ({q : bool} → {p : int}) → nat <: ({} → {p : int}) → int

6. ({q : bool} → {p : int} ref) → nat <: ({} → {p : int} ref) → int

COMP3610/6361 1 © P. Höfner & F. Mühlböck



Exercise 4

Prove the following statement: For all Γ, E,E′, T, T ′, T ′′, x, if x /∈ dom(Γ),
Γ ⊢ E : T , T <: T ′′, and Γ, x : T ′′ ⊢ E′ : T ′, then Γ ⊢ {E/x}E′ : T ′′

Bonus Exercise

So far, when we “built” a typing proof or tried to find a step in the operational
semantics, we could simply derive every part by just searching for applicable
rules and doing pattern matching. The s-trans rule for subtyping prevents this,
because it requires us to come up with the middle type T ′. In our system, the
only reason we need this rule explicitly is because we split up record subtyping
into three rules. Suppose that instead of s-rcd1, s-rcd2, and s-rcd3, we used
the following rule:

s-rcd
∀1 ≤ i ≤ m.∃1 ≤ j ≤ n.labj = lab′i ∧ Tj <: Ti

{lab1 : T1, ..., labn : Tn} <: {lab′1 : T ′
1, ..., lab

′
m : T ′

m}

Consider a variant of <: that not use the rules s-trans, s-rcd1, s-rcd2,
and s-rcd3, but instead possibly s-rcd. Let us call this variant <:A, while the
original version without s-rcd is still called <:.

1. Prove (by rule induction) that for any T1, T2, and T3, if T1 <:A T2 and
T2 <:A T3, then T1 <:A T3.

2. Prove (by rule induction) that for any T and T ′, if T <: T ′, then T <:A T ′.

COMP3610/6361 2 © P. Höfner & F. Mühlböck


