COMP 3610 Tutorial 8

5 October, 2023

Exercise 1

Assume that standard IMP allows expressions of the form $a_1 \neq a_2$ with the obvious semantics, and similarly, that assertions have a definition for the arithmetic operator *, again using its standard meaning. Consider the following program:

$$\begin{array}{l} l_3 \ := \ 0; \\ l_4 \ := \ 0; \\ \textbf{while} \ !l_3 \ \neq \ !l_2 \ \textbf{do} \\ l_4 \ := \ !l_4 \ + \ !l_1; \\ l_3 \ := \ !l_3 \ + \ 1; \end{array}$$

- 1. Decorate this program with Floyd-Hoare logic assertions that show that after running this program, l_4 contains the product of l_1 and l_2 .
- 2. Do your assertions represent a Hoare logic proof for total or partial correctness? If it is the latter, what change would you need to make to get to total correctness?

Exercise 2

Give the weakest liberal preconditions of the following programs:

- 1. if $|l_1| \ge |l_2|$ then $|l_2| := |l_1|$ else skip $\{l_2| \ge |l_3|\}$
- 2. $l_3 := l_2 + 4$; $l_1 := l_3 + 5$; $l_3 := l_3 + 1$ $\{20 \ge l_1 \land l_3 \ge 4\}$

Exercise 3

Give the strongest postconditions of the following programs:

- $\{l_1 = 5\}$ if $3 \ge !l_1$ then $l_2 := 5$ else $l_2 := !l_1 + 3$
- $\{\exists i.\ l_1 = i + i\}$ $l_1 := l_1 + 1; l_2 := l_1 + l_1$