
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Probabilistic Computation and Approximation

The Conundrum

Problem.

We need to solve an NP-complete problem. What can we do?

Approaches

If a problem is NP-complete (or worse . . .)

Hope that we need to deal with small instances only

Hope that we don’t need to deal with all instances
instances we need to deal with might have extra structure

Don’t insist on the best solution

Don’t insist on getting it right all the time.

VERTEX-COVER

If G = (V ,E) is an undirected graph, a vertex cover of G is a subset C ⊆ V where every
edge touches one of the nodes in C :

∀(x , y) ∈ E (x ∈ C ∨ y ∈ C)

Theorem 1.1

The problem

VERTEX-COVER = { 〈G , k〉 | G has a k-node vertex cover }

is NP-complete.

Proof.

We show 3SAT ≤P VERTEX-COVER by transforming 3cnf-formulas into undirected
graphs with 2 nodes per variable and 3 nodes per clause. [Details: see Sipser]

An NP-completeness proof is typically the first act of the analysis of a computa-
tional problem by the methods of the theory of algorithms and complexity, not the
last. Once NP-completeness has been established, we are motivated to explore
possibilities that are less ambitious than solving the problem exactly, efficiently,
every time.

(Papadimitriou 1994, Page 299)

Optimisation Problems

In optimisation problems we seek the best solution among a collection of possible
solutions.

Example 1.2

On input 〈G〉, where G is an undirected graph, find a smallest vertex cover.
This is NP-hard, too. (We did not formalise this notion.)

Approximation Algorithms

Apx = “On input 〈(V ,E)〉, where (V ,E) is an undirected graph:

1 Set M := ∅.
2 While there exists an edge (x , y) ∈ E ∩M

2

1 M := M ∪ {x , y} — add both vertices to the cover
2 V := V \ {x , y};E := E ∩ (V × V) — remove the vertices

3 Output 〈M〉”.

arguably generates some vertex cover for (V ,E) in polynomial time. But how close is it
to an optimal one?

Theorem 1.3

Apx produces a vertex cover no more than twice as large as a smallest one.

Proof.

Correctness: With every pair of nodes removed in the body of the main loop, we add
both nodes to the cover. This implies that when we then remove these nodes from the
graph, all edges removed touch a node in the cover.

Approximation: For each pair of nodes removed by an iteration of Apx’s main loop, a
smallest vertex cover would contain at least one of the removed nodes, otherwise the
edge between them wouldn’t be covered.

k-Optimality

Definition 1.4

An approximation algorithm for a minimisation problem is k-optimal if it always finds a
solution that is at most k times the size of an optimal one.

An approximation algorithm for a maximisation problem is k-optimal if it always finds a
solution that is at least 1

k
times the size of an optimal one.

Example 1.5

We’ve just shown that Apx is 2-optimal for VERTEX-COVER.

Traveling Salesman Problem

Given n cities 1, . . . , n, and a nonnegative symmetric integer distance di,j = dj,i between
any two cities i and j , we’re asked to find the shortest tour of the cities—that is, a
permutation π such that

∑n
i=1 dπ(i),π((i mod n)+1) is minimal. This problem is called TSP.

Theorem 1.6

Unless P = NP, there is no k ∈ N for which there exists a k-optimal approximation
algorithm for TSP.

Proof.

Suppose to the contrary that T is k-optimal for TSP. Then we can use T to solve
HAMCYCLE (undirected HAMPATH with a closing edge) in P by the machine

H = “On input 〈(V ,E)〉, where (V ,E) is an undirected graph:

1 Run T on a TSP instance with |V | nodes and distances di,j =

{
1 if (i , j) ∈ E

k · |V | otherwise

2 If T returns a total cost of |V | then accept, otherwise reject.”

Remark

This looks bad. If however all distances satisfy the triangle inequality, di,j + dj,k ≥ di,k ,
there are 3

2
-optimal approximation algorithms.

Probabilistic Algorithms

Definition 1.7

A probabilistic TM (PTM) M is a type of NTM in which each non-deterministic step is
called a coin-flip step and has two legal next moves.
The probability of branch b of M’s computation on input w is

Pr[b] =
1

2k

where k is the number of coin-flip steps that occur on b.
The probability that M accepts/rejects w is

Pr[M accepts w] =
∑

b accepts w

Pr[b]

Pr[M rejects w] = 1− Pr[M accepts w]

Definition 1.8

For ε ∈ [0, 1
2
) PTM M recognises A with error probability ε if

1 w ∈ A implies Pr[M accepts w] ≥ 1− ε, and

2 w /∈ A implies Pr[M rejects w] ≥ 1− ε.
BPP is the class of languages that are recognised by polynomial time PTMs with an
error probability of 1

3
.

Amplification Lemma

Problem.

The definition of BPP is robust w.r.t. the choice of error probability; 1
3

is just one
convenient possiblity in [0, 1

2
).

Lemma 1.9

Let ε ∈ [0, 1
2
) and k > 0.

If polynomial time PTM M recognises A with error probability ε then there is another
polynomial time PTM M ′ that also recognises A with error probability 1

2n
k .

Proof.

Run M more than once on the input word and take a majority vote among the
outcomes.

Primes

Since 2002, we know that

PRIMES = { n | n is a prime number in binary }

is in P (e.g. O(log10.5 n)), contrary to what many had believed till then.

We’ll study a (relatively simpler) proof of PRIMES ∈ BPP.

This requires a tiny bit of good old-fashioned number theory.

Let Zp = {0, . . . , p − 1} and Z+
p = Zp \ {0}.

http://en.wikipedia.org/wiki/AKS_primality_test

Theorem 2.1 (Fermat’s little theorem, 1640)

If p is a prime and a ∈ Z+
p then ap−1 ≡ 1 mod p.

Proof from wikipedia.org.

Consider all the possible strings of p symbols, using an alphabet Σ with a different
symbols. The total number of such strings is |Σ|p = ap.
The bracelet of such a word w1 . . .wp is the set of words{
w(1+k)%p . . .w(p+k)%p | k ∈ Zp

}
.

The bracelets form a partition of Σp. The bracelet of a word bp for b ∈ Σ is the singleton
set {bp}. All other bracelets have size p.

It follows that ap − a = a(ap−1 − 1) is divisible by p. Since a and p are co-prime,
ap−1 − 1 must also be divisible by p. The claim follows.

http://en.wikipedia.org/wiki/Proofs_of_Fermat's_little_theorem

Definition 2.2

p passes the Fermat test at a if ap−1 ≡ 1 mod p.

A pseudoprime is a number p that passes Fermat tests for all smaller co-primes a.

If p isn’t pseudoprime it fails at least half of its Fermat tests.

A probabilistic algorithm for pseudoprimality would, on input p,

1 Select a1, . . . , ak ∈ Z+
p randomly.

2 Compute ap−1
i % p for each i .

3 If all computed values are 1, accept, otherwise, reject.

Parameter k affects the error probability: it is at most 1
2k

.

Pseudo-primes that aren’t primes are called Carmichael numbers and quite rare, e.g. 561,
1105, 1729, 2465,. . .

What can we do about them?

http://en.wikipedia.org/wiki/Carmichael_number

Say that q is a square root of 1 modulo p if q2 ≡ 1 mod p.

If p is prime then only ±1 are square roots of 1 modulo p.

For many composite numbers, including all the Carmichael numbers, 1 has 4 or more
such square roots.

Examples 2.3

±1,±8 are the square roots of 1 modulo 21.

±67,±188,±254 are the square roots of 1 modulo 561.

Could we test for these square roots?

After passing the Fermat test ap−1 ≡ 1 mod p we deduce that the number

a(p−1)/2 % p

is a square root of 1 modulo p. We continue to half the exponent as long as it is even,
checking whether the first different value is −1. If it is a different number, then 1 has a
square root modulo p that is different from ±1, hence p is no prime.

BPP Algorithm for PRIMES

prime = “On input p:

1 If p is even, accept if p = 2; otherwise, reject.

2 Select a1, . . . , ak ∈ Z+
p randomly.

3 For each 1 ≤ i ≤ k:

1 Compute ap−1
i % p and reject if different from 1.

2 Let s, t, h ∈ N such that s · t = p − 1 where s is odd and t = 2h.

3 Compute the bi,j = as·2
j

i % p for 0 ≤ j ≤ h.
4 Reject if for the greatest j with bi,j 6= 1 also bi,j 6= −1.

4 Accept.”

If p is a prime number then Pr[prime accepts p] = 1.

If p is an even composite number then Pr[prime accepts p] = 0.

If p is an odd composite number then Pr[prime accepts p] ≤ 1
2k

.

For details see [Sipser2006]. We also use that modular exponentiation is in P for

Theorem 2.4

PRIMES ∈ BPP.

RP

prime has an interesting property: its error is one-sided. Any rejected number must be
composite (i.e. the error probability when rejecting is 0) whereas there is a small
probability that an accepted number is not prime.

Definition 2.5

RP is the class of languages that are recognisable by probabilistic polynomial time TMs
where inputs in the language are accepted with a probability of at least 1

2
and inputs not

in the language are rejected with a probability of 1.

Corollary 2.6

COMPOSITES = PRIMES ∈ RP.

Monte-Carlo

Definition 3.1

Call a probabilistic TM Monte-Carlo if it accepts any given word w with probability of
either 0 (i.e. rejection is guaranteed) or ≥ 1

2
.

Corollary 3.2

RP is the set of languages of P-time Monte-Carlo TMs.

It is an open problem whether RP
?
= coRP.

Corollary 3.3

1 RP ⊆ BPP

2 RP ⊆ NP (and hence coRP ⊆ coNP)

Las Vegas

So far we’ve always categorised time complexities based on the worst-case running time.
Differences may arise if we move to expected running time.

Definition 3.4

Call a probabilistic TM Las Vegas if it accepts and rejects with certainty but its running
time may vary with the probabilitic choices made.

Obviously, every (deterministic) TM is a Las Vegas TM.

ZPP

Definition 3.5

Let ZPP (for zero-error, probabilistic, polynomial) be the class of languages recognised
by (expected) P-time Las Vegas TMs.

Example 3.6

That PRIMES ∈ ZPP has been known since 1987, predating the seminal proof of
PRIMES ∈ P.

Corollary 3.7

1 P ⊆ ZPP

2 A ∈ ZPP⇒ A ∈ ZPP (so we needn’t define coZPP)

Proof.

1. Let A ∈ P. By definition of P there exists k ∈ N and a TM M such that L(M) = A and, for
all words w , the running time of M on w never exceeds |w |k . There is only one computation
path per input word to consider, so the weighted average over all computation paths is equal to
the running time on the unique computation path. Thus we may use M as an expected P-time
Las Vegas TM recognising A.
2. Las Vegas machines never lie (but they may take longer to answer than you’re prepared to
wait). Therefore we can flip qaccept and qreject to recognise complements without affecting
expected P-time.

ZPP vs. RP

Theorem 3.8

ZPP = RP ∩ coRP

Compare this to the open problem of P
?
= NP ∩ coNP.

Proof of ZPP ⊇ RP ∩ coRP: Let A ∈ RP ∩ coRP. Let M and M ′ be Monte Carlo TMs
with L(M) = A = L(M ′).

Las Vegas TM N = “On input w :

1 Run M on w . If M accepts, accept.

2 Run M ′ on w . If M ′ accepts, reject.

3 Repeat.”

Clearly N never gives a wrong answer. But what is its expected running time? If both M
and M ′ are running in at most nk time then each iteration takes about 2nk steps. The
probabilty of halting in an iteration is > 1

2
. The expected running time of N is thus

clearly polynomial:

∑
i>0

Pr[N halts after iteration i] · N’s running time for i iterations

≤
∑
i>0

(
1

2i
· i2nk

)
= 2nk

∑
i>0

i

2i
≤ 4nk

Proof of ZPP ⊆ RP ∩ coRP uses Markov’s inequality:

Theorem 3.9

Any non-negative random variable X satisfies Pr(X ≥ kE[X]) ≤ 1
k

.

Let N be an expected nk -time Las Vegas TM with L(A).

Let A ∈ ZPP. Let Monte Carlo TM M = “On input w :

1 Run N on w for at least 2|w |k steps. If it halts, give its answer; otherwise, reject.”

If w /∈ A then N will reject with certainty.

By Markov’s inequality the chance that it will yield an answer before we stop it is ≥ 1
2
.

This means the chance we’ll give the wrong answer on w ∈ A by timing out, is ≤ 1
2
.

Hence A ∈ RP.

To show A ∈ coRP use the same M but accept when timing out.

Outlook

Quantum Complexity.

How does it work? How does it change? Lots of open questions . . .

Average Time Complexity. (Levin, 1986)

what’s a good definition? What classes do we have?

Fixed Parameter Complexity

often, just some aspects of a problem contribute to complexity

separate out easy / hard parameters

Complexity of Logical Formalisms

mainly automated reasoning

	Approximation
	Intro

	Primes
	Intro

	RP & ZPP
	Intro

