
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Alternating Time

This Lecture Covers Material Beyond the Textbook

APTIME

APTIME vs PSPACE

The Geography Game

Rules of Geography given a designated starting city (e.g. London)

1 Player 1 names a city that begins with the last letter of the designated city (e.g.
Newcastle) and makes this the designated city.

2 Player 2 names a city that begins with the last letter of the city named by player 2
(e.g. Edinburgh) and makes this the designated city, continue with rule 1

Winning Conditions.

The game is lost by the player that cannot name a city . . .

and won by the other player.

Question.

Does Player 1 have a winning strategy (i.e. can always win irrespective of the
moves of player one)?

The Proof Game

Background.

A formula A is provable if there is a proof rule with conclusion A, all of whose
premisses are provable (e.g B→A B

A
)

Rules of the Proof Game for a given designated formula A0:

1 Player 1 chooses a proof rule A1, . . . ,An/A0 whose conclusion is the designated
formula

2 Player 2 chooses a premiss Ai of the rule, and makes Ai the designated formula,
continue with rule 1

Winning conditions.

the player who cannot move loses the game

infinite plays are lost by Player 1

Question.

Does Player 1 have a winning strategy (i.e. can always win irrespective of the
moves of player one) so that A is provable?

Generalised Geography.

Replace cities with directed graph:

Winning Conditions.

who cannot move, looses

Player 2 wins infinite plays

Rules.

the indicated node is the designated node

Player 1 chooses a successor of the designated node which is the new designated
node

Player 2 chooses a successor of the designated node which is the new designated
node, continue with rule 1.

Question.
What is the complexity that – given graph G with designated initial node – of
determining whether Player 1 has a winning strategy?

Mapping

From Geography to Generalised Geography. Construct a graph where:

the nodes are the names of cities

there is an edge between city 1 and city 2 if the name of city 2 begins with the last
letter of the name of city 1

From Proof to Generalised Geography. Construct a graph where:

nodes are either formulae, or proof rules

there is an edge between a formula node A and a proof rule node A1, . . . ,An/A0 if
A = A0

there is an edge between a proof rule node A1, . . . ,An/A0 and a formula node A if
A = A1, some 1 ≤ i ≤ n.

Winning Strategies

For Player 1 to win from starting node n:

there exists a move such that for all moves of player 2 to node n′ . . .

Player 1 has a winning strategy from node n′

Pattern for winning strategy:

existential choice for player 1

universal choice for player 2

Nondeterministic Machines

Complexity Class NP. Have non-deterministic machine

where every run takes at most polynomially many steps

there exists an accepting sequence of IDs

Complexity Class co-NP. Have non-determninistic machine

where every run takes at most polynomially many steps

every sequence of IDs is accepting

Alternating Turing machines combine existential and universal runs

Alternating Turing Machines

Definition. An alternating Turing machine is a non-deterministic Turing machine
M = (Q,Σ,Γ, δ, q0,F) where additionally Q = Qe ∪ Qu is partitioned into a set of Qe of
existential states and Qu of universal states.

Instantaneous Descriptions (IDs)

are defined as for non-determninistic machines, and contain tape content, head
position, and state

the transition relation I ` J between IDs is defined as for non-deterministic machines

an ID is existential if the state is existential, and universal, if the state is universal.

Q. What about acceptance . . . ?

Acceptance

Informally. An ATM M accepts string w if there is a finite tree whose nodes are IDs and

the root node is the initial ID (w on tape, state q0)

every existential ID E has one child J with E ` J

every universal ID U has all IDs J with U ` J as children

all leaf nodes are universal.

Informal Example. Generalised Geography

On tape: Graph and designated node

two states, q0 (initial and existential) and q1 (universal)

from qi to q(1− i): replace designated node by successor in graph

(omitting intermediate states that are needed to change designated node)
Idea.

q0 are the states where player 1 moves, and q1 is a state of player 2

universal leaf nodes = player two can’t move and player 1 wins

Informal Example.

Geography Graph.

existential states are red
universal states are blue

Winning Strategy.

1

��
2

��
4

��
5

}} !!
3

��

7

��
9 9

ATM Acceptance, Formally

Definition. Given an ATM M and string w , then the set of accepting IDs is the least set
A of IDs such that

for every existential ID E there is an ID I ∈ A with E ` I

for every universal ID U ∈ A and every ID I with U ` I we have I ∈ A.

That is, every existential ID in A needs to have one successor in A, and every universal ID
in A needs to have all successors in A.

What about accepting states?

An existential ID with no successors is never accepting

A universal ID with no successors is accepting

(Hence accepting states are not needed, and we just mention the for compatibility with
the original definition)

How about infinite loops?

in the tree-definition we have insisted on finite trees

here, least set makes sure that infinite loops never accept.

First Algorithm for Geography

Algorithm Geography (Graph G, start node n):

let cur = n;

forever do {

existentially guess (a successor node e of cur);

// if this is not possible, we don’t accept

universally guess (a successor node u of e);

// if there are none, we accept

let cur := u;

}

Comments.

This shows (modulo a translation to TM) that Geography is solvable using an ATM

However the number of steps that this ATM takes is possibly infinite if there are
loops in the graph

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such every
sequence of IDs from an initial ID (q0,w) is at most p(|w |) steps long.
The class APTime of alternating polytime languages is the class of languages accepted
by an ATM that is polytime bounded.

Observation.

NP ⊆ APTime (just make every state existential)

co-NP ⊆ APTime (just make every state universal)

Reductions. If L is polytime red’e to L′ and L′ ∈ APTime then so is L.

(In the combined ATM, make every state of the transducer that reduces L to L′ either
universal or existential. As the trasducer is deterministic, this doesn’t matter.)

Example: Geography

Earlier Algorithm.

Algorithm Geography (Graph G, start node n):

let cur = n;

forever do {

existentially guess (a successor node e of cur);

// if this is not possible, we don’t accept

universally guess (a successor node u of e);

// if there are none, we accept

let cur := u;

}

not necessarily terminating, e.g.

// 1
))

2ii

let alone in polynomially many steps!

Geography, Terminating

Idea. Existential nodes don’t need to repeat

Algorithm Geography2 (Graph G, start node cur):

let seen := { cur };

forever do { // Player 1:

existentially guess (cur := unseen successor of cur)

// if this fails, we terminate and don’t accept

// Player 2:

universally guess (cur := successor of cur);

// if this fails, we terminate and accept

seen := seen u { cur } // never visit twice

}

Geography in APTime.

branches of tree at most twice as long as number of nodes in graph

every computation path takes polynomially many steps

APTime vs co-APTime

Observation. Given polytime bounded ATM M, construct ATM M ′ by swapping
existential and universal states

then M ′ accepts w if and only if M rejects w

requires that all runs are terminating

Corollary. co-APTime = APTime

Example. What are the strings accepted by the TM and it’s dual version below

// ∃

∗/∗
R **

∀
∗/∗
L

jj // ∀

∗/∗
R **

∃
∗/∗
L

jj

where * indicates any letter?

QBF Revisited

Idea. ∃ existential guess, ∀ universal guess

Algorithm evalqbf (formula A):

case A of {

A_1 \/ A_2: if (evalqbf A_1) = 1 then 1 else evalqnf(A_2)

A_1 /\ A_2: if (evalqbf A_1) = 0 then 0 else evalqbf(A_2)

~ A_1 : return 1 - evalqnf (A_1)

exists x A : existentially guess v in {0, 1};

evalqbf A [x := v]

forall x A : universally guess v in {0, 1};

evalqbf A [x := v]

}

where A [x := v] replaces all free occurrences of x in A with v.

Theorem.

QBF is in APTime (by algorithm above)

PSPACE ⊆ APTime (as QBF is PSPACE-hard)

From APTime to PSpace

Theorem. APTime ⊆ PSpace.
Proof (Idea). Depth-first search simulates ATM M on standard TM.

Algorithm ATMaccept (ATM-ID I):

if (I is existential) {

let accept := false;

foreach J with I |- J { accept := accept \/ ATMaccept(J); }

return (accept);

} else if (I is universal) {

let accept := true;

foreach J with I |- J { accept := accept /\ ATMaccept(J); }

return (accept);

}

For polynomial bound p and input of length n:

recursion depth is polynomial as M is APTime

argument in recursive calls is of size O(p(n))

So space in O(p2(n)).

Why PSPACE is “harder” than NP

True NP instances can (at least) be easily verified:
Provide witness = accepting-ID-path of NTM.
Has polynomial length and can be verified in polynomial time.

Example: Powerful Prover (in PSPACE) provides satisfying assignment for φ.
Verifier can check correctness in polytime.
Not possible for unsatisfiable φ.

Example: Composite numbers:
Prover provides factors. Verifier checks by multiplication.
Remarkably also possible for Primes (Primes ∈ NP).

No short proofs=certificates for PSPACE complete problems:
Prover even of unlimited power cannot convince poly-time verifier that some
language is in some class (if PSPACE 6= NP)

Examples: Prover cannot convince Verifier that white (or black) has winning strategy
in many zero-sum games such as n × n Chess or Go, or that QBF formula is true.

What we know and don’t know

Inclusions
P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

but P 6= EXP, and don’t know which inclusions are non-strict

Co-Classes.
NP ⊆ PSPACE and co − NP ⊆ PSPACE

but we don’t know whether NP = co-NP (however this would follow if P = NP)

Equalities
PSPACE = NPSPACE = APTIME

