
COMP3630/6360: Theory of Computation
Semester 1, 2022

The Australian National University

Time Complexity

This lecture covers Chapter 10 of HMU: Time Complexity

Determinisitic Time Complexity

Non-deterministic Time Complexity

The classes P and NP

Additional Reading: Chapter 10 of HMU.

Time Complexity

Exanple

We know that A =
{
0i1i | i ∈ N

}
is a CFL and decidable, e.g. by TM M1 which on

input w :

1 Scan w and reject if anything not in {t, 0, 1} or 10 is found.
2 Repeat as long as there are 0s and 1s on the tape:

Scan across and replace with blanks both the leftmost 0 and the rightmost 1.

3 If either 0s or 1s are left reject, otherwise accept.

How much time does M1 need, as a function f of the length of the input word w?

w ε 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

Definition 1.1

The time complexity of a deterministic TM that halts on all inputs is the function
f : N −→ N, where f (n) is the maximum number of steps that M uses on any input of
length n.

Example 1.2

For M1, it seems that f (2k) = f (2(k − 1)) + 4k + 3 for k > 1.

Asymptotic Notation (Big-O)

The exact running time function is often too complicated. The highest order terms
dominate the function eventually, so we can ignore the other terms.

Definition 1.3

Let f , g : N −→ R≥0 Say that f (n) = O(g(n)) if there exist c, n0 > 0 such that for all
n ≥ n0

f (n) ≤ c · g(n) .

The function g is an (asymptotic) upper bound for f .
Bounds of the form nc for some c > 0 are called polynomial bounds; those of the form

2(nδ) are called exponential bounds when δ ∈ R is positive.

Examples 1.4

5n3 + 2n2 + 22n + 6 = O(n3)

f from M1 is O(n2).

Big-O vs. log

We may safely omit the base of logarithms in the big-O notation because

loga n =
logb n

logb a
.

Small-o Notation

Definition 1.5

Let f , g : N −→ R≥0 Say that f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0 .

that is, for any c > 0 there exist n0 > 0 such that f (n) < c · g(n), for all n ≥ n0.

Observe that

1 f = O(f) but f 6= o(f).

2 f = o(g)⇒ f = O(g) but in general f = o(g) 6⇐ f = O(g)

Time Complexity Classes

Definition 2.1

Let t : N −→ R≥0. Define the time complexity class, TIME(t(n)) to be the collection of
all languages that are decidable by an O(t(n)) time TM.

Example 2.2

Recall A =
{
0i1i | i ∈ N

}
. Our analysis of M1’s running time showed that

A ∈ TIME(n2).

Example 2.3

Could we do better for A?
Is there a TM that decides A asymptotically more quickly, that is, is A ∈ TIME(t(n)) for
some t = o(n2)?
Consider M2, which on input w :

1 Scan w left to right and reject if 10 occurs as a substring. O(n)
2 Repeat as long as both 0s and 1s are on the tape: O(log n)

1 Scan from right to left and reject if there’s an odd number of non-Xs on the tape.O(n)
2 Scan from left to right and replace every other 0 by an X, beginning with the first 0.

Then do the same for the 1s. O(n)

3 If neither 0s nor 1s are left accept, otherwise reject. O(n)
So L(M2) = A ∈ TIME(n log n).

Example 2.4

Compare the running times (step numbers) of M1 and M2.

w ε 01 0212 0313 0414 0515

fM1(|w |) 2 8 19 34 53 76
fM2(|w |) 1 15 45 63 117 141

So M1 beats M2 at least for short inputs. For 020120 this is no longer the case.

Example 2.5

Could we do still better for A?
Is there a TM that decides A asymptotically more quickly, that is, is A ∈ TIME(t(n)) for
some t = o(n log n)?
We won’t prove this here, but the answer is no, not with a deterministic single-tape TM.
Consider the two-tape TM M3, which on input w :

1 Scan from left to right and copy 0s onto the second tape until the first 1 occurs.O(n)
2 Keep scanning left to right across the 1s while scanning right to left on the second

tape. O(n)
3 Accept if both heads encounter their first blank at the same time, otherwise reject.
O(1)

So L(M3) = A “∈” TIME(n).

Complexity vs. Computability

In computability theory we proved that the various TM models (deterministic vs
non-deterministic, single-tape vs multi-tape) were equally powerful.

In complexity theory the choice of TM models affects the time complexity of
languages.

Multi-Tape TM vs. Single-Tape TM

Theorem 2.6

Let t : N −→ R≥0 be such that ∀n ∈ N (t(n) ≥ n). Every t-time multi-tape TM has an
equivalent O((t(n))2) time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every multi-tape
TM M has an equivalent single-tape TM S .

Since for every step of M S might have to scan all of the tape used so far, the single step
number k of M may cost S up to O(k) steps. Hence the running time of S on an input

of length n is O(
∑t(n)

i=1 i) = O(t(n)·t(n)+1
2

) = O((t(n))2)

Non-Deterministic TM vs. (Deterministic) TM

The running time of a deciding non-deterministic TM N on an input word w is the
maximum number of steps N uses on any branch of its computation tree when starting
on w .

Theorem 2.7

Let t : N −→ R≥0 be such that ∀n ∈ N (t(n) ≥ n). Every t-time non-deterministic TM
has an equivalent 2O(t) time single-tape TM.

Proof.

By analysing the time complexity of the construction given to show that every
non-deterministic TM N has an equivalent deterministic TM S .

For inputs of length n the computation tree of N has depth at most t(n).

Every tree node has at most b children, where b ∈ N depends on N’s transition
function. Thus the tree has no more than bt(n)+1 nodes.

S may have to explore all of them, in a breadth first fashion. Each exploration may
take O(t(n)) steps (from the root to a node).

So all explorations together may take O(t(n)) · O(bt(n)+1) = 2O(t(n)) time.

P

Further study reveals that all deterministic models of computation are time equivalent up
to some polynomial. This motivates

Definition 2.8

P =
⋃

k∈N
TIME(nk)

Examples in P

PATH = { 〈G , s, t〉 | t is reachable from s in directed graph G }

RELPRIME = { 〈x , y〉 | x , y ∈ N ∧ gcd(x , y) = 1 }

Details are in [Sipser2006].

Examples in P cont.

Theorem 2.9

Every CFL is in P.

Proof.

For CFG G in CNF the CYK algorithm runs in O(|w |3) time on w .

Beyond (?) P

HAMPATH =

{
〈G , s, t〉

∣∣∣∣ Directed graph G has a
Hamiltonian path from s to t

}
COMPOSITES = { 〈x〉 | ∃p, q ∈ N>1 (x = p · q) }

Verifying an answer is often much easier than finding it.

Definition 2.10

A verifier for a language A is an algorithm V , where

A = { w | V accepts 〈w , c〉 for some string c }

We measure the running time of a verifier only in terms of the length of w , not that of
the certificate (or proof) c. Language A is polynomially verifiable if it has a polynomial
time verifier.

Examples 2.11

For HAMPATH a certificate for 〈G , s, t〉 could be the sequence of nodes forming a
Hamiltonian path from s to t in G .

For COMPOSITES a certificate for 〈x〉 could be a non-trivial divisor of x .

NP

Definition 2.12

NP is the class of languages that have polynomial time verifiers.

Theorem 2.13

A language is in NP iff it is decided by some non-deterministic polynomial time TM.

Proof.

“⊆:” guess the certificate.
“⊇:” use the accepting branch of the computation tree as certificate.

NTIME

Definition 2.14

NTIME(t(n)) is the class of languages decided by an O(t(n)) time non-deterministic
TM.

Corollary 2.15

NP =
⋃

k∈N
NTIME(nk)

Example: Cliques

A clique in an undirected graph is a fully connected subgraph. A k-clique is a clique with
k nodes.

CLIQUE = { 〈G , k〉 | Undirected graph G contains a k-clique }

is in NP.

Proof.

The certificate is a (representation of a) k-clique.

	Time Complexity
	Complexity Classes

